
Compile Time Instruction Cache Optimizations

Abraham Mendlson i, Shlomit S. Pinter i and Ruth Shtokhamer 2

1 Dept. of Electrical Engineering
Technion, Haifa Israel

2 Dept. of Computer and Information Sciences
University of Delaware, Delaware U.S.A

A b s t r a c t . This paper presents a new approach for improving perfor-
mance of instruction cache based systems. The idea is to prevent cache
misses caused when different segments of code, which are executed in
the same loop, are mapped onto the same cache area. The new approach
uses static information only and does not rely on any special hardware
mechanisms such as support of non-cachable addresses. The technique
can be applied at compile time or as part of object modules optimization.
The technique is based on replication of code together with algorithms for
code placement. We introduce the notion of abstract caches and present
simulation results of the new technique. The results show that in certain
cases, the number of cache misses is reduced by two orders of magnitude.

1 Introduct ion

As the speed of a processor increases, the penalties for cache misses become
more severe. In order to improve performance, modern computers use a fast
clock rate, long pipelines and cache memories, but their access t ime to the main
memory remains relatively slow. Reducing instruction cache misses can improve
the overall CPI (clocks per instruction) rate [6] tha t the processor can achieve.
Recently, some widely used benchmarks revealed that there is an impor tan t
class of programs which show a significant amount of instruction cache misses
[8, 9, 2]. Hennessy and Pat terson [5] distinguish between three sources for cache
misses: (1) Compulsory (footprint [13]) - a miss caused when a processor accesses
a cache block for the first t ime. (2) Capacity - a miss caused when the cache
is too small to hold all the required da ta and (3) Conflict - a miss caused in
set associative architecture when the replacement algori thm removes a line and
soon fetches it again. According to [8] most of the instruction cache misses are
of the conflict type and occur when different code segments within a loop are
mapped onto the same cache set.

This paper presents a new approach for reducing instruction cache misses.
It uses code replication together with replacement opt imizat ion in order to de-
crease conflict misses, and is based on static information only (information tha t
can be derived at compile time). Conflict cache misses inside loops can be to-
tally eliminated if the loop is small enough to fit in the cache and the code
is mapped into the cache without an overlap; such a mapping is achieved by
replicating instructions and properly mapping the copies to different sets of the

405

cache. However, the replication increases the size of the code and the number of
compulsory misses. On the other hand, the misses optimization problem based
on the placement paradigm alone is an NP-complete problem and in practice it
was found to be ineffective in many cases.

Most instruction cache optimization techniques use dynamic information; i.e.,
profiling information, which is gathered from executing the code on a selected
set of input data. The Pixie 3 tools [11] and [10] use profiling information to
find better placements for code segments. Information gathered dynamically is
also used in [3, 8] for avoiding fetching into the cache instructions either when
they are used only once before being purged from the cache, or because they
might conflict with other code in the loop. Such instructions are left in the main
memory (non-cachable). The effect of inlining procedures on the performance is
discussed [9]. In [4], code fragments are repositions so that the cache line will
not be polluted (will not contain instructions that are never referenced). All of
these techniques were found to be successful mostly for small caches.

Our algorithm works in two phases. In the first one, instructions executed
in a loop are arranged relative to each other so that no conflict misses occur
if the cache can hold all of them. At this stage, it is assumed that the code is
replicated when needed (e.g. a procedure could be replicated if it will be needed
in two loops in different relative locations). In the next phase, the expended
program (with its replications) is partitioned into parts that fit the cache size
(termed abstract caches); during this process, the replications of a code assigned
to a single abstract cache are merged. Our experiments show that the total
increase in code size is around 5% to 10%. This is followed by heuristics for
placing the code of each abstract cache (selecting its address in main memory)
and globally trying to merge replications that can each be mapped to the same
set in their relative abstract caches.

