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Abstract .  An extension to attribute grammars is introduced which 
allows objects and references to be specified as part of a syntax tree attri- 
bution. Practical advantages of these grammars include a simpler specifi- 
cation of many problems in static-semantic analysis, including the 
specification of object-oriented languages, and a highly reduced number of 
affected attributes after syntax tree modifications. The resulting attribu- 
tions are space-efficient and allow efficient incremental attribute evalua- 
tion in interactive language-based editors. 

1 Introduction 

Attribute grammars [16] and incremental attribute evaluation is a well-stud- 
ied technique for implementing interactive language-based editors where 
static-semantic checking is performed incrementally during editing [20]. The 
principal idea of using AGs for incremental updates is very attractive: the 
attribution of a syntax tree is described declaratively, and an incremental 
attribute evaluator can be derived automatically from the specification. How- 
ever, as is well known, there are several problems with using standard AGs [2, 
3, 5, 10, 11, 12, 13, 14, 21, 24]. 

One problem is that  standard AGs lead to low-level complex specifications 
for many problems in static-semantic checking. An example of this is the spec- 
ification of languages with homogeneous name spaces, i.e. where declaration- 
sites and use-sites may appear in any order. Another example is the specifica- 
tion of languages with advanced scope rules, e.g. object-oriented languages 
where name analysis depends on the classification hierarchy and not only on 
block structure. 

Another problem is that, even for simple languages, there are common situ- 
ations where a small syntactic change results in very many affected attributes, 
i.e. attributes which require new values. This leads to poor performance dur- 
ing incremental evaluation. The typical example of this is the addition of a 
new global declaration which affects the environment attributes of essentially 
all nodes in the syntax tree. 

In this paper we introduce Door attribute grammars, an extension to stan- 
dard AGs which provides a solution to the above problems by allowing objects 
and reference attributes to be specified as part of an attribution. Door AGs 
allow complex problems to be specified in a simpler way than do standard AGs. 
Furthermore, the number of affected attributes after a syntax tree modifica- 
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tion is substantially lower than for a standard AG and the potential for effec- 
tive incremental evaluation correspondingly higher. 

Many other researchers have also suggested solutions to the problems of 
using AGs for incremental evaluation, primarily to solve the problems occur- 
ring for simple block-structured languages, and to some extent modular lan- 
guages. In contrast, we have addressed the more complex problems arising 
from specifying object-oriented languages. Our solution is more general than 
the earlier solutions in that  more advanced attributions can be handled. 

This work was done within the Mj~lner project [17] and a more detailed 
account of Door AGs is given in the author's thesis [7]. A more elaborate exam- 
ple of Door AGs applied to an object-oriented language is given in [9]. 

This paper is organized as follows. Section 2 describes the elements of a 
Door AG specification. Section 3 gives an example of using Door AGs. Section 4 
describes an incremental attribute evaluator for Door AGs, based on visit pro- 
cedures. Section 5 describes a systematic method for constructing the visit pro- 
cedures. Section 6 discusses our experience with constructing Door AG 
specifications and evaluators, and compares the approach to standard AGs. 
Section 7 discusses related work, and section 8 concludes the paper. 

2 Door attribute grammars 

2.1 Extended syntax trees 

Door attribute grammars are based on the view of a syntax tree as a tree of 
objects where each object is an instance of a node class [6]. Rather than 
expressing the context-free grammar as a set of nonterminals and productions 
we express it as a set of node classes where superclasses correspond to nonter- 
minals and subclasses to productions. An attributed syntax tree defined by a 
Door AG consists of three kinds of objects: 

�9 syntax node objects (instances of node classes) 
�9 door objects (instances of door classes) 
�9 semantic objects (instances of other classes) 

The semantic objects can be used for representing static-semantic structures, 
for example symbol tables. As we shall see later, it is often advantageous to 
model the structured attributes used in a standard AG by semantic objects in 
a Door AG. The door objects serve as interface objects between the syntax 
nodes and the semantic objects in order to encapsulate the non-local attribute 
dependencies which occur in Door AGs (this is treated in more detail below). 
Both door objects and semantic objects are introduced by defining them as 
direct or indirect part-objects of syntax nodes. An object denotes its part- 
objects by means of static references (references which cannot be changed to 
denote other objects). Part-objects and static references have the same seman- 
tics as in BETA [ 19]. 

