
Solving Demand Versions of Interprocedural Analysis Problems
Thomas Reps 1

Datalogisk Institut, University of Copenhagen
Unlversitetsparken 1

DK-2100 Copenhagen East
Denmark

Abstract

This paper concems the solution of demand versions of interprocedural analysis problems. In a
demand version of a program-analysis problem, some piece of summary information (e.g., the
dataflow facts holding at a given point) is to be reported only for a single program element of
interest (or a small number of elements of interest). Because the summary information at one pro-
gram point typically depends on summary information from other points, an important issue is to
minimize the number of other points for which (transient) summary information is computed
and/or the amount of information computed at those points. The paper describes how algorithms
for demand versions of program-analysis problems can be obtained from their exhaustive counter-
parts essentially for free, by applying the so-called "magic-sets" transformation that was devel-
oped in the logic-programming and deductive-database communities.

1. Introduct ion

Interprocedural analysis concerns the static examination of a program that consists of
multiple procedures. Its purpose is to determine certain kinds of summary information
associated with the elements of a program (such as reaching definitions, available expres-
sions, live wtriables, etc.). Most treatments of interprocedural analysis address the
exhaustive version of the problem: summary information is to be reported for all elements
of the program. This paper concerns the solution of demand versions of interprocedural
analysis problems: summary information is to be reported only for a single program ele-
ment of interest (or a small number of elements of interest). Because the summary infor-
mation at one program point typically depends on summary information from other
points, an important issue is to minimize the number of other points for which (transient)
summary information is computed and/or the amount of information computed at those
points.

One of the novel aspects of our work is that establishes a connection between the ideas
and concerns from two different research areas. This connection can be summarized as
follows:

Methods for solving demand versions of interprocedural analysis problems--and
in particular interprocedural analysis problems of interest to the community that
studies imperative programs---can be obtained from their exhaustive counterparts
essentially for free, by applying a transformation that was developed in the logic-
programming and deductive-database communities for optimizing the evaluation
of recursive queries in deductive databases (the so-called magic-sets transforma-
tion [22,3,7]).

1On sabbatical leave from the University of Wisconsin-Madison.
This work was supported in part by a David and Lucile Packard Fellowship for Science and Engineering, by
the National Science Foundation under grant CCR-9100424, and by the Defense Advanced Research Pro-
jects Agency under ARPA Order No. 8856 (monitored by the Office of Naval Research under contract
N00014-92-J- 1937).

390

This paper describes how the above approach can be used to obtain a demand algorithm
for the interprocedural "gen-kill problems" (i.e., problems in which the dataflow functions
are all of the form ~ x . (x - kill) u gen).

There are several reasons why it is desirable to solve the demand versions of interproce-
dural analysis problems (and, in particular, to solve them using the approach presented in
this paper).

�9 Narrowing the focus to specific points of interest. In program optimization, most of
the gains are obtained from making improvements at a program's "hot spots" in par-
ticular, its innermost loops. Although the optimization phases during which transfor-
mations are applied can be organized to concentrate on hot spots, there is typically an
earlier phase to determine dataflow facts during which an exhaustive algorithm for
interprocedural dataflow analysis is used. A demand algorithm can greatly reduce the
amount of extraneous information that is computed.

With the approach presented in this paper, answers and intermediate results com-
puted in the course of answering one query can be cached--that is, accumulated and
used to compute the answers to later queries. (This can go on until such time as the
program is modified, whereupon previous results--which may no longer be safe
must be discarded.) The use of cached information can further reduce the cost of
responding to demands when there is a sequence of demands in between program
modifications.

�9 Reducing the amount o f work spent in preprocessing or other auxiliary phases o f a
program analysis. Consider a problem such as flow-insensitive side-effect analysis
(e.g. MayMod, MayUse, etc.), which has a decomposition that includes two sub-
sidiary phases: computing alias information and computing side effects due to refer-
ence formal parameters [5,11,10]. In problems that are decomposed into separate
phases, not all of the information from subsidiary phases is required in order to
answer an "outer-level" query. Given a demand at the outermost level (e.g., "What is
the MayMod set for a given call site c on procedure p?"), a demand algorithm for pro-
gram analysis has the potential to reduce drastically the amount of work spent in pre-
processing or other auxiliary phases by propagating only appropriate demands into
earlier phases (e.g., "What are the alias pairs that can hold on entry to p?").

With the approach presented in this paper, this capability is obtained for free, as a
by-product of the way the composition of two computations is treated by the magic-
sets transformation.

�9 Sidestepping incremental-updating problems. An optimizing transformation per-
formed at one point in the program can invalidate previously computed dataflow infor-
marion at other points in the program. In some cases, the old information at such
points is not a "safe" summary of the possible execution states that can arise there; the
dataflow information needs to be updated before it is possible to perform optimizing
transformations at such points. However, no good incremental algorithms for inter-
procedural dataflow analysis are currently known.

An alternative is to use an algorithm for the demand version of the dataflow problem
and have the optimizer place appropriate demands. With each demand, the algorithm
would be invoked on the current prograra. (As indicated above, any information
cached from previous queries would be discarded whenever the program is modified.)

�9 Demand analysis as a user-level operation. It is desirable to have program-
development tools in which the user can interactively ask questions about various
aspects of a program [19,26,18,13]. Such tools are particularly useful when debug-
ging, when tryin'g :to understand complicated code, or when trying to transform a pro-
gram to execute efficiently on a parallel machine.

391

When interprocedural-analysis problems are encoded in Coral [21] (or some other
logic-programming language with a bottom-up evaluation strategy), demand algorithms
can be obtained totally automatically. In principle, however, the approach described in
the paper is not just restricted to interprocedural-analysis problems encoded in logic-
programming languages. That is, the techniques can be carried over--as a hand-applied
transformation--to program-analysis implementations written in other languages (such as
C).