The new method improves the performance of most small and medium caches
as long as the size of inner loops are smaller then the size of the cache. Several
of our experiments show an improvement of two orders of magnitude in the
number of instruction cache misses. Thus, it seems that the saving of conflict
misses when a loop is executed outperforms the addition of compulsory misses
due to the extra copies. Note that the new cache optimization can be applied at
compile time or as part of object modules optimization (for example in the OM
system [12]).

The rest of this paper is organized as follows: in Section 2, we provide a rigor-
ous framework for instruction cache optimization algorithms by formulating the
general problem and the optimization criteria. The first algorithm that partitions
the flow graph into cache sized program parts (abstract caches) is presented in
Section 3. In Section 4, we describe how program segments of different abstract
caches are placed in the program address space. Performance benchmark results
are presented in Section 5 and conclusions in Section 6.

3 Pixie is a trademark of MIPS Computer Systems, Inc.

406

2 Definitions and the Cache Mapping Problem

In this section, we define the general setting of the problem.

2.1 T h e Cache

For simplicity, we consider in our framework a direct mapped instruction cache.
The cache memory is partitioned into lines (sometimes called blocks) that can
each hold a few memory words. The entire block is fetched or replaced in any
cache operation that involves the memory. When using a direct mapped cache,
any physical address has exactly a single cache line that can hold it. We discuss
later on the adaptation of our method to different cache organizations as well.

2.2 T h e Cache Mapping P r o b l e m

The number of misses caused by a program depends on the input data, but
since the placement of code segments in the virtual address space is fixed for
all possible inputs, it may happen that a code mapping may be optimal for one
execution and non-optimal for another. Thus, the mapping problem is defined
with respect to a typical set of executions determined by some set of input data.
The question of what is a good typical execution set depends on what information
is available and whether we are looking to optimize the most frequently used
execution, an average occurring execution or the worst possible case (i.e. choose
the mapping for which the worst execution is the best). Note that many different
executions of a single mapping can still be optima].. For example, whenever a
conditional branch (which does not close a loop) occurs, the code segments on
the true branch can be mapped in such a way that they will fall on the same
cache lines as the code on the false branch owing to the fact that they never
execute together.

T h e Cache Mapping P r o b l e m : Given a set of cache parameters, a program,
and a typical execution set, find a placement of the program paris (in the memory
address space) thai minimizes the total number of misses for the typical execution
set.

2.3 Program Structures and Intervals

To simplify our analysis of the program behavior, the input programs are as-
sumed to be well-structured. Thus, loops are properly nested and every loop has
a single exit point; a procedure call is always returned to the instruction immedi-
ately following the call (see [1] for justifications of the assumption). We present
such a program by the Nested Flow Graph (NFG), which is a flow graph [1]
augmented with information about the nesting structures of loops and the calls
for procedures.

In the flow graph, every node represents a basic block, and an edge from node
v to node u indicates that the execution of u must follow that of v. In the NFG,

407

there is another type of node called a level node; such a node represents a loop
(its level) or a procedure call (when its body is not inline). In addition, we use
nesting edges to indicate a change in the nesting level. The NFG is generated
from the flow graph by replacing each loop closing back edge with a level node
and directing such an edge to point into that level node (see Figure 1). The flow
edges that enter the loop are now pointing to the level node and the flow edge
leaving the loop is now drawn from the loop level node. Similar construction is
applied to procedure calls. A nesting edge is drawn from a level node to the node
that represents the beginning of the loop's (or procedure) body. For recursive
(direct or indirect) procedure calls, we stop generating level nodes when there is
a path from a previous call to the current call and the path contains a nesting
edge.

The code fragment in Figure 1 has three loops and three procedure calls.
Note that procedure B appears twice in the NFG, once when it is called from
loop2 and the second time when it is called from loop3.

b l
Pmcedure B(i);

loopl begin
loop2 ifi> 0then B(i-1)

b2; end;
A;
B(i);
b3 Procedure A;

end loop2; begin
b6;

loop3 end;
b4;
B(i);

end loop3;
end loopl
b5

�9 , - I ' ' � 9 �9 j , � 9 1 4 9 �9 �9 i i j i l t ' t ' l J m � 9 1 4 9

B B

Fig. 1. A code fragment and its NFG

Our two basic'concepts - intervals and nesting interval t[ees - can now be
defined based on the NFG of a program.

