
Generating an Efficient Compiler for a Data Parallel
Language from a Denotational Specification

Johan Ringstr6m, Peter Fritzson, Mikael Pettersson

Email: (johri,petfr,mikpe)@ ida.liu.se
Phone: +46 13 281000, Fax: +46 13 282666

Abstract. There are very few examples of the generation of efficient compilers from
denotational specifications. Usually such compilers generate code which is orders of
magnitude slower than from hand-written ones. However, as has been demonstrated
by our DML (Denotational Meta Language) compiler generation system, through
appropriate single-threading analysis it is possible to obtain code of comparable
quality to hand-written compilers. Another problem with denotational specifications
is, because of their denotational nature, the need to introduce complicated power
domains to model non-determinism and parallelism. In this work we have used a more
practical two-level approach: use denotational specifications to model the meaning of
the source language in terms of an abstract machine of low-level operations, including
data-parallel operations. Then use operational semantics for the specification of this
abstract machine.

This paper reports experience from building a prototype compiler for a small Algol-
like parallel language using a version of the DML system called DML-P, which has
been extended to support data-parallel operations. The final code contains calls to a
portable data-parallel vector code library (VCODE CVL). The speed of generated
compilers are within a factor of three from handwritten ones. Extensive benchmarks
of a DML-P generated compiler are presented.

1 Introduct ion

The high abstraction level of denotational semantics makes it attractive as a language
specification formalism. However, many efforts to generate compilers from denotational
semantics specifications, starting with the SIS system by Peter Mosses 1979 [12], have
resulted in compilers and code that run very slowly - often 100 to 1000 times slower
compared to commercial compilers, and that also do not interface to commercial product-
quality parsers or code generators. The situation has gradually improved through the work
of several researchers, e.g. Sethi [25], Paulson [15], Raskovsky [20], Wand [30], Appel[1],
Jouvelot[9], and later work by Mosses [13], until Lee [11] and Petterson [16] demonstrated
the first practical compiler generation systems accepting denotational specifications.

In comparison with the MESS [11] system, the DML system goes several steps further.
It interfaces well with standard tools and it automatically generates a code generator that
emits intermediate quadruple code. DML can handle denotational specifications in
continuation-passing style, which is well suited for specifying arbitrary control structures.
The high code quality obtained using DML-generated compilers for Algol-like languages is
possible due to escape-analysis of the intermediate representation, which removes all
closures that would otherwise be present at run-time.

249

However, languages with non-determinism or parallelism are awkward and complicated to
specify using denotational semantics since power domains have to be introduced. In order
to cope with such languages in a practical way, we have instead turned to a two-level
approach: use a denotational specification to model the meaning of the source language in
terms of an abstract machine of low-level operations including data-parallel operations, then
use operational semantics to specify the abstract machine. In this paper we report some
experience of using this approach, including benchmarks obtained from generated
compilers. The DML-P (P for parallel) compiler generator system provides a prototyping
environment for the design of efficient compilers for data parallel computers. This system
has been developed from an early version of the original DML-S (S for Sequential) system.
This system implements the SML core language plus structures and signatures. It also
includes constructs that make the implementation of a denotational specification easier. The
development is done by adding support for data parallel operations as well as a more
complete set of primitive operators and types in the target intermediate language.

First we briefly describe data parallel languages using a Predula Nouveau example,
which is the subject language in this report. Then follows a brief introduction to denotational
semantics including some excerpts of the Predula Nouveau denotational specification, after
which we discuss two target data-parallel abstract machines. We continue by giving a
description of the implementation of the DML-P compiler generator and the CPS-graph
module. This graph is the internal representation for compiled programs. Finally we present
benchmarks for generated compilers followed by conclusions and future work.

2 Data Parallel Languages

The data-parallel programming paradigm [6] has become popular in recent years since it
exploits massive parallelism while preserving a simple deterministic programming style.
Many algorithms can be expressed as operations on collections of similar data objects.
Therefore languages containing data parallel programming constructs are called collection-
oriented languages [2]. In this paper we use a small data-parallel Algol-like language called
Predula Nouveau (a successor to Predula, PaRallel EDUcational LAnguage [21]) as a test
case in our work on compiler generation for data parallel languages. This language includes
a number of constructs operating on arrays, allowing the utilization of parallelism when
operating in parallel on elements of such arrays.