The remainder of the paper is organized as follows: Section 2 discusses background and
assumptions. Section 3 summarizes our methodology for obtaining algorithms that solve
the demand versions of interprocedural analysis problems. It also presents two examples
that illustrate the capabilities of the magic-sets transformation. Section 4 shows how to
obtain demand algorithms for the interprocedural gen-kill problems. Section 5 discusses
related work. An excerpt from the transformed program that is the result of applying the
magic-sets transformation to the program presented in Section 4 is attached as an
Appendix.

2. Background and Assumptions

Interprocedural analysis is typically carried out using a graph data structure to represent
the program: the graph used represents both intraprocedural information--information
about the individual procedures of the program--and interprocedural information---e.g.,
the call/return linkages, the binding changes associated with entering a new scope in the
called procedure, etc. For example, in interprocedural dataflow analysis, analysis is car-
ried out on a structure that consists of a control-flow graph for each procedure, plus some
additional procedure-linkage information [1,6,23,10].

In interprocedural analysis problems, not all of the paths in the graph that represents the
program correspond to possible execution paths. In general, the question of whether a
given path is a possible execution path is undecidable, but' certain paths can be identified
as being infeasible because they would correspond to execution paths with infeasible
call/return linkages. For example, if procedure Main calls P twice--say at cl and
c2----one infeasible path wouldstart at the entry point of Main, travel through the graph
for Main to c~, enter P, travel through the graph for P to the return point, and return to
Main at c2 (rather than Cl). Such paths fall to account correctly for the calling context
(e.g., cl in Main) of a called procedure (e.g., P). Thus, in many interprocedural analysis
problems an important issue is to carry out the analysis so that only interprocedurally
valid paths are considered [23,20,8,14,17] (see Definition 4.3). With the approach taken
in this paper, if the exhaustive algorithm considers only interprocedurally valid paths, then
the demand algorithm obtained will also consider only interproceduraUy valid paths.

To streamline the presentation, the dataflow analysis problems discussed in Section 4
have been simplified in certain ways. In particular, following Sharir and Pnueli [23] we
assume that (i) all variables are global variables, (ii) procedures are parameterless, (iii) the
programs being analyzed do not contain aliasing, and (iv) the programs being analyzed do
not use procedure-valued variables. A few words about each is in order: Simplifications
(i) and (ii) prevent the Sharir-Pnueli framework from being able to handle local variables
and formal parameters of procedures in the presence of recursion; however, Knoop and
Steffen have presented a generalization of the Sharir-Pnueli framework that lifts this
restriction [15]. It is possible to generalize the approach described in Section 4 to imple-
ment the more general Knoop-Steffen framework. The interaction between interprocedu-
ral dataflow analysis and the computation of aliasing information has already been men-

392

tioned in the Introduction: with the approach presented in this paper only appropriate
demands for aliasing information would be generated, which might greatly reduce the
amount of work required for alias analysis. Finally, G. Rosay and the author have been
able to develop a method for constructing call multigraphs in the presence of procedure-
valued variables that is compatible with the dataflow-analysis method described in the
paper, this work combines and extends the methods described by Lakhotia [16] and Calla-
han et al. [9]. (Because of space limitations, it is not possible to discuss these issues in
more detail.)
In the logic programs given in the paper, wc follow the standard naming convention

used in Prolog: identifiers that begin with lower-case letters denote ground atoms; those
that begin with upper-case Ictters denote variables. In Section 4, we also make use of a
notation from Coral for manipulating relations with set-valued fields; this notation will be
explained at the place it is first used.

3. Using the Magic-Sets Transformation to Obtain Demand Algorithms

Our methodology for obtaining algorithms that solvc thc demand vcrsions of interproce-
dural analysis problems has two phases: (I) encode the algorithm for the exhaustive ver-
sion of the problem as a logic program; (2) convert the algorithm for the exhaustive ver-
sion to a demand algorithm by applying a transformation--known as the Alexander
method [22] or the magic-sets transformation [3,7]--that was developed in the logic-
programming and deductive-database communities for optimizing the evaluation of recur-
sive queries in deductive databases. In principle, the second step is completely automatic;
in practice--at least with the Coral system--to obtain the most efficient program, the user
may nccd to rewrite certain recursivc rules and reorder litcrals in somc rules. (Such con-
ccrns are outside the scope of this paper.)
We now present two examples that illustrate the capabilities of the magic-sets transfor-

marion. (Readers already familiar with the magic-sets transformation should skip to thc
next section.)

The magic-sets transformation attempts to combine the advantages of a top-down, goal-
directed evaluation strategy with those of a bottom-up evaluation strategy. One disadvan-
tage with top-down, goal-directed search (at least the dcpth-ftrst one employed in Prolog)
is that it is incomplete it may loop endlessly, failing to find any answer at all, even when
answers do exist. Another disadvantage of top-down, goal-directed search is that it may
take exponential time on examples that a bottom-up evaluation strategy handles in poly-
nomial time.

A bottom-up strategy starts from the base relations and iteratively applies an "immedi-
ate-consequence" operator until a fixed point is reached. One advantage of a bottom-up
evaluation strategy is that it is complete. It can be thought of as essentially a dynamic-
programming strategy: the values for all smaller subproblems are tabulated, then the
answer for the item of interest is selected. However, bottom-up evaluation strategies also
have the main drawbacks of dynamic programming, namely that (i) much effort may be
expended to solve subproblems that are completely irrelevant to the final answer and (ii) a
great deal of space may be used storing solutions to such subproblems.