408

Defini t ion 1 An interval is a maximal connected sub-graph of the NFG that
may not include parts nested under its level nodes. A segment is a connected
sub-graph of an interval.

Blocks bl and bS together with the level node between them are an example
for an interval.

Def ini t ion 2 A Nesting I n t e r v a l Tree (NIT) of a nested flow graph is an
ordered tree (order on the edges leaving a node) whose nodes are the intervals of
the NFG and its edges are the nesting edges connecting the intervals.

The nesting interval tree of the NFG in Figure 1 is presented in Figure 2.

Fig. 2. The NIT of the code fragment in Figure 1

Defini t ion 3 Two intervals that represent the same expanded code (e.g. copies
of a procedure's body replacing its calls) are called matching intervals (similar
definition is used for segments).

Note that matching intervals may appear in different places of the NFG. In
particular, the body of a procedure which is called from different intervals is
presented by different embodiments.

Def ini t ion 4 The l o c a l i t y t r e e of a node, v, of the NIT is the sub-tree de-
rived from the NIT by taking all the nodes reachable from v (on directed paths).

Due to the redundancy (replication) of a code in the NFG a locality tree with
a root v contains all the basic blocks (within the ~ntervals nodes) for executing
the program fragment represented by v. This redundancy will be used later as
a powerful optimization technique.

409

Every mapping algorithm must place all the intervals (their basic blocks)
that cover the program in the program address space so that: (1) intervals (other
than matching intervals) do not overlap in memory; (2) matching intervals (e.g.
those that were generated due to procedure calls) can be mapped onto the same
address or onto different addresses (their names must then be modified).

The basic elements mapped by our algorithms are the intervals and segments
of the program's NFG. Segments of an interval are used only when it is too large
to be mapped entirely onto the cache. If the system can bypass the cache, it can
be assumed that all the basic blocks that are not part of any loop are marked
as non-cachable and are not part of any interval.

3 Partit ioning the NFG Into Abstract Caches

The optimization algorithms use the NFG representation and the locality trees
in order to map the program onto the main memory. The replications of code
in the NFG are now used for generating a map that fits loop bodies (presented
by the locality trees) within a single cache as long as possible. This local opti-
mization uses abstract caches which are next presented together with some of
their properties. In Section 3.2, we present a global optimization for mapping
the instructions of the abstract caches into memory.

3.1 A b s t r a c t C a c h e s

Defini t ion 5 An abs t r ac t cache is a connected subgraph of the NFG whose
size (the to~Ial space taken by its basic blocks when its matching intervals are
counted only once) is not greater than the size of the instruction cache divided
by its associativity. A partition of a graph into abstract caches is an abs t r ac t
cache cover (or cover) of the graph.

Two important properties of abstract cache covers are summarized in the
following lemmas:

L e m m a 1. Let C be an abstract cache cover of a nested flow graph G such that
no two matching intervals are in different abstract caches. Then, all the basic
blocks of G can be mapped onto a cache, whose size is at most the sum of all the
abstract caches of C, without causing any conflict miss.

Proof: In each of the' abstract caches, all the basic blocks can be mapped sequen-
tially. The total sum of the caches will be large enough to keep each program's
line in a different cache line. Therefore, only footprint misses can occur.

D e f i n i t i o n 6 Two abstract caches can be mapped independently onto memory
if their joint cover has no matching intervals.

L e m m a 2 . Given a program NFG with an abstract cache cover. I f no loop is par-
titioned among different abstract caches and every abstract cache can be mapped
independently of other abstract caches, then only compulsory cache misses can
OCCUr.