Figure 1 shows a small Predula Nouveau program that calculates the inner product. The

main() is
a, b : array 0.,5 of integer;
c : integer;

begin
for i in 0..5 loop

a(i) := i; (* a := (0, i, 2, 3, 4, 5) *)
b(i) := 5-i; (* b := (5, 4, 3, 2, i, 0) *)

end;
(* First perform elementwise multiplication. Then add the

products together into the c variable. *)
c := reduce(op +, each(op *, a, b));
write(c,"\n");

end;

Fig. l. Im,erproduct-asmallPredula Nouveauexample ~dam-paralleHsm.

250

arrays a and b contain source vectors which are used when calculating the inner product.
This is done by applying the r e d u c e function on the elementwise products of the elements
in the two arrays. This intermediate array is calculated by the e a c h function using the
multiplication operator. The e a c h and r e d u c e operators are data parallel in that they
apply their operator argument to all array elements at the same time.

2.1 Data-Parallel Operators

One of the earliest programming languages which included collection oriented
programming capabilities is APL [8], which is centered around a vector-like data type.
Numerous modem data parallel languages have followed this style of a collection data type
together with a set of associated operations. Predula Nouveau includes a parallel version of
the array data type found in the Algol family of languages. The reduce, scan, each, and
enumerate operators are used in Predula Nouveau.

For example, the reduce operator takes an operator and an array as arguments. The
intuitive meaning is to put the argument operator between the array elements and then to
evaluate the resulting expression. This operator must be associative in order not to give a
result that depends on the topology of the evaluation tree. It also must have an identity
element. This value is returned if an empty array is supplied to reduce. Denotational
definitions of reduce and some other data-parallel operators like scan, each, and enumerate
can be found in [22].

3 Denotational Semantics

In a denotational specification, the meaning of a program is a mapping from an abstract
syntax to denotations. Domains that form the source of this mapping are called syntactic
domains. Domains that form the denotations are called semantic domains. For a detailed
discussion of the foundations of this area, see [26,28]. A more practically oriented
introduction is found in [4].

We want to describe a computer language including the operational behaviour of parallel
programs while avoiding unnecessary detail, but we also want to be able to automatically
generate a compiler for the language. Our approach is to describe the static semantics and
part of the dynamic semantics of a programming language using a denotational semantics
and to describe the remaining dynamic semantics using an operational semantics. These two
parts are from now on named high-level and low-level semantics. We name the operational
part low-level, since it is closer to the target machine. The most well-known example of a
language specified by a denotational specification is Scheme [19]. Another example is
OCCAM, which uses a combination of a denotational specification for the sequential part
of the language and a CSP-based method for the parallel part [7].

3.1 Compiler Generation from Denotational Semantics

Figure 2 illustrates the compiler generation process. The specification of the low level
intermediate language could be formally defined using some operational semantics
formalism, see e.g. [18]. However, here we adopt a more pragmatic approach by mapping
the intermediate representation directly to quadruples which are emitted in the form of calls
to the VCODE [3] library together with simple C statements.

251

Lexical and I
Syntax
Specification

I
High Level - -~
Specification

Low Level ~
Specification

Program Text

Lexical I Source Language
analysis [Lexical Specification

Syntax Source Language
analysis Grammar Specification

Abstract Syntax Trees as
""! .. Syntactic Domain Objects

Semantic [Source Language
analysis I Denotational Specification

Intermediate Code as
..,,I .. Nodes in Semantic Domains

(CPS Graph)
Code Target Code
generation
(CPS module) Specification

Object Code

Fig. 2. The translation of a source program to object code by a compiler generated by the DML
system. The kinds of specification formalism are shown for the modules.

The DML system encapsulates the mapping to target code in a Continuation Passing Style
(CPS) graph. The nodes in this graph are lambda calculus expressions. By the way the
continuation is constructed, lambda abstractions can be stack allocated [18]. This makes it
easier for the backend to generate efficient code.

When generating a compiler, e.g. for a tiny subset of C, the original CPS-graph [16]
module from the DML-S system can be used, but for Predula Nouveau it is necessary to add
extensions for the parallel part of the language, as will be shown later.

3.2 A Comment on the Denotationai Specification Notation

Most work on denotational semantics use the Oxford School notation. A very concise
notation using one letter identifiers in the greek alphabet is usually used. This is nice for
articles and short examples, but not practical for large machine-processable language
specifications. Therefore we have adopted Standard ML [5] syntax. Examples of
transformations between Oxford School notation and SML are given below.