The magic-sets approach is based on bottom-up evaluation; however, the program eval-
uated is a transformed version of the original program, specialized for answering queries
of a given form. In the transformed program, each (transformed) rule has attached to it an
additional literal that represents a condition characterizing when the rule is relevant to
answering queries of the given form. The additional literal narrows the range of applica-
bility of the rule and hence causes it to "fire" less often.

393

Example. The gains that can be obtained via the magic-sets transformation can be
illustrated by the example of answering reachability queries in directed graphs. Let
"edge(v, w)" be a given base relation that represents the edges of a directed graph.

A dynamic-programming algorithm for the reachability problem computes the transitive
closure of the entire graph--this information answers all possible reachability queries---
then selects out the edges in the transitively closed graph that emanate from the point of
interest. In a logic-programming system that uses a bottom-up evaluation strategy, the
dynamic-programming algorithm can be specified by writing the following program for
computing transitive closure:

tc(V, W) :-. tc(V, X), edge(X, W) .

tc(V, W) :-. edge(V, W) .

In the Coral system, which supports the magic-sets transformation, the additional declara-
tion

export tc(bf) .

directs the system to transform the program to a form that is specialized for answering
queries in which the first argument is bound and the second is free (i.e., queries of the
form "?tc(a, W)"). The transformed program that results is

tc_bf(V,W) :- magic tc bf(V), tc_bf(V,X), edge(X,W).

tc bf(V,W) :- magic tc bf(V), edge(V,W).

Given a query "?tc(a, W)", the additional fact "magic_tc_bf(a)" is adjoined to the above
set of transformed rules. These are then evaluated bottom up to produce (as answers to
the query) the tuples of the relation tc_bf.

A magic fact, such as "magic tc_bf(a)", should be read as an assertion that "The prob-
lem of finding tuples of the form tc(a, _) arises in answering the query". In this example
there are no rules of the form

magic tc bf (X) :- . . .

Consequently, dtndng evaluation no additional facts are ever added to the magic_tc_bf

relation; that is, the only "magic fact" ever generated is the initial one, magic_tc_bf(a).
(Our next example will illustrate the more general situation.) Because all of the rules in
the transformed program are guarded by a literal "magic_tc_bf(V)", the bottom-up evalu-
ation of the transformed program only visits vertices that are reachable from vertex a. In
effect, the original "dynamic-programming" algorithm--perform transitive closure on the
entire graph, then select out the tuples of interest--has been transformed into a reachabil-
ity algorithm that searches only vertices reachable from vertex a.
End of Example.

Example. Suppose we have a base relation that records parenthood relationships (e.g.,
a tuple "parent(x, xl)" means that xl is a parent of x), and we would like to be able to find
all cousins of a given person who are of the same generation. (In this example, a person
is considered to be a "same-generation cousin" of himself.)

In a logic-programming system that uses a bottom-up evaluation strategy, a dynamic-
programming 'algorithm can be specified by writing the following program:

same_generation (X, X) .

same_generation(X, Y) :-parent(X, Xl),

same_generation(Xl, YI),

parent (Y, YI) .

The directive

394

export same_generation(bf) .

directs the Coral system to transform the program to a form specialized for answering
queries of the form "?same_generation(a, Y)", which causes the program to be trans-
formed into:

magic_same_generation_bf (U) :- magic_same_generation_bf (V),

parent (V, U) .

same_generation_bf (X, X) :- magic_same_generation_bf (X) .

same_generation_bf (X, Y) :- magic_same_generation_bf (X) ,

parent(X, Xl),

same_generation bf(Xl, YI),

parent(Y, YI) .

Given a query "?same_generation(a, Y)", the additional fact
"magic_same_generation_bf(a)." is adjoined to the above set of rules, which are then
evaluated bottom up.

Unlike the previous example, the transformed program produced in this example does

have a rule with "magic_same_generation_bf(U)" in the head.

magic_same_generation_bf (U) : - magic_same_generation_bf (V),

parent (V, U) .

The presence of this rule will cause "magic facts" other than the original one to be gener-
ated during evaluation. Note that the members of relation magic_same_generation_bf
will be exactly the ancestors of a (the so-called "cone of a" [3]). During bottom-up eval-
uation of the transformed rules, the effect of the magic_same_generation_bf predicate is
that attention is restricted to just same-generation cousins of ancestors of a.
End of Exaruple.

Note that in a bottom-up evaluation, the transformed program (the demand algorithm)
will never perform more work than the untransformed program (the exhaustive algorithm)
would--modulo a small amount of overhead for computing magic facts, which are
reported to be only a small fraction of the generated facts [4]. In practice, the demand
algorithm usually performs far less work than the exhaustive algorithm.

Beeri and Ramakrishnan have shown that the bottom-up evaluation of the magic-sets-
transformed version of a logic program is optimal with respect to a given "sideways-
information-passing strategy (sip)"--a strategy for deciding how information gained
about tuples in some of a rule's literals is to be used in evaluating other literals in the rule.
For a given sip, any evaluator that uses the same sip must generate at least as many facts
as are generated during a bottom-up evaluation of the magic-sets-transformed version [7].

In our context, this result relates to the question of minimizing the number of program
points for which "transient" dataflow-analysis information is computed and/or the amount
of information computed at those points when a given demand is placed for dataflow
information. Unfortunately, the Beeri-Ramakrishnan result is only a "relative-optimality"
result--it only compares top-down and bottom-up evaluations that use the same sip. Con-
sequently, the amount of "transient" summary information that a demand program-
analysis algorithm computes will depend on the sip that is employed. Throughout the
paper, we follow Coral and assume that the sip involves working left-to-right in a rule,
exploiting at a given literal all information gained from evaluating the literals to its left.
(This is also the same sip that Prolog's top-down evaluator uses.) Thus, the amount of
"transient" summary information computed by the demand program-analysis algorithms
we obtain depends on the order in which the literals appear in the rules.