410

Proof: Since no loop is parti t ioned between abstract caches, the program at
the top level can be viewed as a sequence of abstract caches (phases of the pro-
gram execution). As soon as the execution inside an abstract cache is terminated,
the program will never access that code again (since the caches can be mapped
independently). Since no abstract cache is larger than the physical cache, with
Lemma 1, only compulsory cache misses can Occur.

When replication is used, matching intervals of different abstract caches be-
come distinct by a proper renaming. Thus, the number of footprint misses may
still increase. To further reduce the additional footprint misses, global minimiza-
tion of replicated code is needed. Such an optimization is employed during the
final placement.

3.2 A n A l g o r i t h m for Creating an Abstract C a c h e C o v e r

Since optimal mapping is defined with respect to a typical set of executions, we
next discuss the set assumed by our algorithms. As we do not use profiling or
run-time information, only the program structure can be used in our algorithms.
We assume that the branches of a conditional are equally taken and the number
of iterations in all loops are the same; thus the instructions in a loop which is
nested within another loop will be executed many times more as the number
of iterations per loop. Lastly, we assume that when the first instruction of a
loop or a procedure is accessed its entire interval will be accessed next. In the
discussion section, we consider a different set of assumptions and their effect on
the mapping.

Selecting a cover for the NFG is done by traversing the nested interval tree
starting from the leaves; in this way we try to keep locality trees in the same
abstract cache as long as they fit. Each leaf interval is assigned to a different
abstract cache. When traversing up the levels of the tree, abstract caches are
merged as long as their total size (matching intervals are considered only once)
is less than the cache size.

Abstract Cache Partitioning Algorithm

- Input: The NFG representation of the program, its nested interval tree T =
(V, E) of height H, and a cache size C.

- Output: A parti t ion (cache cover) of the intervals into abstract caches each
of size not greater than C.

- Step-1
Assign each leaf interval of the NIT to a different abstract cache. If the
size of an interval is larger than C, repeatedly extract from the interval a set
of continuous basic blocks (segments) of size no greater than C and assign
it to a new abstract cache.

- Step-2
f o r i= H - 1 down to 0 do
* for every level node in level (height) i , make a cache cover list from

the abstract' caches of its descendent nodes; during this process merge

411

abstract caches whenever possible and leave only a single copy when
several matching intervals are assigned to the same abstract cache.

* merge the cover lists of level i in a way similar to the above
- Step-3

The cackle cover list of the root is the cache cover of the program

Note that similar (matching) basic blocks, like those of called procedures,
can appear in more than one abstract cache but will appear at most once in
each abstract cache. Abstract caches preserve the locality of memory references
generated by the processor since the graph is partit ioned along the nesting levels
of the NFG.

4 From Abstract Caches to the Process Address Space

In the last phase of our optimization the blocks in each abstract cache are po~
sitioned in the program address space (global optimization). The placement al-
gorithm is based on the basic placement algorithm which is valid for the cases
described in Lemma 2: In Section 4.2, we extend it to handle the general case.
The extended algorithm applies heuristic methods for the global optimization.

4.1 T h e Bas ic P l a c e m e n t A l g o r i t h m

The basic placement algorithm assumes that no loop is divided among different
abstract caches, and matching program intervals that reside in different abstract
caches are renamed.

- Input: A list of abstract caches (ACs) covering the NFG.
- Output: A placement (address) for locating the intervals in the memory

space.
- Data structures:

Unplaced_list : A list of all ACs which have not been placed.
P l a c e d _ l i s t : A list of all ACs which have already been placed.
Active_tO : The AC currently being placed.
Program_address_space : An image of the program address space. There is

an indication of each location whether it has already been placed or not.
LPC : Points to the highest address in the program address space that has

been used.
Temp_cache : An array whose size is the same as the system cache. Used for.

placing the intervals of each AC.
- Initialization conditions: All the ACs are in the Unp laced_ l i s t , and LPC is

0.
- while Unplaced_list is not empty do

i. Choose an AC from Unplaced_list to be the Active_AC.
2. Place all intervals (their basic blocks) of Active_AC in Temp_cache con-

tinuously. This can always be done under the current assumptions (Lemma
2).

