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Abstract  

This paper concems the solution of demand versions of interprocedural analysis problems. In a 
demand version of a program-analysis problem, some piece of summary information (e.g., the 
dataflow facts holding at a given point) is to be reported only for a single program element of 
interest (or a small number of elements of interest). Because the summary information at one pro- 
gram point typically depends on summary information from other points, an important issue is to 
minimize the number of other points for which (transient) summary information is computed 
and/or the amount of information computed at those points. The paper describes how algorithms 
for demand versions of program-analysis problems can be obtained from their exhaustive counter- 
parts essentially for free, by applying the so-called "magic-sets" transformation that was devel- 
oped in the logic-programming and deductive-database communities. 

1. Introduct ion 

Interprocedural analysis concerns the static examination of a program that consists of 
multiple procedures. Its purpose is to determine certain kinds of  summary information 
associated with the elements of a program (such as reaching definitions, available expres- 
sions, live wtriables, etc.). Most treatments of interprocedural analysis address the 
exhaustive version of  the problem: summary information is to be reported for all elements 
of  the program. This paper concerns the solution of demand versions of interprocedural 
analysis problems: summary information is to be reported only for a single program ele- 
ment of  interest (or a small number of elements of interest). Because the summary infor- 
mation at one program point typically depends on summary information from other 
points, an important issue is to minimize the number of other points for which (transient) 
summary information is computed and/or the amount of information computed at those 
points. 

One of  the novel aspects of our work is that establishes a connection between the ideas 
and concerns from two different research areas. This connection can be summarized as 
follows: 

Methods for solving demand versions of  interprocedural analysis problems--and 
in particular interprocedural analysis problems of  interest to the community that 
studies imperative programs---can be obtained from their exhaustive counterparts 
essentially for free, by applying a transformation that was developed in the logic- 
programming and deductive-database communities for optimizing the evaluation 
of recursive queries in deductive databases (the so-called magic-sets transforma- 
tion [22,3,7]). 
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This paper describes how the above approach can be used to obtain a demand algorithm 
for the interprocedural "gen-kill problems" (i.e., problems in which the dataflow functions 
are all of the form ~ x . (x - kill) u gen). 

There are several reasons why it is desirable to solve the demand versions of interproce- 
dural analysis problems (and, in particular, to solve them using the approach presented in 
this paper). 

�9 Narrowing the focus to specific points of  interest. In program optimization, most of 
the gains are obtained from making improvements at a program's "hot spots" in par- 
ticular, its innermost loops. Although the optimization phases during which transfor- 
mations are applied can be organized to concentrate on hot spots, there is typically an 
earlier phase to determine dataflow facts during which an exhaustive algorithm for 
interprocedural dataflow analysis is used. A demand algorithm can greatly reduce the 
amount of extraneous information that is computed. 

With the approach presented in this paper, answers and intermediate results com- 
puted in the course of answering one query can be cached--that is, accumulated and 
used to compute the answers to later queries. (This can go on until such time as the 
program is modified, whereupon previous results--which may no longer be safe 
must be discarded.) The use of cached information can further reduce the cost of 
responding to demands when there is a sequence of demands in between program 
modifications. 

�9 Reducing the amount o f  work spent in preprocessing or other auxiliary phases o f  a 
program analysis. Consider a problem such as flow-insensitive side-effect analysis 
(e.g. MayMod, MayUse, etc.), which has a decomposition that includes two sub- 
sidiary phases: computing alias information and computing side effects due to refer- 
ence formal parameters [5,11,10]. In problems that are decomposed into separate 
phases, not all of the information from subsidiary phases is required in order to 
answer an "outer-level" query. Given a demand at the outermost level (e.g., "What is 
the MayMod set for a given call site c on procedure p?"), a demand algorithm for pro- 
gram analysis has the potential to reduce drastically the amount of work spent in pre- 
processing or other auxiliary phases by propagating only appropriate demands into 
earlier phases (e.g., "What are the alias pairs that can hold on entry to p?"). 

With the approach presented in this paper, this capability is obtained for free, as a 
by-product of the way the composition of two computations is treated by the magic- 
sets transformation. 

�9 Sidestepping incremental-updating problems. An optimizing transformation per- 
formed at one point in the program can invalidate previously computed dataflow infor- 
marion at other points in the program. In some cases, the old information at such 
points is not a "safe" summary of the possible execution states that can arise there; the 
dataflow information needs to be updated before it is possible to perform optimizing 
transformations at such points. However, no good incremental algorithms for inter- 
procedural dataflow analysis are currently known. 

An alternative is to use an algorithm for the demand version of the dataflow problem 
and have the optimizer place appropriate demands. With each demand, the algorithm 
would be invoked on the current prograra. (As indicated above, any information 
cached from previous queries would be discarded whenever the program is modified.) 