395

In the subsequent sections of the paper, we do not actually discuss the programs that
result from the magic-sets transformation--the transformed programs are quite compli-
cated and presenting them would not aid the reader's understanding. (To convince the
reader that this is the case, the Appendix presents an excerpt from the transformed pro-
gram produced by the Coral system from the program discussed in Section 4.)

4. Interprocetlural Dataflow Analysis Problems

This section describes how we can obtain demand algorithms for the interprocedural gen-
kill problems by encoding an exhaustive dataflow-analysis algorithm as a logic program
and applying the magic-sets transformation. The basis for the exhaustive algorithm is
Sharir and Pnueli's "functional approach" to interprocedural dataflow analysis, which, for
distributive dataflow functions, yields the meet-over-all-valid-paths solution to certain
classes of flow-sensitive interprocedural dataflow analysis problems [23].

We assume that (L, m) is a meet semilattice of dataflow facts with a smallest element 1
and a largest element S . We also assume that dataflow functions are members of a space
of monotonic (or distributive) functions F __q L --~ L and that F contains the identity func-
tion.

Sharir and Pnueli make use of two different graph representations of programs, which
are defined below.

Definition 4.1. (Sharir and P.nueli [23]). Define G = u { Gp I p is a procedure in the
program }, where, for each p, Gp --- (Np, gp, rp). Vertex rp is the entry block of p; Np is
the set of basic blocks in p; Ep = E ~ u Elp is the set of edges of Gp. An edge (m, n) ~ E ~
is an ordinary control-flow edge; it represents a direct transfer of control from one block

1 iff m is a call block and n is to another via a goto or an if statement. An edge (m, n) ~ Ep
the return-site block in p for that call. Observe that vertex n is within p as well; it is
important to understand that an edge in E~ does not run from p to the called procedure, or
vice versa.

Without loss of generality, we assume that (i) a return-site block in any Gp graph has
exactly one incoming edge: the E~ edge from the corresponding call block; (ii) the entry
block rp in any Gp graph is never the target of an E~ edge.

This first representation, in which the flow graphs of individual procedures are kept sep-
arate from each other, is the one used by the exhaustive and demand interprocedural
dataflow analysis algorithms. The second graph representation, in which the flow graphs
of the different procedures are connected together, is used to define the notion of interpro-
cedurally valid paths.

Definition 4.2. (Sharir and Pnueli [23]). Define G* = (N*, E*, r~i,), where N* = t~ Np
P

and E* = E ~ u E 2, where E ~ = u E ~ is the collection of all ordinary control-flow edges,
P

and an edge (m, n) e E 2 represents either a call or return edge. Edge (m, n) ~ E 2 is a call
edge iff m is a call block and n is the entry block of the called procedure; edge
(m, n) e E 2 is a return edge iff m is an exit block of some procedure p and n is a return-
site block for a call on p. A call edge (m, rp) and return edge (eq, n) correspond to each
other if p = q and (m, n) e E~ for some procedure s.

The notion of interprocedurally valid paths captures the idea that not all paths through
G ~ represent potentially valid execution paths:

Definition 4.3. (Sharir and Pnueli [23]). For each n ~ N, we define IVP(r,,~/~, n) as the
set of all interpro~e'durally valid paths in G ~ that lead from r,,~i, to n. A path

396

q ~ pathG.(r,,./., n) is in IVP(r.,a/., n) iff the sequence of all edges in q that are in E 2,
which we will denote by q2, is proper in the following recursive sense:

(i) A sequence q2 that contains no return edges is proper.
(ii) If q2 contains return edges, and i is the smallest index in q2 such that q2(i) is a return

edge, then q2 is proper i f / > 1 and q2(i- 1) is a call edge corresponding to the return
edge q2(i), and after deleting those two components from q2, the remaining
sequence is also proper.

Definition 4.4. (Sharir and Pnueli [23]). I f q is a path in G*, let fq denote the (path)
function obtained by composing the functions associated with q 's edges (in the order that
they appear in path q). The meet-over-all-valid-paths solution to the dataflow problem
Consists of the collection of values y . defined by the following set of equations:

cb, = [-] fq for each n ~ N*
q E IVP(rmai., n)

y~ = ~ . (• for each n E N*

The solution to the dataflow analysis problem is not actually obtained from these equa-
tions, but from two other systems of equations, which are solved in two phases, in Phase
I, the equation's deal with summary dataflow functions, which are defined in terms of
dataflow functions and other summary dataflow functions. In Phase II, the equations deal
with actual dataflow values.

Phase I of the analysis computes summary functions r that map a set of
dataflow facts at rp - - the entry point of procedure p - - t o the set of dataflow facts at point
n within p. These functions are defined as the greatest solution to the following set of
equations (computed over a (bounded) meet semilattice of functions):

r = 2 x . x for each procedure p
r = (m..)l~] e ~ (f(,..,) o r for each n e Np not representing a return-site block

r = r for each n e N e representing a return-site block,
I where (m, n) e Ep and m calls procedure q

Phase II of the analysis uses the summary functions from Phase I to obtain a solution to
the dataflow analysis problem. This solution is obtained from the greatest solution to the
following set of equations:

xr~.~ = _L

xrp = 1-] { r I c is acall to p in procedure q }

X n = r

for each procedure p
for each procedure p

and n ~ (Np - { r e })

Sharir and Pnueli showed that if the edge functions are distributive, the greatest solution
to the above set of equations is equal to the meet-over-all-valid-paths solution (i.e., for all
n, xn = yn) [23].

4.1. Representing an Interprocedurai Dataflow Analysis Problem

To make use of the Sharir-Pnueli formulation for our purposes, it is necessary to find an
appropriate way to use Horn clauses to express (i) the dataflow functions on the edges of
the control-flow graph, (ii) the application of a function to an argument, (iii) the composi-
tion of two functions, and (iv) the meet of two functions.