412

3. Copy Terap_cache to the program address space, starting at address
LPC+I, and update LPC.

4. Put the ActiveAC in Placed_list.

For mapping in the general case, there are two aspects to consider. The first
one is when a replication is worthy (which affects the AC cover) and the second
is the order in which to select the ActiveAC in Step 1.

4.2 E x t e n d e d P l acemen t A l g o r i t h m - - a Heur is t ic Approach

Since only static information is used, we assume that the entire cache is flushed
when the processor exits an abstract cache. The basic algorithm is extended by
checking how the placement of a replicated interval in one abstract cache can
affect its placement when it appears in another abstract cache.

Consider the two calls in the inner loops of Figure 3. If the two copies of B are
located in the same place relative to their abstract caches then no duplication
is needed; otherwise extra footprint misses are generated in each iteration of
loop:t. Note that in both cases no conflict misses are generated for the inner
loops. The exact number of misses depends on the number of iterations and the
size of B. In the static case, where no information is provided on the number
of times each loop is executed, we observe that preventing misses at innermost
nesting loops is highly desirable.

Fig. 3. Partition to abstract caches

413

Our extended placement algorithm is based on the basic algorithm. Its input
is an abstract cache cover and the NFG in which matching intervals were not
yet renamed. It uses an extra data structure P laced_- in te rva l to hold all the
intervals which have already been placed in the program address space. Initially,
Placed_interval is empty.

In Step 1, the policy for choosing the Act iveAC is changed to follow a heuris-
tic from the set H1 that is described later.

Step 2 becomes:

1. Try to place in Temp_cache all the intervals that belong to the Active..AC
and which their replications appear in the P l a c e d _ i n t e r v a l list. The place
in Temp_cache should coincide with the mapping onto the cache of the copy
(one of them). If an interval cannot be placed in such a way, use a duplication
policy from the set H2 which we describe later.

2. Place all the remaining intervals of the A c t i v e l C in Temp_cache. If an
interval cannot be placed, (not enough space), then it will be placed with
the next abst ract cache.

In Step 3, we must add the update of the P l a c e d _ i n t e r v a l list. Step 4
remains as in the basic algorithm.

In the algorithm, two sets of heuristics are used. The first, HI, determines
the order in which abstract caches are chosen to be placed, and the second, H2,
is used for deciding whether or not to duplicate an interval.

The order in which abstract caches are selected can be one of the following:
deep f i r s t - -- choose the innermost interval to be the Active_At, or a s e q u e n t i a l

selection which chooses some order of abstract caches which the program is most
likely to visit, or lastly, a r a n d o m choice can be made.

Each time an abstract cache is chosen, all of its intervals are mapped onto the
process address space. But an interval that has a copy which is already placed
in memory sometimes cannot be put in the temporary cache in the place to
which its copy is mapped (the place is taken). In such a case, three policies for
replications (It2) are suggested. The first is to a lways repl ica te - - take a copy of
the interval and rename it. The new interval is free of all other constraints and
so can be mapped. The second is n e v e r repl ica te - - use only a single version of
the interval (the first one that was mapped). The last one is s o m e t i m e s rep l ica te
- - if a fraction of the desired space is occupied (overlapped), then a threshold
limit is used to decide upon replication.

5 Simulat ion Resul ts

This section presents simulation results of the UNZIP program which is used
to uncompress and open '.ZIP' programs. A comparison is made between the
program running with our optimization technique and without it. In our imple-
mentation, only procedures were replicated whenever the corresponding place in
the cache was occupied by other parts of the blocks of the active abstract cache.
The abstract caches were selected using a preorder search of the NFG.

414

First we describe the methodology being used for generating the traces and
then we present and discuss the results.

5.1 Generating the Traces

We use the AE tool [7] to relocate and replicate basic blocks of programs in the
main memory. This enables us to implement our algorithm independently of the
compiler being used.