Oxford School

P!

s s s
XP
k~.a
(~,~)

l e t x - y m z
1 Elnt
1 inC

notation SML notation
envl
if pred then expl else exp2
dcont env
fn x => x
(a,b)
[a,b,c]
let val x = y in z end
(expressed by SML pattern matching)
(expressed by SML constructors)
(expressed by SML pattern matching)

(variable ref.)
(conditional)
(application)
(t a ~)
(tuple formation)
(sequences)
(local binding)
(membership check)
(injection)
(projection)

252

4 The Predula Nouveau Specification

Syntax and semantics are specified using different methods. Abstract syntax is described
using syntactic domains. Semantics is expressed using a continuation passing style
denotational semantics. This part of the specification is built using CPS primitives which
are expressed in a CPS back end module.

4.1 Syntax

The concrete syntax is implemented as a scanner and a parser generated by ML-Lex and
ML-YACC. The parser builds elements in syntactic domains from an input program. These
domains correspond to classes of abstract-syntax objects. There are five flat syntactic
domains for literals and identifiers.

L e Nml (integer numerals) L e Real (reals) n r
L e Char (characters) L e Str (strings)
I c ~ Ide (identifiers) s

Uatng these definitions it is now possible to build non-flat domains:

D e Decl (declarations)
T eTExpr (types)
F e Param (item in function prototype parameter list)
E ~ Expr (expressions)
C e Cmd (statements)

At the top level a Predula Nouveau program is a D value. Abstract syntax are equations on
syntactic domains. Let us define some equations:

O ::-null l t y p e l r l v a r l T [v a r i I T E [v a r i c l r E l f u n l P T C [D 1 D 2
P : : - v a r I T M [v a r c l T M I P*
M ::-no Ivar

T : : - tvarI I arrT 1T 2 IT*
E : : -L [L [L I L I I I un E, E 2 I binE 1 E 2 E 3 Iapp E I E* c n r s 1
C ::-skip loopiC loopdDEC I break t cont [returnE

I de l E I expr EI r E C I C 1 C 2
G : : - E C I G*

Variable declarations have three summands: uninitialized, initialized, and constant
initialized declarations. Arrays are composed of two types. The first type is the index type
and the second is the element type. Definite loops are composed of an induction-variable
declaration (including the loop range), a count step expression, and the loop body.

4.2 Semantics

In the semantics specification function domains are used in addition to sum, product, and
sequence domains that build the syntactic domains. We concentrate on the part of the
predefined environment that specifies data-parallel operators.

The DVal domain contains values that can be denoted in a Predula Nouveau program.
Predefined value and type environments are defined by the following domain equations:

253

VEnv =- Ide --4 DVal x Type TEnv - Ide ~ Type Env =- VEnv • TEnv

Denotable values are bound to names in VEnv and denotable types are bound to names in
TEnv. This defines two separate name spaces for Predula value and type identifiers in a
natural way. For the pairs in VEnv the Type domain component is the type of the denotable
value. The following function builds TEnv values when partially applied:

mktyp (ide,t) tenv ide2 =- if ide=ide2 then t else tenv ide2

For example, raktyp ([[" s IntType) produces a value in the TEnv --4 TEnv domain.
Larger environment segments are built by function composition on such values. Compare
this to symbol tables in traditional compilers.

4.2.1 Definition of the Data.Parallel Functions in Predula Nouveau

We are now ready to define the Predula Nouveau data-parallel operators in the predefmed
environment. In order to do this we use the mkopr function in analogy to the m/ayp function
above to build the value environment. One important observation is that the parallel
operational semantics does not have to be specified anywhere in the denotational semantics.
The second argument position of mkopr in the definition below contains a type checking
function for the operator. The third and fourth positions define parameter and result modes.
The last position maps to operators in the CPS graph. The Predula Nouveau s c a n ,
r e d u c e , and e a c h functions are overloaded: they come in integer, real, and boolean
versions, The integer versions, including e n u m e r a t e , are shown below:

iparoprs =-- mkopr ([[" enumerate "]], enumtc intT, I_ENUM) o
mkopr([["each"]], eachtc 1 intT, I._EACH1)o
mkopr([["each"]], eachtc 2 intT, I__EACH2)o
rakopr ([[" s c a n "]], scandtc intT, I_SCAND) o
mkopr([["scan"]], scansdtc intT, I_SCANSD)o
mkopr ([[" scan "]]. scanstc intT, I_SCANS) o
mkopr([["reduce"]], reduceutc intT, I_REDUCE) o
mkopr([["reduce"]], reducestc intT, I_REDUCES)

For a definition of the binding of real and boolean data parallel functions (together a total of
22) and a more detailed discussion of the type checking functions that are used in the
composition, see [22].