In this paper, we restrict our attention to the class of problems that can be posed in
terms of functions of the form 2 x . (x - kill) u gen, with u as the meet operator. (Exam-
pies of such problems are reaching definition s and live variables.) To encode the dataflow

397

functions, we use nkill sets instead of kill sets; that is, each dataflow function is rewritten
in the form 2 x . (x c ~ n k i l l) w g e n . Such a function can be represented as a pair
(nkill, gen). Given this representation of edge functions, it is easy to verify that the rules
for performing the composition and meet of two functions are as follows:

(nkill2, gen2) o (nkill I, gen]) = (nkill] n nkill2, (gen I c> nkill2) u gen2) (~f)
(nkill2, gen2) [7 (nkill l, genl) = (nkilll ~: nkill2, gen] ~ gen2) (3)

An instance of a dataflow analysis problem is represented in terms of five base rela-
tions, which represent the following pieces of information:

e0(p, m, n)
0. Edge (m, n) e Ep, that is (m, n) is an ordinary (intraprocedural) control-flow edge in

procedure p.
el(p, m, n)

z Edge (m, n) e E e. Bear in mind that both endpoints of an el edge are in p; an el
edge does not run from p to the called procedure, or vice versa.

f(p, m, n, nk_set, g_set)
A tuple f(p, m, n, nk_set, g_set) represents the function on edge (m, n)~ E ~ (The
set-valued fields nk_set and g_set represent the nkill set and the gen set, respectively.)

call_site(p, q, m)
Vertex m in procedure p represents a call on procedure q.

universe(u)
u is a set-valued field that consists of the universe of dataflow facts.

4.2. The Encoding of Phase I

We now show how to encode Phase I of the Sharir-Pnueli functional approach to dataflow
analysis. There are two derived relations, phi_nk(p, n, x) and phi_g(p, n, x), which
together represent ~(,p,,), the summary function for vertex n of procedure p. (Recall that
each dataflow function corresponds to a pair (nkill, gen).)

phi_nk(p, n, x)
A tuple phi_nk(p, n, x) represents the fact that x is a member of the nkill component
of r

phi_g(p, n, x)
A tuple phi_g(p, n, x) represents the fact that x is a member of thc gen component of

ecru,.)"
The rules that encode Phase] perform compositions and meets of (representations of)

damflow functions according to equations (%) and ($) (although the way in which this is
accomplished is somewhat disguised).

Initialization Rule

phi_nk(P, start_vertex, X) :-universe(U), member(U,X).

In Coral, a literal of the form member(S, X), where S is a set, causes X to be bound suc-
cessively to each of the different members of S. (IfX is already bound, then X is checked
for membership in S.) Thus, for each procedure p the nkill component of the function
r consists of the universe of dataflow facts (i.e., nothing is killed along the 0-length
path from the slart vertex to itself).

398

lntraprocedural Summary Functions

The rules for intraprocedural summary functions correspond to the equation

r = V--I (f(m.,) o r m)) for each n �9 Np not representing a return-site block
(m, .) ~ Ep

Note from equation (%) that the composition f<m,,)o r is implemented as

(nkill h... >, gen h.~.~) o (nkill ~c,,.,: genr) = (nkill~t,,,.) n nkill h . . . :
(genr n nkill f~...~) u genh. ''~).

The three rules given below create the intraprocedural summary functions.

phi_nk(P, N, X) :-e0(P, M, N),
f(P, M, N, NK_set, _),
member (NK_set, X),
phi_nk(P, M, X).

phi_g(P, N, X) :-e0(P, M, N),
f(P, M, N, NK_set,),
member (NK_set, X) ,
phi_g(P, M, X).

phi_g(P, N, X) :-e0(P, M, N),
f(P, M, N, _, G_set),
member(G set, X) .

For example, the first rule specifies the following:

Given an intraprocedural edge in procedure P from M to N, where edge-function
f ' s nkill component is NK_set, add X �9 NK_set to the nkill component of
r162 only ifX is in the nkill component of r

This is another way of saying "Take the intersection of the nkill components of f(M.~) and
r which is exactly what is required for the nkill component of the composition
f(M, N) o r M)-

Interprocedural Summary Functions

The rules for interprocedural summary functions correspond to the equation

err,.,) = r o r m) for each n �9 Np representing a return-site block,
where (m. n) �9 E~ and rn calls procedure q

From equation ('~), the composition r o r is implemented as

(nkill~c,,..,>, gen,~,,..,) o (nkill~c,,..>, gen,~,,..~) = (nkill~c,,.. ~ c~ nkill~t,,..,:
(gen~c,,.,,~ o nkill~,,.,,) u gen~,,.,,~),

Thus, the following additional rules account for the propagation of summary information
between procedures:

399

phi nk(P, N, X)

phi_g(P, N, X) :-

phi_g(P, N, X) :-

:-el(P, M, N),
call site(P, Q, M),
phi_nk(P, M, X),
phi_nk(Q, return vertex, X).

el(P, M, N),
call site(P, Q, M),
phi_g(P, M, X),
phi nk(Q, return_vertex, X).
el(P, M, N),
call site(P, Q, M),
phi g(Q, return vertex, X).