AE is a tool used for generating traces. It has three major phases: (1) gener-
ating static information about the program. This includes the control flow graph,
a list of basic blocks with their respected addresses in memory, procedure calls,
nesting of loops etc.; (2) gathering dynamic information on a particular run (us-
ing some input); (3) generating the trace by combining the program source file
with the information from 1,2.

We modify the addresses of basic blocks generated in phase I of the AE tool in
order to relocate and duplicate them according to our technique. The relocation
is implemented by changing the starting point of a basic block, while replication
is implemented by duplicating the description of the basic block and changing
its ID and starting point. Note that by using this technique, the program keeps
the same flow of control, but the addresses being generated may be shifted.

The flexibility of the AE tool is well suited to our purposes. On the other
hand, the AE does not generate traces for library routines so we could not present
the full capability of our technique. The instruction traces being generated were
fed into the Dinero cache simulator [5].

5.2 The Simulation Results

The UNZIP program was chosen as an example for a medium size program. Its
object code is 82K-bytes long, it contains 32 procedures and 22 untraced library
procedures, 41 loops and 580 basic blocks. All the traces we used were 5.4M
instructions long.

The cache performance is measured in terms of miss ratio for different cache
and block sizes. Similar to other relevant works, we choose the cache organization
to be direct mapped.

Table 1 presents the results for a cache size of 512 bytes. For such a small
cache, our algorithm improves the cache miss ratio from 6% for a block size of
32 bytes to 12% for a block size of 4 bytes. The results indicate that the abstract
caches were too small to hold significant loops, e.g. loops containing procedure
calls. Note that a loop which does not call any procedure can be assumed to be
sequentially placed for both cases.

For a cache size of 1024 bytes, our algorithm reduces the cache miss ratio
compared to the C compiler by 30-35% depending on block size (see Table 2).

415

miss
ratio

50
45
40.
35-
30
25
20
15
10
5

UNZIP - Cache size 512
I I I I t

without cache opt. O
with cache opt. I

I I I I I

5 10 15 20 25 30
block bize

Table 1. UNZIP: Cache size 512 - 5,400,000 instructions

miss
ratio

50
45
40
35
30
25
20
15
10
5

UNZIP - Cache size 1024
I I I I

without cache opt.
with cache opt.

5 10 15 20
block size

I

25

I

o
I

I

30

Table 2. UNZIP: Cache size 1024 - 5,400,000 instructions

Improvement of a few orders of magnitude in the cache misses is achieved
with a cache size of 2048 bytes. Table 3 presents the miss ratio for this case.
Due to the difference in magnitude, we present the graph in logarithmic scale.

The improvement presented in Table 3 is explained by the behavior of the
program execution. Logically, the UNZIP program runs in phases. Each phase
is typically composed of nested loops with procedure calls. Since the cache was
large enough, our replication and relocation technique managed to place the
called procedures of each phase in a conflict free manner. Thus, the total amount
of misses is relatively close to the footprint of the execution and is not dependent

I0<

416

1

miss 0.1
ratio

0.01

UNZIP - Cache size 2048
I l I

^ , , , ; + h , ~ , , ~ r ~ , ' h e o n t . O x..

with cache opt. I

0.001 I , , , I ,
5 10 15 20 25 30

block size

Table 3. UNZIP: Cache size 2048 - 5,400,000 instructions

on the number of times that the loops are executed.
Without replications, it is not possible to eliminate the conflicts caused by

procedures called in different phases. In such a case, as soon as a cache conflict
occurs in a loop, the number of cache misses depends on the dynamic nature of
the program, i.e. how many times the loop is executed.

To support these conclusions we compared the footprint of our run (using a
huge cache size) against the actual number of cache misses (using a cache size
of 2048 bytes) with and without the cache optimizations. The results for block
size of 32 bytes are 242 cache misses (footprint) compared with 474 cache misses
using the cache optimizations and 130095 cache misses in the original placement
generated by the compiler.

It is very likely that the above results would improve with a pre-fetch mech-
anism, since the replicated code is executed sequentially.