�9 Demand analysis as a user-level operation. It is desirable to have program- 
development tools in which the user can interactively ask questions about various 
aspects of a program [19,26,18,13]. Such tools are particularly useful when debug- 
ging, when tryin'g :to understand complicated code, or when trying to transform a pro- 
gram to execute efficiently on a parallel machine. 
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When interprocedural-analysis problems are encoded in Coral [21] (or some other 
logic-programming language with a bottom-up evaluation strategy), demand algorithms 
can be obtained totally automatically. In principle, however, the approach described in 
the paper is not just restricted to interprocedural-analysis problems encoded in logic- 
programming languages. That is, the techniques can be carried over--as a hand-applied 
transformation--to program-analysis implementations written in other languages (such as 
C). 

The remainder of the paper is organized as follows: Section 2 discusses background and 
assumptions. Section 3 summarizes our methodology for obtaining algorithms that solve 
the demand versions of interprocedural analysis problems. It also presents two examples 
that illustrate the capabilities of the magic-sets transformation. Section 4 shows how to 
obtain demand algorithms for the interprocedural gen-kill problems. Section 5 discusses 
related work. An excerpt from the transformed program that is the result of applying the 
magic-sets transformation to the program presented in Section 4 is attached as an 
Appendix. 

2. Background and Assumptions 

Interprocedural analysis is typically carried out using a graph data structure to represent 
the program: the graph used represents both intraprocedural information--information 
about the individual procedures of the program--and interprocedural information---e.g., 
the call/return linkages, the binding changes associated with entering a new scope in the 
called procedure, etc. For example, in interprocedural dataflow analysis, analysis is car- 
ried out on a structure that consists of a control-flow graph for each procedure, plus some 
additional procedure-linkage information [ 1,6,23,10]. 

In interprocedural analysis problems, not all of the paths in the graph that represents the 
program correspond to possible execution paths. In general, the question of whether a 
given path is a possible execution path is undecidable, but' certain paths can be identified 
as being infeasible because they would correspond to execution paths with infeasible 
call/return linkages. For example, if procedure Main calls P twice--say at cl and 
c2----one infeasible path wouldstart at the entry point of Main, travel through the graph 
for Main to c~, enter P, travel through the graph for P to the return point, and return to 
Main at c2 (rather than Cl). Such paths fall to account correctly for the calling context 
(e.g., cl in Main) of a called procedure (e.g., P). Thus, in many interprocedural analysis 
problems an important issue is to carry out the analysis so that only interprocedurally 
valid paths are considered [23,20,8,14,17] (see Definition 4.3). With the approach taken 
in this paper, if the exhaustive algorithm considers only interprocedurally valid paths, then 
the demand algorithm obtained will also consider only interproceduraUy valid paths. 

To streamline the presentation, the dataflow analysis problems discussed in Section 4 
have been simplified in certain ways. In particular, following Sharir and Pnueli [23] we 
assume that (i) all variables are global variables, (ii) procedures are parameterless, (iii) the 
programs being analyzed do not contain aliasing, and (iv) the programs being analyzed do 
not use procedure-valued variables. A few words about each is in order: Simplifications 
(i) and (ii) prevent the Sharir-Pnueli framework from being able to handle local variables 
and formal parameters of procedures in the presence of recursion; however, Knoop and 
Steffen have presented a generalization of the Sharir-Pnueli framework that lifts this 
restriction [15]. It is possible to generalize the approach described in Section 4 to imple- 
ment the more general Knoop-Steffen framework. The interaction between interprocedu- 
ral dataflow analysis and the computation of aliasing information has already been men- 
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tioned in the Introduction: with the approach presented in this paper only appropriate 
demands for aliasing information would be generated, which might greatly reduce the 
amount of work required for alias analysis. Finally, G. Rosay and the author have been 
able to develop a method for constructing call multigraphs in the presence of procedure- 
valued variables that is compatible with the dataflow-analysis method described in the 
paper, this work combines and extends the methods described by Lakhotia [ 16] and Calla- 
han et al. [9]. (Because of space limitations, it is not possible to discuss these issues in 
more detail.) 
In the logic programs given in the paper, wc follow the standard naming convention 

used in Prolog: identifiers that begin with lower-case letters denote ground atoms; those 
that begin with upper-case Ictters denote variables. In Section 4, we also make use of a 
notation from Coral for manipulating relations with set-valued fields; this notation will be 
explained at the place it is first used. 

3. Using the Magic-Sets Transformation to Obtain Demand Algorithms 

Our methodology for obtaining algorithms that solvc thc demand vcrsions of interproce- 
dural analysis problems has two phases: (I) encode the algorithm for the exhaustive ver- 
sion of the problem as a logic program; (2) convert the algorithm for the exhaustive ver- 
sion to a demand algorithm by applying a transformation--known as the Alexander 
method [22] or the magic-sets transformation [3,7]--that was developed in the logic- 
programming and deductive-database communities for optimizing the evaluation of recur- 
sive queries in deductive databases. In principle, the second step is completely automatic; 
in practice--at least with the Coral system--to obtain the most efficient program, the user 
may nccd to rewrite certain recursivc rules and reorder litcrals in somc rules. (Such con- 
ccrns are outside the scope of this paper.) 
We now present two examples that illustrate the capabilities of the magic-sets transfor- 

marion. (Readers already familiar with the magic-sets transformation should skip to thc 
next section.) 