For instance, the first rule specifies the following:

Given an edge from M to N in P, where M is a call site on procedure Q, the nkill
component of r consists of the X's such that X is in both the nkill component
of r and the nkill component of r eQ)"

Again, this takes the intersection of the two nkill components, which is exactly what is
required for the nkill component of the composition @(re. eQ) o r

Note that there are two rules---one intraprocedural, one interprocedural--whose head is
phi_nk(P, N, X), each of which can contribute tuples to the relation phi_nk. In the flow
graph, a given vertex N either has one el predecessor or a number of e0 predecessors.
Thus, the rule for phi_nk in the intraprocedural group can cause tuples to be added to
phi_nk because of different predecessors M of N. This gives the correct implementation
because what is required is the meet (pointwise u) of the r functions obtained from all
predecessors, and the rule for the meet of two functions involves the union of nkill sets
(see equation (~:)). Similar reasoning applies in the case of relation phi_g, which is
defined using four different rules.

It should also be noted that the reason we chose our function representations to be
nkill/gen pairs rather than kill/gen pairs was so that the meet of two functions could be
handled by the union implicit in having multiple rules that define phi_nk and phi_g, as
well as the fact that rules have multiple solutions. If kill sets had been used instead, then
to implement the function-meet operation we would have needed a way to perform an
intersection over the kill sets generated from all predecessors of N. (With the nkill/gen
representation of functions, the only intersections needed are for implementing the com-
position of functions. For example, the first component on the right-hand side of rule (1")
is nkilll c~ nkill:~. However, we never have to perform an explicit composition of an arbi-
trary number of functions: every composition involves exactly two functions, and hence
requires taking the intersection of exactly two nkill sets. These (binary) intersection oper-
ations are implemented in the Coral program by having two literals--either f and phi_nk
or two phi_nk's--in the same rule.) If we were to represent functions as kill/gen pairs, the
(binary) meet of two functions would involve the operation kill1 n kill2. This would cause
a problem because we need to perform meets over functions created from an arbitrary
number of predecessors. That is, it would be necessary to perform the k-ary operation
k
n kill: however, this cannot be captured statically in a single rule.

i = l

Remark. For similar reasons, a certain amount of finessing is required to handle inter-
procedural dataflow problems for which the meet operation in the semilattice of datafiow
facts is c~. (An example of such a problem is the available-expressions problem.) Such
problems are dual to the problems for which meet is u in the following sense: if the edge
functions are of the form ;~x.(xc~nkill)ugen they can be put into the form

400

2 x . (x u gen) n (nkill u gen). If we define the .pair [a, b] to represent the function
/% x. (x u a) n b, then all flow functions are of the form [gen, nk i l lugen] . Composition
and meet of [., .] pairs for an n -semilattice of data.flow facts are dual to composition and
meet of (., .) pairs for a u-semilattice of dataflow facts. However, the meet (pointwise
n) of k functions represented as [., .] pairs would require performing the k-ary operation
k

n geni. Again, the problem is that this cannot be captured statically in a single rule.
i=1

To sidestep this difficulty, for intersection problems we would represent functions with
kill and ngen sets: a pair < kill, ngen > would represent the function t x . (x n kill) u ngen.
It can be shown that the meet (pointwise r~) of two functions represented as < . , �9 > pairs
has the following implementation:

< kill2, ngen2 > [q < kill1, ngen i > = < (kill1 n ngenl) u (kill2 n ngen2), ngenl u ngen2 >.

Consequently, the meet of k such functions represented as < . , �9 > pairs is
k

k b

0 ngeni >. [--i < killi, ngeni > = < u (killi n ngeni), i
i = l i=1 --1

This avoids the need to perform an intersection of a collection of sets generated from a
vertex's predecessors. The only intersections that need to be performed involve informa-
tion that is generated along an individual edge (i.e., killi n ngeni); such binary intersec-
tions can be captured statically in a single rule. Combining the information from the set
of all incoming edges involves only unions, and this can be handled using multiple rules
(with multiple solutions),
End of Remark.

4.3. The Encoding of Phase II

In Phase 1I, (the representations of) dataflow functions are applied to dataflow facts.
Given a set of dataflow facts x and a dataflow function represented as a pair (nkill, gen),
we need to create the set (x n nkill) • gen.

Phase II involves one derived relation, df_fact(p, n, x), which represents the fact that x
is a member of the dataflow-fact set for vertex n of procedure p.

df fact(P, start vertex, X) :- call site(Q, P, C),
df fact(Q, start vertex, X),
phLnk(Q, C, X).

df_fact(P, start_vertex, X) :-call_site(Q, P, C),
phi_g(Q, C, X).

df_fact(P, N, X) :- N <> start_vertex,
df_fact (P, start_vertex, X),
phi_nk(P, N, X).

dr_fact(P, N, X) :- N <> start_vertex,
phi_g(P, N, X).

The first and second rules propagate facts in terprocedural ly-- from the start vertex of one
procedure (Q) to the start vertex of a called procedure (P). The first rule specifies that

X is a fact at the start vertex of P if (i) P is called by Q at C, (ii) X is a fact at the
start vertex of Q, and (iii) X is not killed along the path in Q from the start vertex
toC.

The second rule specifies that

X is a fact at the start vertex of P if (i) P is called by Q at C and (ii) X is generat-
ed along the path in Q from the start vertex of Q to C.

401

As in Phase I, the meet (u) over all predecessors is handled by the disjunction implicit in
having multiple rules that define df_fact(P, start_vertex, X), as well as the fact that rules
have multiple solutions.

Rules three and four are similar to rules one and two, but propagate facts intraprocedu-
rally, i.e., from the start vertex of P to other vertices of P.

4.4. Creating the Demand Version

The directive

export df_fact(bbf) .

directs the Coral system to apply the magic-sets transformation to transform the program
to a form that is specialized for answering queries of the form "?df_fact(p, n, X)". The
transformed program (when evaluated bottom up) is an algorithm for the demand version
of the interprocedural dataflow analysis problem: the set of dataflow facts for vertex n of
procedure p is the collection of all bindings returned for X. During the evaluation of a
query "?df_fact(p, n, X)", the algorithm computes phi nk and phi_g tuples for all vertices
on valid paths to vertex n, df_fact tuples for all start vertices that occur on valid paths to
n, and df_fact tuples for vertex n itself; finally, it selects the bindings for X from the
df_fact tuples for n.