The Door AG fragment below shows the introduction of part  objects. For any 
A object a unique D object is created at the same time as the A object, and the 
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A object can refer to its D object by the static reference x. The A object is said to 
be the owner of the D object. 

A: nodeclass 
{ x: object D; 
} 

-- the static reference x denotes an object of class D 

By adding part-objects, the complete set of objects forms an extended syntax 
tree, or EST, as shown in figure 1. 

syntax node 

door obiect 

[ ]  semantic object 

D static reference 

F i g u r e  I An extended syntax tree 

2.2 Attributes and equations 

All of the objects in the EST can have attributes. As for standard AGs the 
attributes are defined by equations of the form 

a 0 := f ( a l ,  . . an )  

where the attribute a o is defined by the side-effect-free function f applied to 
the attributes al, . . a n. Attributes are declared as inherited, synthesized, or 
local. For syntax nodes, inherited attributes are defined by equations in the 
father node, whereas synthesized and local attributes are defined by equations 
in the  node itself. Similarly for door objects, inherited attributes are defined by 
equations in the owning syntax node, whereas the door object itself defines its 
local and synthesized attributes. Semantic objects have only local attributes 
and no equations. The attributes of a semantic object are instead defined by 
equations in its owning door object. 

We use the term "inherited" in the sense of attribute grammars, and will 
use the term oo-inherited to mean inherited in the sense of object-oriented pro- 
grAmming, .Attributes and equations defined in a class are oo-inherited by all 
its subclasses. 

2.3 Reference attributes 

Door AGs extend standard ACTs by allowing attributes to be references to other 
objects. A reference attribute is declared as follows: 
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r: ref Q; 

where Q is a class. The reference attribute r is said to be qualified by Q, i.e. it 
may only denote objects of class Q (objects of subclasses to Q are also consid- 
ered to be Q-objects). The value of r is the object identity for a Q-object. Each 
object has a unique identity which is immutable and not affected by changes to 
the attributes of the object (the state of the object). Two reference attributes 
are considered equal if and only if they have the same object identity value, i.e. 
they denote the same object. 

Reference attributes can be used to denote node objects, door objects, and 
semantic objects. To define a reference attribute, it is possible to use static ref- 
erences, self references, and other attributes. The example below shows the 
use of static references and self references. We use the "this"-notation of Sim- 
ula [4] for self references. 

P: nodeclass 
{ x: object D; 

Trd:  ref D; 
Trp:  ref P; 
rd := x; 
rp := this P; 

} 

-- x is a (static reference to a) part object of c/ass D 
-- rd is a synthesized reference attribute denoting a D object 
-- rp is a synthesized reference attribute denoting a P object 
-- rd is defined to denote the object x 
-- rp is defined to denote this P object 

By using reference attributes it is possible to propagate a reference from one 
part  to another in the EST. This allows objects to have references to other 
objects arbitrarily far away in the tree and thereby gives the possibility to 
define arbitrary directed graphs on top of the EST substrate. Figure 2 shows 
an example of such a graph. Note that the graphs may be cyclic. This possibil- 
ity to use objects and reference attributes to define graphs is very powerful. It 
allows, for example, use sites to be connected directly to declaration sites and 
vice versa. In the specification of object-oriented languages it allows subclasses 
to be directly connected to superclasses. It also allows mutually recursive 
types to be conveniently described as objects containing references to each 
other. 

attribute 

4 - - . __  reference 

F igure  2 Graph formed by reference attributes 
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2.4 Accesses via references 

An object in an EST may  be connected to the following objects: 

�9 to its son nodes (in case of a node object) via its son references 
�9 to i ts par t  objects via i ts static references 
�9 to a rb i t ra ry  other  objects in the EST via its reference a t t r ibutes  

The object m a y  access the a t t r ibutes  of these connected objects using the usual  
dot-notation "r.a', where  r is a reference and a is an  a t t r ibute  of the object 
denoted by r. The access is said to be a local access i f  r is a son reference or a 
static reference,  and a non-local access i f  r is a reference at tr ibute.  The use of 
non-local accesses leads to non-local dependencies. Consider the following Door 
AG fragment:  

D: doorclass 
{ $ r: ref Q; 

1" b: integer;  
b := r.a; 

} 

-- r is an inherited reference attribute, denoting a Q object 
-- b is a synthesized integer attribute 
-- b is defined using a non-local access 

This g rammar  defines the a t t r ibute  b in t e rms  of the non-local access to the 
a t t r ibute  a. Thus,  there  is a dependency from a to b, but  since a is located in a 
O object which can be arbi t rar i ly  far  away from the D object in the EST, this is 
a non-local dependency. 