4.3 Data-Parallel Extensions in Predula Nouveau

Most of the extensions are introduced to support data parallelism. These extensions consist
of the addition of a number of data-parallel functions, like chum, scan, reduce, and each, that
work on the array type.

Currently only one-dimensional arrays of scalar or real values are possible. Still, we feel
that this set, which however probably is too small to be used in real-life data-parallel
programming, is large enough to demonstrate the feasibility of compiler generation for data-
parallel programming languages from denotational specifications.

254

5 Data Parallel Target Codes

5.1 VCODE and Paris

The VCODE system [3] implements an abstract machine of data-parallel vector operations.
It is portable between several parallel architectures including the CRAY and CM-2, but also
sequential architectures, such as the Sun workstation. The VCODE operations are
implemented on top of a library of C routines, the C Vector Library (CVL).VCODE is a
single assignment stack-based language where all instructions operate on arrays. There are
no free scalars, not even on the stack. The data-parallel functions are limited to arrays of
scalars and floating-point numbers: it is not possible to directly build nested arrays or
multidimensional arrays. Instead the VCODE data-parallel functions can handle segmented
arrays.

Both VCODE and the CM-2 Paris library [29] are cumbersome to use due to the many
implementation details that need to be incorporated in such programs. This applies ~
especially to Pads. VCODE, on the other hand, is limited due to its single-assignment
vector-stack, i.e. vectors on the stack cannot be destructively updated. There also is no way
to store scalars except as unit vectors, and there are no global or heap stores to complement
the stack. Also, to manage multidimensional or nested arrays it is necessary to keep the array
topology in a separate segment array. Array decomposition for massively-parallel
computers is an active research area: see for example [10].

6 I m p l e m e n t a t i o n o f the Compiler Generator

The SML/NJ system is used to generate implementations from denotational semantics
specifications. Specifications can almost be transformed verbatim to SML/NJ: very few
transformations are necessary.

6.1 The module design

The specification is partitioned into three groups of modules, as is shown in Figure 3. The
figure also shows the generation of a compiler from specification modules. The language
specification part contains language specific modules. The general functions part consists
of a module that contains definitions which are independent of both the specified language
and the target platform. This module includes the definition of some auxiliary functions in
the denotational definition. The lower right part contains implementation dependent
specification modules.

All these modules together generate the lower left part in Figure 3 which shows the
modules in the generated compiler. The generated F r o n t module transforms the input
program to an abstract syntax tree. H i d transforms the abstract syntax tree to a CPS graph
through the M semantic function. Back transforms the graph to target code (in our case
ANSI C quadruples and calls to the CVL library). Currently the SML/NJ module system is
used to implement the module composition.

We claim that this way of building the system offers two important benefits. First, the
division between the denotational part and the operational part of the language specification
is. expressed in a natural and flexible way that makes automatic generation of a compiler

255

Language I Lexical } The DML-P
Specification Specification \ Compiler Generator:

\

\ General Auxiliary
| Grammar | \ Functions

}~ Specification ~ ,
. ~.~ :
: ~ / Denotational Definition', ',
". [~ ; n~xt V - i . i---~i, i I, Type. /:' _ . I General I
: I Domain ~ Mxdend Main ~ Domain I1~ ~ 1 ~, ,~,,,,o I

1 Definition I Sp ifi.tion i finiti~ I \ I I

................... I:t ... r;"'" ; ~ ..
; ",.. ," , : " v
", �9 i:' i / i

-o] Front .,
',, I I ~ : " " ~

. j::s.: , i
�9 o | [~.-':;": �9' "'"'/ Parallel Functions I

�9 x / ' / I

, ,dl~:!..::::- Imple e ration
Generated] tsact< r '" Dependent
Compiler I I Auxiliary Functions

module export ~ compiler generation ,,,.

Fig. 3. The module structure of typical language specifications, the DML-P compiler generator,
and the generated compiler.

practical�9 Second, the strong modularisation makes it possible to reuse parts of the
specification between different languages. Currently, only the CPS-graph module has been
used for more than one language since it also has been used to specify the Tiny-C language
in the DML-S system.

6.2 The Predula N o u v e a u L a n g u a g e Specif icat ion

The Predula Nouveau abstract syntax domain definition, midend main specification, and
type domain definition (the modules in the dashed box in Figure 3) are written in
denotafional semantics. The abstract syntax definition is used by both the grammar
specification and by the midend. The type domain definitions module contains denotational
definitions of the type system. The midend main specification module contains most of the
Predula Nouveau semantics including the M (as in meaning) semantic function.