The magic-sets transformation attempts to combine the advantages of a top-down, goal- 
directed evaluation strategy with those of a bottom-up evaluation strategy. One disadvan- 
tage with top-down, goal-directed search (at least the dcpth-ftrst one employed in Prolog) 
is that it is incomplete it may loop endlessly, failing to find any answer at all, even when 
answers do exist. Another disadvantage of top-down, goal-directed search is that it may 
take exponential time on examples that a bottom-up evaluation strategy handles in poly- 
nomial time. 

A bottom-up strategy starts from the base relations and iteratively applies an "immedi- 
ate-consequence" operator until a fixed point is reached. One advantage of a bottom-up 
evaluation strategy is that it is complete. It can be thought of as essentially a dynamic- 
programming strategy: the values for all smaller subproblems are tabulated, then the 
answer for the item of interest is selected. However, bottom-up evaluation strategies also 
have the main drawbacks of dynamic programming, namely that (i) much effort may be 
expended to solve subproblems that are completely irrelevant to the final answer and (ii) a 
great deal of space may be used storing solutions to such subproblems. 

The magic-sets approach is based on bottom-up evaluation; however, the program eval- 
uated is a transformed version of the original program, specialized for answering queries 
of a given form. In the transformed program, each (transformed) rule has attached to it an 
additional literal that represents a condition characterizing when the rule is relevant to 
answering queries of the given form. The additional literal narrows the range of applica- 
bility of the rule and hence causes it to "fire" less often. 



393 

Example. The gains that can be obtained via the magic-sets transformation can be 
illustrated by the example of answering reachability queries in directed graphs. Let 
"edge(v, w)" be a given base relation that represents the edges of a directed graph. 

A dynamic-programming algorithm for the reachability problem computes the transitive 
closure of the entire graph--this information answers all possible reachability queries--- 
then selects out the edges in the transitively closed graph that emanate from the point of 
interest. In a logic-programming system that uses a bottom-up evaluation strategy, the 
dynamic-programming algorithm can be specified by writing the following program for 
computing transitive closure: 

tc(V, W) :-. tc(V, X), edge(X, W) . 

tc(V, W) :-. edge(V, W) . 

In the Coral system, which supports the magic-sets transformation, the additional declara- 
tion 

export tc(bf) . 

directs the system to transform the program to a form that is specialized for answering 
queries in which the first argument is bound and the second is free (i.e., queries of the 
form "?tc(a, W)"). The transformed program that results is 

tc_bf(V,W) :- magic tc bf(V), tc_bf(V,X), edge(X,W). 

tc bf(V,W) :- magic tc bf(V), edge(V,W). 

Given a query "?tc(a, W)", the additional fact "magic_tc_bf(a)" is adjoined to the above 
set of transformed rules. These are then evaluated bottom up to produce (as answers to 
the query) the tuples of the relation tc_bf. 

A magic fact, such as "magic tc_bf(a)", should be read as an assertion that "The prob- 
lem of finding tuples of the form tc(a, _) arises in answering the query". In this example 
there are no rules of the form 

magic tc bf (X) :- . . . 

Consequently, dtndng evaluation no additional facts are ever added to the magic_tc_bf 

relation; that is, the only "magic fact" ever generated is the initial one, magic_tc_bf(a). 
(Our next example will illustrate the more general situation.) Because all of the rules in 
the transformed program are guarded by a literal "magic_tc_bf(V)", the bottom-up evalu- 
ation of the transformed program only visits vertices that are reachable from vertex a. In 
effect, the original "dynamic-programming" algorithm--perform transitive closure on the 
entire graph, then select out the tuples of interest--has been transformed into a reachabil- 
ity algorithm that searches only vertices reachable from vertex a. 
End of Example. 

Example. Suppose we have a base relation that records parenthood relationships (e.g., 
a tuple "parent(x, xl)"  means that xl is a parent of x), and we would like to be able to find 
all cousins of a given person who are of the same generation. (In this example, a person 
is considered to be a "same-generation cousin" of himself.) 

In a logic-programming system that uses a bottom-up evaluation strategy, a dynamic- 
programming 'algorithm can be specified by writing the following program: 

same_generation (X, X) . 

same_generation(X, Y) :-parent(X, Xl), 

same_generation(Xl, YI), 

parent (Y, YI) . 

The directive 
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export same_generation(bf) . 

directs the Coral system to transform the program to a form specialized for answering 
queries of the form "?same_generation(a, Y)", which causes the program to be trans- 
formed into: 

magic_same_generation_bf (U) :- magic_same_generation_bf (V), 

parent (V, U) . 

same_generation_bf (X, X) :- magic_same_generation_bf (X) . 

same_generation_bf (X, Y) :- magic_same_generation_bf (X) , 

parent(X, Xl), 

same_generation bf(Xl, YI), 

parent(Y, YI) . 

Given a query "?same_generation(a, Y)", the additional fact 
"magic_same_generation_bf(a)." is adjoined to the above set of rules, which are then 
evaluated bottom up. 