Non-local dependencies are difficult to handle  in an  incremental  a t t r ibute  
evaluator: whenever  the a t t r ibute  a is updated  we need to locate the b 
a t t r ibute  to update  it  as well. To make  the incremental  a t t r ibute  evaluat ion 
practical,  Door AGs res t r ic t  the use of non-local access to occur only in the door 
objects. Fur thermore ,  only a t t r ibutes  of semantic or door objects may  be 
accessed non-locally. From this follows an impor tan t  property: 

There are no non-local dependencies involving attributes in the syntax nodes. 

Thus,  in order to access non-local information,  or provide information for non- 
local access, i t  is necessary  to introduce a door object. This design of the Door 
AG makes  it possible to use s tandard  a t t r ibute  evaluat ion algori thms for the 
syntax nodes, while new algori thms are needed to handle the door objects. 

To summarize,  the communicat ion of informat ion between objects takes  
place locally from neighbor to neighbor within the EST, but  can also go non- 
locally from a door object to ano ther  door object arbi t rar i ly  far away in the 
EST. 

2.5 Handling large attribute values 

In s tandard  AGs i t  is usual ly necessary to have some at t r ibutes  with very  
large s t ruc tured  values. Typically, such a t t r ibutes  are used to describe symbol 
tables and declarat ive envi ronments  in order  to define name analysis. Such 
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large attributes are problematic in many ways. From a specification point of 
view they are problematic because one needs to introduce auxiliary attributes 
which are threaded around in the syntax tree to gather all the "small" 
attribute values that  contribute to the large value. This leads to low-level com- 
plex specifications. From the point of view of incremental evaluation, the large 
attributes are also problematic: Using the common evaluation technique of 
evaluating all attributes which depend on changed attributes, a small change 
to the large attribute leads to subsequent re-evaluation of all "client" 
attributes using the large attribute even if most of these client attributes are 
not affected by the change. 

In Door AGs there are two mechanisms for handling the problems of large 
attribute values: 

Break up a large value by representing it as several small objects 
Define "collection-valued" attributes by membership declarations rather 
than by equations 

To illustrate the first mechanism, consider the definition of a symbol table 
attribute. In a standard AG, a symbol table might be represented as a set of 
(STRING, TYPE) pairs: 

ST: set (STRING x TYPE) 

Each time the type of a declared identifier is changed, the symbol table 
attribute ST will get a new value. In a Door AG, a symbol table might instead 
be represented as a set of references to Decl objects 

ST: set (ref Decl) 

where each Decl object has STRING and TYPE attributes. Using this defini- 
tion, a change to the type of a declared identifier does not affect the value of 
the symbol table attribute - its value is still the same set of references. 

To split large values into small objects reduces the number of affected 
attributes and also the number of attributes which need to be re-evaluated 
(i.e., attributes which depend on affected attributes). To also simplify the spec- 
ification, Door AGs have a special mechanism for defining collection-valued 
attributes, which we describe in the next section. 

2.6 Collection-valued attributes 

Symbol tables and declarative environments are usually represented by some 
kind of collection-valued attribute, i.e. a set, bag, sequence, finite function, or 
similar type. Often, there are many attributes which contribute to the collec- 
tion-valued attribute independently of each other. But to define the collection- 
valued attribute in a standard AG, one needs to introduce auxiliary attributes 
which are propagated around in the tree, gathering the attribute values which 
should contribute to the final collection-value, leading to a complex low-level 
specification. 
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To avoid this, Door AGs have a mechanism for defining collection-valued 
attributes by so called conditions which allow objects to be declared as mem- 
bers of a collection. The collection-valued attribute is placed in a collection 
object, which is a semantic object but differs from ordinary semantic objects in 
that  its attributes are defined by conditions rather than by equations in its 
owning door object. Collections are similar to the set attributes introduced by 
Kaiser [14] and to the maintained attributes introduced by Beshers [3]. See 
section 7 for a comparison. 