6.3 The C P S - G r a p h Speci f icat ion

The CPS-graph specification module generates part of the Back part of the generated
compiler in Figure 3. The module interface includes a number of constructors which builds

256

datatype Opr = ...
[I_ENUM
I R_EACHI I R_EACH2
[R_REDUCE [R_REDUCES

I R_SCAN I R_SCANS I R_SCANSD

val Lambda : Typ * (Val -> Cont) -> Kont

val Halt : unit -> Cont
val Return : Val -> Cont
val Call : Func * Val list * Kont -> Cont
val Cond : Val * Cont * Cont -> Cont
val New : bool * Typ * Kont -> Cont (* Build a new location *)
val Send : Val * Kont -> Cont (* Send value to command cont *)
val Update : Val * Val * Cont -> Cont (* Update location *)
val Fetch : Val * Kont -> Cont (* Fetch value in a location *)
val VIndex : Val * Val list * Val list * Kont -> Cont (* Get arr loc *)
val PrimFunc : Opt -> Func (* Func from primitive operator *)

(* Terminate *)
(* Return from function *)

val fix cont : (Cont -> Cont) -> Cont
val fix_func : Typ * bool list * (Val list -> Func -> Cont) -> Func

val codgen : Cont -> unit

Fig. 4. Declaration of Operators and Basic Term Building Blocks of the CPS module of DML-P

a CPS lambda expression. The most important constructors are shown in Figure 4. Inside
the module these constructors build a graph. The CPS graph consists of three kinds of nodes.
C o n t nodes are lambda expressions that do not bind a value to a new name. K o n t nodes
are used to bind values to new names. The third kind of node, named F u n c in the figure, is
functions. These functions can be either primitive or user-defined. Primitive functions are
created by the p r s constructor from primitive operators. User-defined functions can
only be defined via the f i x f u n c constructor. This constructor also binds function
parameters.

The module also exports the c o d g e n function which generates object code from the
CPS lambda expression. Presently, this code is an ANSI-C program that together with the
VCODE CVL is sent to the C compiler for compilation to object code. Section 7 gives a
more detailed discussion of the code generation module concentrating on the data-parallel
extensions compared to the CPS-graph module in the DML-S system. A discussion of the
technical detail of the interface and implementation of the module is also found in Appendix
A of [18].

6.4 Using the CPS Module Constructors

Let us illustrate using the I_ENUM integer data-parallel enumeration operator. Assume we
want to apply this operator to its arguments. This is done using the C a l l constructor."

Call (PrimFunc I_ENUM, args, kont)

The first argument to C a l l is the function to be applied. This is the I_ENUM operator
injected into the F u n c domain. The second argument a r g is a sequence of evaluated left
or right value arguments to C a l l . The last argument is the expression continuation that
receives the result of the application." For a user-defined function, the call constructor
instead uses a value in the F u n c domain defined by the f i x _ f u n c constructor.

257

The f i x _ c e n t constructor is used to express fixpoints of loops. The f i x _ c e n t and
f i x _ f u n c constructors are the only ones that can be used to express recursion. The
F e t c h constructor fetches an atomic value from a location. The VIndex operation sends
a location in an array to an expression continuation. Combining these two it is possible to
fetch an element from an array location:

VIndex(arr, [offset] , [index] , Lambda(x, Fetch(x, kent)))

VIndex sends its location result to Fetch using a Lambda binding. Work is ongoing to

generalise VIndex to multidimensional and nested arrays.

7 The New Code Generation Module for Data-Parallel Operations

Here we shortly talk about the internals of the code generation module and the modifications
that were necessary to make to the original DML-S system CPS module able to generate
data-parallel code [18].

First, new primitive operators have been added. The original module contained 11
operators. These operators were created with the goal of compiling a small subset of the C
language. The extended module in DML-P contains a total of 83 operators. This larger
amount is partly due to the increased number of types that is supported by the module, but
also because the operator domain includes 22 new data-parallel operators, counting
different types. The truncated definition of the operator semantic domain in Figure 4
includes some of these data-parallel operators.

Second, the new module can handle a greater range of types than ,the original module.
This includes characters, strings, and floating point numbers. This also made it necessary to
add new constructors for literals.

Third, the data-parallel extensions make it necessary to implement arrays more carefully.
Currently only fixed size arrays are supported, but work is ongoing to support arrays with
dynamically determined size.