Unlike the previous example, the transformed program produced in this example does  

have a rule with "magic_same_generation_bf(U)" in the head. 

magic_same_generation_bf (U) : - magic_same_generation_bf (V), 

parent (V, U) . 

The presence of this rule will cause "magic facts" other than the original one to be gener- 
ated during evaluation. Note that the members of relation magic_same_generation_bf 
will be exactly the ancestors of a (the so-called "cone of a" [3]). During bottom-up eval- 
uation of the transformed rules, the effect of the magic_same_generation_bf predicate is 
that attention is restricted to just same-generation cousins of ancestors of a. 
End of Exaruple. 

Note that in a bottom-up evaluation, the transformed program (the demand algorithm) 
will never perform more work than the untransformed program (the exhaustive algorithm) 
would--modulo a small amount of overhead for computing magic facts, which are 
reported to be only a small fraction of the generated facts [4]. In practice, the demand 
algorithm usually performs far less work than the exhaustive algorithm. 

Beeri and Ramakrishnan have shown that the bottom-up evaluation of the magic-sets- 
transformed version of a logic program is optimal with respect to a given "sideways- 
information-passing strategy (sip)"--a strategy for deciding how information gained 
about tuples in some of a rule's literals is to be used in evaluating other literals in the rule. 
For a given sip, any evaluator that uses the same sip must generate at least as many facts 
as are generated during a bottom-up evaluation of the magic-sets-transformed version [7]. 

In our context, this result relates to the question of minimizing the number of program 
points for which "transient" dataflow-analysis information is computed and/or the amount 
of information computed at those points when a given demand is placed for dataflow 
information. Unfortunately, the Beeri-Ramakrishnan result is only a "relative-optimality" 
result--it only compares top-down and bottom-up evaluations that use the same  sip. Con- 
sequently, the amount of "transient" summary information that a demand program- 
analysis algorithm computes will depend on the sip that is employed. Throughout the 
paper, we follow Coral and assume that the sip involves working left-to-right in a rule, 
exploiting at a given literal all information gained from evaluating the literals to its left. 
(This is also the same sip that Prolog's top-down evaluator uses.) Thus, the amount of 
"transient" summary information computed by the demand program-analysis algorithms 
we obtain depends on the order in which the literals appear in the rules. 



395 

In the subsequent sections of the paper, we do not actually discuss the programs that 
result from the magic-sets transformation--the transformed programs are quite compli- 
cated and presenting them would not aid the reader's understanding. (To convince the 
reader that this is the case, the Appendix presents an excerpt from the transformed pro- 
gram produced by the Coral system from the program discussed in Section 4.) 

4. Interprocetlural Dataflow Analysis Problems 

This section describes how we can obtain demand algorithms for the interprocedural gen- 
kill problems by encoding an exhaustive dataflow-analysis algorithm as a logic program 
and applying the magic-sets transformation. The basis for the exhaustive algorithm is 
Sharir and Pnueli's "functional approach" to interprocedural dataflow analysis, which, for 
distributive dataflow functions, yields the meet-over-all-valid-paths solution to certain 
classes of flow-sensitive interprocedural dataflow analysis problems [23]. 

We assume that (L, m) is a meet semilattice of dataflow facts with a smallest element 1 
and a largest element S .  We also assume that dataflow functions are members of a space 
of monotonic (or distributive) functions F __q L --~ L and that F contains the identity func- 
tion. 

Sharir and Pnueli make use of two different graph representations of programs, which 
are defined below. 

Definition 4.1. (Sharir and P.nueli [23]). Define G = u { Gp I p is a procedure in the 
program }, where, for each p, Gp --- (Np, gp, rp). Vertex rp is the entry block of p; Np is 
the set of basic blocks in p; Ep = E ~ u Elp is the set of edges of Gp. An edge (m, n) ~ E ~ 
is an ordinary control-flow edge; it represents a direct transfer of control from one block 

1 iff m is a call block and n is to another via a goto or an if statement. An edge (m, n) ~ Ep 
the return-site block in p for that call. Observe that vertex n is within p as well; it is 
important to understand that an edge in E~ does not run from p to the called procedure, or 
vice versa. 

Without loss of generality, we assume that (i) a return-site block in any Gp graph has 
exactly one incoming edge: the E~ edge from the corresponding call block; (ii) the entry 
block rp in any Gp graph is never the target of an E~ edge. 

This first representation, in which the flow graphs of individual procedures are kept sep- 
arate from each other, is the one used by the exhaustive and demand interprocedural 
dataflow analysis algorithms. The second graph representation, in which the flow graphs 
of the different procedures are connected together, is used to define the notion of interpro- 
cedurally valid paths. 