6 C o n c l u s i o n s a n d F u t u r e W o r k

We presented a new approach for optimizing instruction cache systems that can
be applied during both compilation t ime and object modules optimization. The
main idea in this approach is to prevent segments of codes that are executed
in the same loop to be mapped onto the same cache area. Our approach differs
from other techniques that use only compile time information and is based on two
basic techniques: duplication of code and sophisticated placement algorithms.

We integrated our algorithm into a version of the A E tool which is based
on the gcc compiler. The use of indirect methodology to examine our algorithm

417

gives us a great deal of flexibility and the ability to get meaningful results in
a reasonable amount of time. However, this approach has some limitations. In
particular, it limits us to use relatively small input programs. Since a small
program has a small footprint, the efficiency of our approach can be exemplified
for small and medium caches only. We believe that our methodology can be even
more effective when applied to larger programs.

For simplicity, we choose to use direct mapped cache memories. Nevertheless,
the same algorithm can be easily extended to other cache organizations. If cache
associative organization is used, the size of the abstract cache is reduced to the
size of the cache divided by the associativity of the cache. Thus, more intervals
can be mapped onto the same cache set before a miss occurs.

The algorithm presented here can be improved by further taking the program
structure into account when placing the basic blocks. For example, the different
paths of an ~.f t h e n e l s e structure can be mapped onto the same cache area
so that the cache will be used more efficiently to benefit smaller caches. Another
possible extension can consider non-well structured programs as input.

The compilation technique presented in this paper was found to be effective
for small and medium cache size and for inner loops of size smaller than the
cache size. Note that we can use this information to optimize the amount of loop
unrolling; i.e., the total size of the unrolled loop should not exceed the size of
the cache.

Currently', we are investigating new improvements that include: the effect of
different architecture mechanisms such as branch prediction, and instruction pre-
fetching. The effect of different cache organization and parameters, and the effect
of different application structures on the overall performance of our method.

R e f e r e n c e s

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers - - Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

2. D. Bernstein, D. Cohen, Y. Lavon, and V. Rainish. Performance evaluation of
instruction scheduling on the IBM RISC system/6000. In 25th Annual Interna-
tional Symposium on Microarchitecture, pages 226-235, Portland, Oregon, Decem-
ber 1992.

3. C. Chi-Hung and H. Dietz. Improving cache performance by selective cache by-
pass. Hawaii International Conference on System Science, pages 277-285, 1989.

4. R. Gupta and C. Chi-Hung. Improving instruction cache behavior by reducing
cache pollution. In Proc. of Supercomputing '90, pages 82-91, New-York, November
1990.

5. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Kaufman, 1990.

6. W. W. Hwu and P. H. Chang. Achieving high instruction cache performance with
an optimizing compiler. In The 16 th International Symposium on Computer Ar-
chitecture, pages 242 - 251, Jerusalem Israel, May 1989.

7. J .R. Larus. Abstract execution: A technique for efficiently tracing programs.
Software Practice ~ Experience, 20(12):1241-1258, 1990.

418

8. S. McFarling. On optimizations for instruction caches. In The 3 rd International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 183-192, 1989.

9. S. McFarling. Cache replacement with dynamic exclusion. In The 19th Annual
International Symposium on Computer Architecture, pages 191 - 200, Gold Coast,
Australia, May 1992.

10. K. Pettis and R. C. Hansen. Profile guided code positioning. In ACM SIGPLAN
Conf. on Programming Language Design and Implementation, pages 16 - 27, 1990.

11. M. D. Smith. Tracing with pixie. CSL-TR-91-497 91-497, Stanford University,
Stanford, CA 94305-4055, November 1991.

12. A. Srivastava and D. W. Wall. A practical system for intermodule code optimiza-
tion at link-time. Journal of Programming Languages, 1(1):1-18, 1993.

13. D. Thi~baut and H. S. Stone. Footprints in the cache. ACM Transaction on
Computer Systems, 5(4):305-329, November 1987.