Fourth, the most important extension is the addition of the VCODE CVL. This is done
as external C calls to the library operations. This library is linked with the generated object
code.

From a code generation point of view, the CPS-graph module linearizes the graph into a
sequence of instructions. In the original module this is done in two phases. First the graph
nodes are marked. This includes counting of references. If a Cen t node is referenced by

258

#include <stdio.h>
#include <math.h>
#include "datapar.h"

typedef struct{long body{6];
} ttl;

void tl(){
long t23;
long t29;
long t32;
long *t31;
long *t34;
char t27;
long *t18;
long t38;
long *t17;
long t39;
long t41;
long *t40;
long t42;
ttl *t16;
ttl t43;
long t45;
long *t44;
long t46;
ttl *tll;
ttl t47;
long t49;
long *t48;
long tSO;
ttl *t6;
ttl t51;
t6=&t51;
t48=&t50;
*(t48)=0;

t49=6;
{long t52;
for(t52=O;t52<t49;t52++){
t6->body[t52]- *t48;
}]
tll=&t47;

t44=&t46;
*(t44)=0;

t45=6;
{long t53;
for(t53=O;t53<t45;t53++)[
tll->body[t53] = *t44;
))
t16=&t43;
t40=&t42;
*(t40)=O;

t41=6;
{long t54;
for(t54=O;t54<t41;t54++)[
t16->body[t54]= *t40;

t17=&t39;
*(t17)-O;

tlS=&t38;
*(t18)=O;

L36:t27= *t18<=5;
if(it27) goto L35;
t34=t6->body+(*tlS-O)*l;
*(t34)= *(tlS);

t31=tll->body+(*t18-0)*i;
t32=5- *t18;
*(t31)=t32;

t29 = *tlS+l;
*(tlS)=t29;

goto L36;
L35:(each_i_mul(t16,6,t6,tll),t16);
t23=reduce_i_add(t16,6);
*(t17)=t23;

printf("%id", *t17);
printf("%s","\n");
return ;
}

int main()[
(void)tl();
exit(O);
}

259

8 Benchmarks of a DML-S Generated Compiler for a Sequential C
Subset

In order to make a rough comparison between the quality of stand-alone C-based compilers
generated by the original DML-S system and the quality of commercial compilers, we
prepared a 1000-line program example in a small C subset called Tiny-C, for which a
compiler was generated. This program contains function calls, integer and integer array
arithmetic in addition to control structures such as if-statements, loops, etc. This example is
measured on a Sparcstation ELC workstation (rated at approximately 20 MIPS). Measured
time is elapsed time. Code size is measured on the linked executable file. The generated
compiler frontend is in C, and produces low-level quadruples expressed in C syntax, which
are fed through the standard SunOS 4.1 CC backend.

The generated compiler was approximately three times slower in compilation speed than
the Sun C++ compiler (version 2.1) (the generated compiler processing 1954 lines/minute
versus 7100 lines/minute for Sun C++ when generating un-optimized code, or 1036 lines/
minute versus 2600 lines/minute when generating optimized code). However, the execution
speed of the generated code was approximately the same, 7.8 seconds for the optimized code
from the generated compiler versus 7.4 seconds when executing the optimized code from
Sun's C++ compiler. However, when using the Gnu C compiler as the backend instead of
the Sun C compiler, the Tiny-C compiler generated code which was about 2.5 time slower
than code from the Gnu C compiler (3.4 seconds versus 1.4 seconds). Apparently the
structure of the intermediate code from the Tiny-C compiler precludes some optimizations.

Gen. Tiny-C compiler with
Sun CC backend

Sun C++ only

Gen Tiny-C compiler + Gnu C

Gnu C compiler only

Without back-end
optimization

Code Compila- Execution
size tion time time
(kb) (seconds) (seconds)

40 kb 30.7 30.9

24 kb 8.4 26.5

40 kb 33.6 8.7

24 kb 8.9 4.6

With optimization (-O2)

Code size
(kb)

24 kb

16kb

16 kb

16 kb

Compila- Execution
tion time time
(seconds) (seconds)

57.9 7.8

23.1 7.4

133.5 3.4

~13.4 1.4

9 Benchmarks of a DML-P Generated Compiler for Predula Nouveau

The original DML compiler generation system is implemented in Scheme. It produces
compilers in Scheme which are translated to C using Bartlett's Scheme-to-C compiler. Thus
stand alone compilers in C, accepting source programs and producing quadruples, are
obtained.