Definition 4.2. (Sharir and Pnueli [23]). Define G* = (N*, E*, r~i,), where N* = t~ Np 
P 

and E* = E ~ u E 2, where E ~ = u E ~ is the collection of all ordinary control-flow edges, 
P 

and an edge (m, n) e E 2 represents either a call or return edge. Edge (m, n) ~ E 2 is a call 
edge iff m is a call block and n is the entry block of the called procedure; edge 
(m, n) e E 2 is a return edge iff m is an exit block of some procedure p and n is a return- 
site block for a call on p. A call edge (m, rp) and return edge (eq, n) correspond to each 
other if p = q and (m, n) e E~ for some procedure s. 

The notion of interprocedurally valid paths captures the idea that not all paths through 
G ~ represent potentially valid execution paths: 

Definition 4.3. (Sharir and Pnueli [23]). For each n ~ N, we define IVP(r,,~/~, n) as the 
set of all interpro~e'durally valid paths in G ~ that lead from r,,~i, to n. A path 
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q ~ pathG.(r,,./., n) is in IVP(r.,a/., n) iff the sequence of all edges in q that are in E 2, 
which we will denote by q2, is proper  in the following recursive sense: 

(i) A sequence q2 that contains no return edges is proper. 
(ii) If  q2 contains return edges, and i is the smallest index in q2 such that q2(i) is a return 

edge, then q2 is proper i f / >  1 and q2(i- 1) is a call edge corresponding to the return 
edge q2(i), and after deleting those two components from q2, the remaining 
sequence is also proper. 

Definition 4.4. (Sharir and Pnueli [23]). I f  q is a path in G*, let fq denote the (path) 
function obtained by composing the functions associated with q 's  edges (in the order that 
they appear in path q). The meet-over-all-valid-paths solution to the dataflow problem 
Consists of the collection of values y .  defined by the following set of equations: 

cb, = [-] fq for each n ~ N* 
q E IVP(rmai., n) 

y~ = ~ . ( •  for each n E N* 

The solution to the dataflow analysis problem is not actually obtained from these equa- 
tions, but from two other systems of equations, which are solved in two phases, in Phase 
I, the equation's deal with summary dataflow functions, which are defined in terms of 
dataflow functions and other summary dataflow functions. In Phase II, the equations deal 
with actual dataflow values. 

Phase I of  the analysis computes summary functions r that map a set of  
dataflow facts at rp - - the  entry point of  procedure p - - t o  the set of  dataflow facts at point 
n within p. These functions are defined as the greatest solution to the following set of  
equations (computed over a (bounded) meet semilattice of  functions): 

r = 2 x .  x for each procedure p 
r = (m..)l~] e ~ (f(,..,) o r for each n e Np not representing a return-site block 

r = r for each n e N e representing a return-site block, 
I where (m, n) e Ep and m calls procedure q 

Phase II of the analysis uses the summary functions from Phase I to obtain a solution to 
the dataflow analysis problem. This solution is obtained from the greatest solution to the 
following set of equations: 

xr~.~ = _L 

xrp = 1-] { r I c is acall  to p in procedure q } 

X n = r  

for each procedure p 
for each procedure p 

and n ~ (Np - { r e }) 

Sharir and Pnueli showed that if the edge functions are distributive, the greatest solution 
to the above set of  equations is equal to the meet-over-all-valid-paths solution (i.e., for all 
n, xn = yn) [23]. 

4.1. Representing an Interprocedurai Dataflow Analysis Problem 

To make use of  the Sharir-Pnueli formulation for our purposes, it is necessary to find an 
appropriate way to use Horn clauses to express (i) the dataflow functions on the edges of  
the control-flow graph, (ii) the application of a function to an argument, (iii) the composi- 
tion of two functions, and (iv) the meet of  two functions. 

In this paper, we restrict our attention to the class of  problems that can be posed in 
terms of functions of  the form 2 x .  ( x -  kill) u gen, with u as the meet operator. (Exam- 
pies of  such problems are reaching definition s and live variables.) To encode the dataflow 
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functions, we use nkill sets instead of kill sets; that is, each dataflow function is rewritten 
in the form 2 x . ( x c ~ n k i l l ) w g e n .  Such a function can be represented as a pair 
(nkill, gen). Given this representation of edge functions, it is easy to verify that the rules 
for performing the composition and meet of two functions are as follows: 

(nkill2, gen2) o (nkill I, gen] ) = (nkill] n nkill2, (gen I c> nkill2) u gen2) (~f ) 
( nkill2, gen2) [7 (nkill l, genl ) = (nkilll ~: nkill2, gen] ~ gen2) (3) 

An instance of a dataflow analysis problem is represented in terms of five base rela- 
tions, which represent the following pieces of information: 

e0(p, m, n) 
0. Edge (m, n) e Ep, that is (m, n) is an ordinary (intraprocedural) control-flow edge in 

procedure p. 
el(p, m, n) 

z Edge (m, n) e E e. Bear in mind that both endpoints of an el edge are in p; an el 
edge does not run from p to the called procedure, or vice versa. 

f(p, m, n, nk_set, g_set) 
A tuple f(p, m, n, nk_set, g_set) represents the function on edge (m, n)~ E ~ (The 
set-valued fields nk_set and g_set represent the nkill set and the gen set, respectively.) 

call_site(p, q, m) 
Vertex m in procedure p represents a call on procedure q. 

universe(u) 
u is a set-valued field that consists of the universe of dataflow facts. 