5. Related Work

Previous work on demand-driven dataflow analysis has dealt only with the intraprocedu-
ral case [2,27]. The work that has been reported in the present paper complements previ-
ous work on the intraprocedural case in the sense that our approach to obtaining algo-
rithms for demand-driven dataflow analysis problems applies equally well to intraproce-
dural dataflow analysis. However, in intraprocedural dataflow analysis all paths in the
control-flow graph are (statically) valid paths; for this reason, previous work on demand-
driven intraprocedural dataflow analysis does not extend well to the interprocedural case,
where the notion of valid paths is important.

A recent paper by Duesterwald, Gupta, and Sofia discusses a very different approach to
obtaining demand versions of (intraprocedural) dataflow analysis algorithms [12]. For
each query of the form "Is fact f in the solution set at vertex v?", a set of dataflow equa-
tions are set up on the flow graph (but as if all edges were reversed). The flow functions
on the reverse graph are the (approximate) inverses of the original forward functions. (A
special function---derived from the query--is used for the reversed flow function of vertex
v.) These equations are then solved using a demand-driven fixed-point finding procedure
to obtain a value for the entry vertex. The answer to the query (true or false) is deter-
mined from the value so obtained. Some of the differences between their work and ours
axe as follows:

�9 Their method can only answer ground queries of the form "?df_fact(p, n, x)". With
the approach used in this paper any combination of bound and free arguments in a
query are possible (e.g., "?df_fact(p, n, X)", "?df_fact(p, N, X)", "?df fact(P, N, x)",
etc.).

�9 Their method does not appear to permit information to be accumulated over succes-
sive queries. The equations for a given query are tailored to that particular query and
are slightly different from the equations for all other queries. Consequently, answers
(and intermediate values) previously computed for other queries cannot be reused.

�9 It is not clear from the extensions they outline for interprocedural dataflow analysis
whether the algorithm obtained will properly account for valid paths.

402

Previous work on interprocedural data flow analysis has dealt only with the exhaustive
case [23,15]. This paper has described how to obtain algorithms for solving demand ver-
sions of interprocedural analysis problems from their exhaustive counterparts, essentially
for free. Section 4 describes how to use Horn clauses to specify an algorithm for the
interprocedural gen-kill dataflow-analysis problems. Recently, M. Sagiv, S. Horwitz, and
the author have devised a way to extend the techniques described in the paper to a much
larger class of dataflow problems--in particular, those in which the dataflow functions are
drawn from the collection of distributive functions in 2 ~ ~ 2 ~ where D is any finite set.

After the work reported in this paper was completed, the work by D.S. Warren and oth-
ers concerning the use of tabulation techniques in top-down evaluation of logic programs
[24] was brought to my attention. These techniques provide an alternative method for
obtaining demand algorithms for program-analysis problems. Rather than applying the
magic-sets transformation to a Horn-clause encoding of the (exhaustive) dataflow-analysis
algorithm and then using a bottom-up evaluator, the original (untransformed) Horn-clause
encoding can simply be evaluated by an OLDT (top-down, tabulating) evaluator. Thus,
another way to obtain an implementation of a demand algorithm for the interprocedural
gen-kill dataflow-analysis problems would be to use the program from Section 4 in con-
junction with the SUNY-Stony Brook XSB system [25].

Acknowledgements
Alan Demers, Fritz Henglein, Susan Horwitz, Neil Jones, Bemard Lang, Raghu Ramakrishnan,
Genevieve Rosay, Mooly Sagiv, Marvin Solomon, Divesh Srivastava, and Tim Teitelbaum pro-
vided comments and helpful suggestions about the work.

Appendix: The Demand Interprocedural Dataflow Analysis Algorithm

The following is an excerpt from the transformed program produced by Coral from the
interprocedural dataflow-analysis program presented in Section 4:

sup_l_l (Q, P, C) "-
m df fact bbf(P,start vertex) ,

call_site~Q, P, C) .
m df fact_bbf (Q, start_vertex) :-

sup_l_l (Q, P, C) .
sup_l_2 (Q,X,P,C) "-

sup I_I(Q,P,C),
df fact bbf(Q, start_vertex, X) �9

m phi--nk bbb(Q,C,X) "-
sup_l_2 (Q, X, P, C) .

df fact bbf(P,start_vertex, X) "-
--sup_~_2 (Q, X, P, C),
phi nk bbb(Q,C,X) .

sup_2_l (Q, P, C) "-
m df fact_bbf (P, start_vertex) ,
call site(Q,P,C) .

m phi g bbf (Q,C) :-
sup_2 I(Q,P,C)

�9 and so on for 128 more lines

References
1. Allen, F.E., "Interprocedural data flow analysis," pp. 398-408 in Information Processing 74: Proceed-

ings of the IFIP Congress 74, ed. J.L. Rosenfield, North-Holland, Amsterdam (1974).
2. Babich, W.A. and Jazayeri, M., 'The method of attributes for data flow analysis: Part II. Demand anal-

),sis," Acta Informatica 10(3) pp. 265-272 (October 1978).
3. Bancilhon, E, Maier, D., Sagiv, Y., and Ullman, J., "Magic sets and other strange ways to implement

logic programs" in Proceedings of the Fifth ACM Symposium on Principles of Database Systems,
(1986).

4. Bancilhon, F. and Ramakrishnan, R., "Performance evaluation of data intensive logic programs" pp.
439-517 in Foundations of Deductive Databases and Logic Programming, ed. J. Minker, Morgan-
Kaufmann (1988).