The DML-P system has been developed from the original DML system by porting the
DML backend to SML/NJ, and by extending the set of low-level operations in the target
language to include data-parallel vector operations and scalar operations for a larger range
of primitive types (integers, floating point numbers, strings, characters), and arrays built

260

from the mentioned scalar or real types. DML-S only included support for integers and
arrays of integers.

The generated compiler frontend which is implemented in SML/NJ, accepts Predula
Nouveau source text, and produces low level quadruple code in C, which is then further
compiled and linked using the GCC (version 2.4.5) compiler and linker.

9.1 Compiling performance

In the first benchmark, the generated compiler is compared to GCC for speed and maximal
heap size on a Quicksort program. The recursive sorting function in Quicksort is unrolled
between 0 and 1000 times. 52 logarithmically distributed samples are taken from this range
resulting in program sizes varying between 10 and 17000 lines of Predula code. Data for the
benchmark was produced on a Sparcl IPC workstation with 36Mb of primary memory. A
similar Quicksort program implemented in C is also measured in this way. Measured time
is user+system time.

seconds, kb*10

1000

•

100

10

xxxXX:
XX x XXXX +++

x~QO(X XX +§247 O0 0
xXXx x ++Jr + 0 0

x x x xxxx~xx'~xxx.,o<x +++ o** --~
++++++ ~ * * ~

§ '0- tJ--
+++++ o . o ~ I ~

+++++ o f +++++ .~

+ + + +++++++r ~e@ u~'~

t: = t~o*~ ~ PredulaQuicksort toC *
o o o Predula Quicksort to Machine Code +

o C Quicksort to Machine Code []
Prcdula Frontend maximal Heap Consurnfion •

. i
lO00 lO000 lines 10

+

o

lOO

The maximal heap size for the Predula frontend during compilation is about 3.7 Mb up to
about 1000 lines of source code, where the size starts to grow stepwise up to about 30 Mb.
The Predula frontend alone is about as fast on smaller Predula Quicksort programs as the
Gnu compiler is on smaller C Quicksort programs, but the frontend is slower on larger
programs. Considering the entire Predula compiler, most of the time is spent in GCC. This
is due to the voluminous code that is currently generated by the Predula frontend.

Execution
Code size Compilation time

(kb) time (seconds) (seconds)

Predula Nouveau frontend only --- 18.3 ---

Predula Nouveau frontend with Gnu C -02 backend 24 94 22.4

Hand-written C program compiled with Gnu C -02 24 39 11.8

261

9.2 Run time performance

The second benchmark compares a 1000 line unrolled Predula Quicksort program to a 1000
line unrolled C Quicksort program. Both programs initialize and sort a 1000 element array
1000 times. The table is measured on a Sparcstation ELC. Measured time is elapsed time
and code size is measured on the linked executable file. Compilation speed is about 640
lines/minute for the Predula compiler and about 1540 lines/minute for the Gnu C compiler
on 1000 line programs.

I0 Conclusions and Future Work

The presented system, DML-P, is to our knowledge one of the first denotational semantics
based compiler generators that automatically generates practical compilers for data parallel
languages. The system uses a continuation passing style internal representation. This is a
graph that includes data-parallel operators. One important goal is to arrive at a sufficiently
genera] set of operators in the intermediate representation to be useful as a target for
compilers for a wide range of data-parallel languages. However, despite of being
prototypes, compilers generated by DML-S or DML-P has demonstrated surprisingly good
performance. Some directions for future work are shown below:

�9 Include multi-dimensional and nested/segmented arrays in the Predula Nouveau
language to evaluate whether DML-P needs any extensions for this.

�9 Include a Fora11 construct.

�9 Code generation for a wider range of parallel architectures.

�9 Further development of the low-level operational semantics and the CPS graph so it can
handle data-parallel operations with multi-dimensional and nested/segmented arrays.

Substantial work still needs to be done on the use of optimization techniques in order to
generate better data-parallel object code. This includes further work on using and
developing the CPS graph as a formally defined intermediate representation in which data-
parallel operations can be expressed.

11 References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1991.
[2] Guy Blelloch. Vector Models for Data-Parallel Computing. MIT press, 1990.
[3] Guy Blelloch, Siddhartha Chatterjee, Fritzs Knabe, Jay Sipelstein, Marco Zagha. VCODE

Reference Manual (Version 1.3) Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA 15213, Jul 1992.

[4] Michael J. C Gordon. The Denotational Description of Programming Languages. Springer-
Verlag, 1979.