4.2. The Encoding of Phase I 

We now show how to encode Phase I of the Sharir-Pnueli functional approach to dataflow 
analysis. There are two derived relations, phi_nk(p, n, x) and phi_g(p, n, x), which 
together represent ~(,p,,), the summary function for vertex n of procedure p. (Recall that 
each dataflow function corresponds to a pair (nkill, gen).) 

phi_nk(p, n, x) 
A tuple phi_nk(p, n, x) represents the fact that x is a member of the nkill component 
of r 

phi_g(p, n, x) 
A tuple phi_g(p, n, x) represents the fact that x is a member of thc gen component of 

ecru,.)" 
The rules that encode Phase ] perform compositions and meets of (representations of) 

damflow functions according to equations (%) and ($) (although the way in which this is 
accomplished is somewhat disguised). 

Initialization Rule  

phi_nk(P, start_vertex, X) :-universe(U), member(U,X). 

In Coral, a literal of the form member(S, X), where S is a set, causes X to be bound suc- 
cessively to each of the different members of S. (IfX is already bound, then X is checked 
for membership in S.) Thus, for each procedure p the nkill component of the function 
r consists of the universe of dataflow facts (i.e., nothing is killed along the 0-length 
path from the slart vertex to itself). 
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lntraprocedural Summary  Functions 

The rules for intraprocedural summary functions correspond to the equation 

r = V--I (f(m.,) o r m)) for each n �9 Np not representing a return-site block 
(m, . )  ~ Ep 

Note from equation (%) that the composition f<m,,)o r is implemented as 

(nkill h... >, gen h.~.~) o (nkill ~c,,.,: genr ) = (nkill~t,,,.) n nkill h . . . :  
(genr n nkill f~...~) u genh.  ''~ ). 

The three rules given below create the intraprocedural summary functions. 

phi_nk(P, N, X) :-e0(P, M, N), 
f(P, M, N, NK_set, _), 
member (NK_set, X), 
phi_nk(P, M, X). 

phi_g(P, N, X) :-e0(P, M, N), 
f(P, M, N, NK_set, ), 
member (NK_set, X) , 
phi_g(P, M, X). 

phi_g(P, N, X) :-e0(P, M, N), 
f(P, M, N, _, G_set), 
member(G set, X) . 

For example, the first rule specifies the following: 

Given an intraprocedural edge in procedure P from M to N, where edge-function 
f ' s  nkill component is NK_set, add X �9 NK_set to the nkill component of 
r162 only ifX is in the nkill component of r 

This is another way of saying "Take the intersection of the nkill components of f(M.~) and 
r which is exactly what is required for the nkill component of the composition 
f(M, N) o r M)- 

Interprocedural Summary Functions 

The rules for interprocedural summary functions correspond to the equation 

err,.,) = r o r m) for each n �9 Np representing a return-site block, 
where (m. n) �9 E~ and rn calls procedure q 

From equation ('~), the composition r o r is implemented as 

(nkill~c,,..,>, gen,~,,..,) o (nkill~c,,..>, gen,~,,..~) = ( nkill~c,,.. ~ c~ nkill~t,,..,: 
(gen~c,,.,,~ o nkill~,,.,,) u gen~,,.,,~ ), 

Thus, the following additional rules account for the propagation of summary information 
between procedures: 
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phi nk(P, N, X) 

phi_g(P, N, X) :- 

phi_g(P, N, X) :- 

:-el(P, M, N), 
call site(P, Q, M), 
phi_nk(P, M, X), 
phi_nk(Q, return vertex, X). 

el(P, M, N), 
call site(P, Q, M), 
phi_g(P, M, X), 
phi nk(Q, return_vertex, X). 
el(P, M, N), 
call site(P, Q, M), 
phi g(Q, return vertex, X). 

For instance, the first rule specifies the following: 

Given an edge from M to N in P, where M is a call site on procedure Q, the nkill 
component of r consists of the X's such that X is in both the nkill component 
of r and the nkill component of r eQ)" 

Again, this takes the intersection of the two nkill components, which is exactly what is 
required for the nkill component of the composition @(re. eQ) o r 

Note that there are two rules---one intraprocedural, one interprocedural--whose head is 
phi_nk(P, N, X), each of which can contribute tuples to the relation phi_nk. In the flow 
graph, a given vertex N either has one el predecessor or a number of e0 predecessors. 
Thus, the rule for phi_nk in the intraprocedural group can cause tuples to be added to 
phi_nk because of different predecessors M of N. This gives the correct implementation 
because what is required is the meet (pointwise u ) of the r functions obtained from all 
predecessors, and the rule for the meet of two functions involves the union of nkill sets 
(see equation (~:)). Similar reasoning applies in the case of relation phi_g, which is 
defined using four different rules. 