5, Banning, J.R, "An efficient way to find the side effects of procedure calls and the aliases of variables:'
pp. 29-41 in Conference Record of the Sixth ACM Symposium on Principles of Programming Lan-
guages, (San Antonio, TX, Jan. 29-31, 1979), ACM, New York, NY (1979)�9

403

6. Barth, J.M., "A practical interprocedural data flow analysis algorithm," Commun. of the ACM 21(9) pp.
724-736 (September 1978).

7. Beeri, C. and Ramakrishnan, R., "On the power of magic" pp. 269-293 in Proceedings of the Sixth
ACM Symposium on Principles of Database Systems, (San Diego, CA, March 1987), (1987).

8. Callahan, D., '`The program summary graph and flow-sensitive interprocedural data flow analysis,"
Proceedings of the ACM SIGPLAN 88 Conference on Programming Language Design and Implemen-
tation, (Atlanta, GA, June 22-24, 1988), ACM SIGPLANNotices 23(7) pp. 47-56 0uly 1988).

9. Callahan, D., Carle, A., Hall, M.W., and Kennedy, K., "Constructing the procedure call multigraph,"
IEEE Transactions on Software Engineering SE-16(4) pp. 483-487 (April 1990).

10. Cooper, K.D. and Kennedy, K., "Interprocedural side-effect analysis in linear time:' Proceedings of the
ACM SIGPLAN 88 Conference on Programming Language Design and Implementation, (Atlanta, GA,
June 22-24, 1988), ACM SIGPLAN Notices 23(7) pp. 57-66 (July 1988).

11. Cooper, K.D. and Kennedy, K., "Fast interprocedural alias analysis," pp. 49-59 in Conference Record
of the Sixteenth ACM Symposium on Principles of Programming Languages, (Austin, TX, Jan. 1 I- 13,
1989), ACM, New York, NY (1989).

12. Duesterwald, E., Gupta, R., and Sofia, M.L., "Demand-driven program analysis," Technical Retx~rt
TR-93-15, Department of Computer Science, University of Pittsburgh, Pittsburgh, PA (October 1993).

13. Horwitz, S. and Teitelbanm, T., "'Generating editing environments based on relations and attributes,"
ACM Trans. Program. Lang. Syst. 8(4) pp. 577-608 (October 1986).

14. Horwitz, S., Reps, T., and Binldey, D., "Interprocedural slicing using dependence graphs" ACM Trans.
Program. Lang. Syst. 12(1) pp. 26-60 (January 1990).

15. Knoop, J. and Steffen, B., "The interprocedural coincidence theorem," pp. 125-140 in Proceedings of
the Fourth International Conference on Compiler Construction, (Paderborn, FRG, October 5-7, 1992),
Lecture Notes in Computer Science, Vol. 641, ed. U. Kastens and P. Pfahler, Springer-Verlag, New
York, NY (1992).

16. Lakhotia, A., "Constructing call multigraphs using dependence graphs," pp. 273-284 in Conference
Record of the Twentieth ACM Symposium on Principles of Programming Languages,(Charleston, SC,
Jan. 11-13, 1993), ACM, New York, NY (1993).

17. Landi, W. and Ryder, B.G., "Pointer-induced aliasing: A problem classification," pp. 93-163 in Confer-
ence Record of the Eighteenth ACM Symposium on Principles of Programming Languages, (Orlando,
FL, January 1991), ACM, New York, NY (1991).

18. Linton, M.A., "Implementing relational views of programs," Proceedings of the ACM SIG-
SOFT/S1GPLAN Software Engineering Symposium on Practical Software Development Environments,
(Pittsburgh, PA, Apr. 23-25, 1984), ACM SIGPLANNotices 19(5) pp. 132-140 (May 1984).

19. Masinter, L.M., "Global program analysis in an interactive environment:' Tech. Rep. SSL-80-1, Xerox
Palo Alto Research Center, Palo Alto, CA (January 1980).

20. Myers, E., "A precise inter-procedural data flow algorithm" pp. 219-230 in Conference Record of the
Eighth ACM Symposium on Principles of Programming Languages, (Williamsburg, VA, January 26-28,
1981), ACM, New York, NY (1981).

21. Ramakrishnan, R., Seshadri, P., Srivastava, D., and Sudarshan, S., "Coral pre-Release 1.07 Software
system, Computer Sciences Department, University of Wisconsin, Madison, WI (1993). (Available via
ftp from f~.cs.wisc.edu.)

22. Rohmer, R., Lescoeur, R., and Kersit, J.-M., "The Alexander method, a technique for the processing of
recursive axioms in deductive databases:' New Generation Computing 4(3) pp. 273-285 (1986).

23. Sharir, M. and Pnueli, A., "Two approaches to interprocedural data flow analysis:' pp. 189-233 in Pro-
gram Flow Analysis: Theory and Applications, ed. S.S. Muchnick and N.D. Jones, Prendce-HaU,
Englewood Cliffs, NJ (1981).

24. Warren, D.S., "Memoing for logic programs:' Commun. of the ACM 35(3) pp. 93-111 (March 1992).
25. Warren, D.S., "XSB Logic Programming System7 Software system, Computer Science Department,

State University of New York, Stony Brook, NY (1993). (Available via ftp from sbes.sunysb.edu.)
26. Weiser, M., "Program slicing:' IEEE Transactions on Software Engineering SE-10(4)pp. 352-357

(July 1984).
27. Zadeck, F.K., "Incremental data flow analysis in a structured program editor;' Proceedings of the SIG-

PLAN 84 Symposium on Compiler Construction, (Montl'eal, Can., June 20-22, 1984), ACM SIGPLAN
Notices 19(6) pp. 132-143 (June 1984).