[5] Robert Harper, Robin Milner, Mads Tofte. The Definition of Standard ML, Version 4. The MIT
Press, 1990.

[6] W. Daniel Hillis, Guy L. Steele, Jr. Data ParalleIAlgorithms, Communications of the ACM, Dec
1986, Vol.29, No.12, pp. 1170-1183.

[7] C. A. R. Hoare. Communicating Sequential Processes, Prentice-Hall, 1985, ISBN-0-13-
0153289-8.

[8] Kenneth E. Iverson A Programming Language, John Wiley & Sons, Inc., 1962.
[9] Pierre Jouvelot. Designing new languages or new language manipulation systems using ML.

SIGPLAN Notices, 21:40-52, Aug 1986.

262

[I0] Kathleen Knobr J. D. Lucas, Guy L. Steele. Data Optimization: Allocation of arrays to reduce
communication on SIMD machines. Journal of Parallel and Distributed Computing, 8:102-I18,
Feb 1990.

[i I] Peter Lee. Realistic Compiler Generation. PhD thesis, University of Michigan, 1987. Ph.D. thesis
published by MIT press 1989.

[12] Peter D. Mosses. SIS. Semantic Implementation System. PhD thesis, Aarhns University, 1979.
TR DAIMI MD-30.

[13] Peter Mosses. Unified Algebras and Action Semantics. In Proc. Symp. of Theor. Sci.
(STACS'89), LNCS-349, 1989.

[14] Edwin, M. Paalvast, A. J. Gemund, Henk J. Sips. A method for parallel program generation with
an application to the Booster language. In Proceedings of the 1990 ACM Fourth International
Conference on Supercomputing in Amsterdam, 11-15 Jun 1990.

[15] L. Paulson. A semantics-directed compiler generator. In Proceedings of the 9th ACM Conference
on Principles of Programming Languages, pages 224--233, 1982.

[16] Mikar Petters son. Generating efficient code from continuation semantics. In Proceedings of the
1990 Workshop on Compiler-Compilers, LNCS-477, Schwerin, G-crmany, 1990. Springer-
Verlag.

[17] Mikael Pettersson, Peter Fritzson. DML - A Meta.Language and System for the Generation of
Practical and Efficient Compilers from Denotational Specifications. In Proc. of the IEEE
International Conference on Computer Languages, San Francisco, Apr 27-30, 1992.

[18] Mikael Pettersson. DML - A Language and System for the Generation of Efficient Compilers from
Denotational Specifications. Licentiate thesis No 319. Department of Computer and Information
Science, Link6ping University, May 1992.

[19] H. Abelson, N. I. Adams IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R.
Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M. Pitman, G. J. Rozas, G. L.
Steele jr., G. J. Sussman, Mitchell Wand. Revised 4 Report on the Algorithmic Language Scheme.
Nov 1991.

[20] Martin R. Raskovsky. Denotational semantics as a specification of code generators. In
Proceedings of the ACM SIGPLAN 82 Conference on Compiler Construction, pages 230-244,
1982.

[21] Johan Ringstr6m, Peter Fritzson, Johan FagerstrOm. Predula, A Multiparadigm Parallel
Programming and Debugging Environment, In Proceedings of EUROMICRO'91 conference in
Vienna, short note session, IEEE Sep 1991.

[22] Johan Ringstr6m Compiler Generation for Parallel Languages from Denotational Definitions.
Licentiate thesis, spring 1993. Thesis No. 380.

[23] J.R. Rose and Guy L. Steele, Jr. C*: An extended C language for data parallel programming,
Technical Report PL 87-5, Thinking Machines Corporation, 1986.

[24] Gary W. Sabot: Paralation Lisp - Architecture Independent Parallel Programming, MIT Press,
1988.

[25] Ravi Sethi. Control flow aspects of semantics directed compiling. Technical Report CSTR-98,
Bell Labs, 1981.

[26] David A. Schmidt. Denotational Semantics, A Methodology For Language Development. Allyn
and Bacon Inc., 1986.

[27] Richard M. Stallman. Using and Porting GNU CC. 1989.
[28] Joseph E. Stoy. Denotational Semantics. MIT Press, 1977.
[29] Thinking Machines Corporation. Introduction to Programming in C/Paris (Version 5). Thinking

Machines Corporation, Cambridge, Massachusetts, Jun 1989.
[30] Mitchell Wand. A semantic prototyping system. In Proc of the ACM SIGPLAN'84 Compiler

Construction Conference, pages 213-222, 1984.