It should also be noted that the reason we chose our function representations to be 
nkill/gen pairs rather than kill/gen pairs was so that the meet of two functions could be 
handled by the union implicit in having multiple rules that define phi_nk and phi_g, as 
well as the fact that rules have multiple solutions. If kill sets had been used instead, then 
to implement the function-meet operation we would have needed a way to perform an 
intersection over the kill sets generated from all predecessors of N. (With the nkill/gen 
representation of functions, the only intersections needed are for implementing the com- 
position of functions. For example, the first component on the right-hand side of rule (1") 
is nkilll c~ nkill:~. However, we never have to perform an explicit composition of an arbi- 
trary number of functions: every composition involves exactly two functions, and hence 
requires taking the intersection of exactly two nkill sets. These (binary) intersection oper- 
ations are implemented in the Coral program by having two literals--either f and phi_nk 
or two phi_nk's--in the same rule.) If we were to represent functions as kill/gen pairs, the 
(binary) meet of two functions would involve the operation kill1 n kill2. This would cause 
a problem because we need to perform meets over functions created from an arbitrary 
number of predecessors. That is, it would be necessary to perform the k-ary operation 
k 
n kill: however, this cannot be captured statically in a single rule. 

i = l  

Remark. For similar reasons, a certain amount of finessing is required to handle inter- 
procedural dataflow problems for which the meet operation in the semilattice of datafiow 
facts is c~. (An example of such a problem is the available-expressions problem.) Such 
problems are dual to the problems for which meet is u in the following sense: if the edge 
functions are of the form ;~x.(xc~nkill)ugen they can be put  into the form 
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2 x .  (x  u gen) n (nkill u gen). If we define the .pair [a, b] to represent the function 
/% x.  ( x u  a ) n  b, then all flow functions are of  the form [gen, nk i l lugen] .  Composition 
and meet of  [., .] pairs for an n -semilattice of  data.flow facts are dual to composition and 
meet of (., .) pairs for a u-semilattice of  dataflow facts. However, the meet (pointwise 
n ) of k functions represented as [., .] pairs would require performing the k-ary operation 
k 

n geni. Again, the problem is that this cannot be captured statically in a single rule. 
i=1 

To sidestep this difficulty, for intersection problems we would represent functions with 
kill and ngen sets: a pair < kill, ngen > would represent the function t x .  (x n kill) u ngen. 
It can be shown that the meet (pointwise r~ ) of  two functions represented as < . ,  �9 > pairs 
has the following implementation: 

< kill2, ngen2 > [q < kill1, ngen i > = < (kill1 n ngenl ) u (kill2 n ngen2 ), ngenl u ngen2 >. 

Consequently, the meet of  k such functions represented as < . ,  �9 > pairs is 
k 

k b 

0 ngeni >. [--i < killi, ngeni > = < u (killi n ngeni), i 
i = l  i=1  --1 

This avoids the need to perform an intersection of a collection of sets generated from a 
vertex's predecessors. The only intersections that need to be performed involve informa- 
tion that is generated along an individual edge (i.e., killi n ngeni); such binary intersec- 
tions can be captured statically in a single rule. Combining the information from the set 
of all incoming edges involves only unions, and this can be handled using multiple rules 
(with multiple solutions), 
End of Remark.  

4.3. The Encoding of Phase II 

In Phase 1I, (the representations of) dataflow functions are applied to dataflow facts. 
Given a set of  dataflow facts x and a dataflow function represented as a pair (nkill, gen), 
we need to create the set (x n nkill) • gen. 

Phase II involves one derived relation, df_fact(p, n, x), which represents the fact that x 
is a member of the dataflow-fact set for vertex n of procedure p. 

df fact(P, start vertex, X) :- call site(Q, P, C), 
df fact(Q, start vertex, X), 
phLnk(Q, C, X). 

df_fact(P, start_vertex, X) :-call_site(Q, P, C), 
phi_g(Q, C, X). 

df_fact(P, N, X) :- N <> start_vertex, 
df_fact (P, start_vertex, X), 
phi_nk(P, N, X). 

dr_fact(P, N, X) :- N <> start_vertex, 
phi_g(P, N, X). 

The first and second rules propagate facts in terprocedural ly-- from the start vertex of one 
procedure (Q) to the start vertex of  a called procedure (P). The first rule specifies that 

X is a fact at the start vertex of  P if (i) P is called by Q at C, (ii) X is a fact at the 
start vertex of  Q, and (iii) X is not killed along the path in Q from the start vertex 
toC. 

The second rule specifies that 

X is a fact at the start vertex of  P if (i) P is called by Q at C and (ii) X is generat- 
ed along the path in Q from the start vertex of  Q to C. 
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As in Phase I, the meet ( u ) over all predecessors is handled by the disjunction implicit in 
having multiple rules that define df_fact(P, start_vertex, X), as well as the fact that rules 
have multiple solutions. 

Rules three and four are similar to rules one and two, but propagate facts intraprocedu- 
rally, i.e., from the start vertex of P to other vertices of P. 

4.4. Creating the Demand Version 

The directive 

export df_fact(bbf) . 

directs the Coral system to apply the magic-sets transformation to transform the program 
to a form that is specialized for answering queries of the form "?df_fact(p, n, X)". The 
transformed program (when evaluated bottom up) is an algorithm for the demand version 
of the interprocedural dataflow analysis problem: the set of dataflow facts for vertex n of 
procedure p is the collection of all bindings returned for X. During the evaluation of a 
query "?df_fact(p, n, X)", the algorithm computes phi nk and phi_g tuples for all vertices 
on valid paths to vertex n, df_fact tuples for all start vertices that occur on valid paths to 
n, and df_fact tuples for vertex n itself; finally, it selects the bindings for X from the 
df_fact tuples for n. 

5. Related Work 

Previous work on demand-driven dataflow analysis has dealt only with the intraprocedu- 
ral case [2,27]. The work that has been reported in the present paper complements previ- 
ous work on the intraprocedural case in the sense that our approach to obtaining algo- 
rithms for demand-driven dataflow analysis problems applies equally well to intraproce- 
dural dataflow analysis. However, in intraprocedural dataflow analysis all paths in the 
control-flow graph are (statically) valid paths; for this reason, previous work on demand- 
driven intraprocedural dataflow analysis does not extend well to the interprocedural case, 
where the notion of valid paths is important. 

A recent paper by Duesterwald, Gupta, and Sofia discusses a very different approach to 
obtaining demand versions of (intraprocedural) dataflow analysis algorithms [12]. For 
each query of the form "Is fact f in the solution set at vertex v?", a set of dataflow equa- 
tions are set up on the flow graph (but as if all edges were reversed). The flow functions 
on the reverse graph are the (approximate) inverses of the original forward functions. (A 
special function---derived from the query--is used for the reversed flow function of vertex 
v.) These equations are then solved using a demand-driven fixed-point finding procedure 
to obtain a value for the entry vertex. The answer to the query (true or false) is deter- 
mined from the value so obtained. Some of the differences between their work and ours 
axe as follows: 

�9 Their method can only answer ground queries of the form "?df_fact(p, n, x)". With 
the approach used in this paper any combination of bound and free arguments in a 
query are possible (e.g., "?df_fact(p, n, X)", "?df_fact(p, N, X)", "?df fact(P, N, x)", 
etc.). 

�9 Their method does not appear to permit information to be accumulated over succes- 
sive queries. The equations for a given query are tailored to that particular query and 
are slightly different from the equations for all other queries. Consequently, answers 
(and intermediate values) previously computed for other queries cannot be reused. 

�9 It is not clear from the extensions they outline for interprocedural dataflow analysis 
whether the algorithm obtained will properly account for valid paths. 
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Previous work on interprocedural data flow analysis has dealt only with the exhaustive 
case [23,15]. This paper has described how to obtain algorithms for solving demand ver- 
sions of  interprocedural analysis problems from their exhaustive counterparts, essentially 
for free. Section 4 describes how to use Horn clauses to specify an algorithm for the 
interprocedural gen-kill dataflow-analysis problems. Recently, M. Sagiv, S. Horwitz, and 
the author have devised a way to extend the techniques described in the paper to a much 
larger class of  dataflow problems--in particular, those in which the dataflow functions are 
drawn from the collection of  distributive functions in 2 ~ ~ 2 ~ where D is any finite set. 

After the work reported in this paper was completed, the work by D.S. Warren and oth- 
ers concerning the use of  tabulation techniques in top-down evaluation of  logic programs 
[24] was brought to my attention. These techniques provide an alternative method for 
obtaining demand algorithms for program-analysis problems. Rather than applying the 
magic-sets transformation to a Horn-clause encoding of the (exhaustive) dataflow-analysis 
algorithm and then using a bottom-up evaluator, the original (untransformed) Horn-clause 
encoding can simply be evaluated by an OLDT (top-down, tabulating) evaluator. Thus, 
another way to obtain an implementation of  a demand algorithm for the interprocedural 
gen-kill dataflow-analysis problems would be to use the program from Section 4 in con- 
junction with the SUNY-Stony Brook XSB system [25]. 
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Appendix: The Demand Interprocedural Dataflow Analysis Algorithm 

The following is an excerpt from the transformed program produced by Coral from the 
interprocedural dataflow-analysis program presented in Section 4: 

sup_l_l (Q, P, C) "- 
m df fact bbf(P,start vertex) , 

call_site~Q, P, C) . 
m df fact_bbf (Q, start_vertex) :- 

sup_l_l (Q, P, C) . 
sup_l_2 (Q,X,P,C) "- 

sup I_I(Q,P,C), 
df fact bbf(Q, start_vertex, X) �9 

m phi--nk bbb(Q,C,X) "- 
sup_l_2 (Q, X, P, C) . 

df fact bbf(P,start_vertex, X) "- 
--sup_~_2 (Q, X, P, C), 
phi nk bbb(Q,C,X) . 

sup_2_l (Q, P, C) "- 
m df fact_bbf (P, start_vertex) , 
call site(Q,P,C) . 

m phi g bbf (Q,C) :- 
sup_2 I(Q,P,C) 

�9 and so on for 128 more lines 
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