The following example illustrates the mechanism. Symbol tables are repre- 
sented by the class SyrnbolTable. A door class D1 defines a collection object of 
class SymbolTable and uses a synthesized attribute tbl to propagate a reference 
to the symbol table into the syntax tree. 

D1: doorclass 
{ collection myTable: object SymbolTable; 

1" tbl: ref SymbolTable; 
tbl := myTable; 

}; 

The reference to the symbol table object is propagated using synthesized and 
inherited attributes through the tree and into zero or more door objects of class 
D2. A D2 object has a condition reg (for "register") to define itself as a member 
of the symbol table: 

D2: doorclass 
{ $ tbl: ref SymbolTable; 

reg: cond tbl.hasMember(this D2); 
}; 

A condition has a boolean expression which must evaluate to true in a cor- 
rectly attributed tree. In the above example, hasMember is a boolean function 
in class SymbolTable, and the boolean expression tbl.hasMember(this D2) will 
evaluate to true if the D2 object is a member of tbl. To maintain the condition, 
two operations need to be implemented in class D2: 

�9 evalReg This operation should add the D2 object to tbl, to make the con- 
dition expression hold. 

�9 deevalReg This operation should remove the D2 object from tbl, to undo 
the effects of a previous call to evalReg. 

2.7 Constant objects 

In addition to node, door, and semantic classes, a Door AG may also contain 
constant semantic object definitions. Such objects are declared globally and are 
not part  of the EST. All their attributes are constant (i.e., they do not depend 
on any part  of the EST). As an example of the use of constant objects, consider 
representing use-declaration bindings as reference attributes. To handle miss- 
ing declarations one could declare a constant object noDecl. Each use site could 
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have a reference attribute binding which would normally denote a declaration 
object in the EST. But in case there is no matching declaration for the use site, 
the binding attribute would denote the constant object noDecl. 

3 An example 

Figure 3 shows an example of an attributed EST for the following tiny Algol 
program: 

begin 
integer x; 
x:= 1; 

end; 

The Door AG specification of the door classes used is given in the appendix. 
For brevity, our example ignores multiple declarations of the same identifier. 
See [7] for an example of how that  could be added to the specification. 

B l o c k D o o r  objects are used for extending the syntax tree at each block 
statement in the program. A BIockOoor object has two semantic part 
objects: a symbol table object (which is a collection of OeclDoor objects) 
and a so called "path" object which represents the declarative environ- 
ment for use sites within the block. The path object has two attributes 
local and encl which connect the path object to the local symbol table (ref- 
erence 1) and to the enclosing declarative environment (reference 2). In 

| 

[] 
[] 

BlockDoor Program ? emptyPath 

DeclDoor " B l o c k S t m ~ ~  

u.ooo, 7 \  I 

Int- O ' - d  ~ I| (s) J ~ . .  

Figure 3 Attributed EST for a tiny Algol program 
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this case, the block is at the topmost level in the program and the enclos- 
ing environment is represented by the constant object emptyPath. 
DeclDoor objects are used for extending the syntax tree at each declara- 
tion. A DecIDoor object declares itself as a member of a symbol table tbl 
(reference 3) by using a condition reg (membership 4). The tbl attribute is 
inherited and defined by propagating the synthesized tbl attribute of a 
BIockDoor to each DecIDoor in the block (these propagation attributes are 
not shown in the figure). 
UseDoor objects are used for extending the syntax tree at each identifier 
use site. A UseDoor object has an attribute path (reference 5) which rep- 
resents the declarative environment of the use site. The path attribute is 
inherited and defined by propagating the synthesized path attribute of a 
BIockDoor to each UseDoor in the block (these propagation attributes are 
not shown in the figure). 

The path attribute is used for defining the binding attribute (reference 
6) which denotes the matching DeclDoor object. The definition of binding 
uses a lookup function which traverses the symbol table objects reachable 
from path. This lookup function performs non-local accesses to attributes 
in the DecIDoor objects collected by the symbol tables. 

3.1 Supporting an object-oriented language 

The space here is too limited to give more than a sketch of how object-oriented 
languages can be supported by Door AGs. For details, we refer the reader to 
[7] and [9]. 

We are considering object-oriented programming languages in the style of 
Simula, C++, and Eiffel which all have similar scope and type rules. The basic 
constructs which need to be addressed for these languages are subclassing (in 
combination with block structure), qualified access (e.g., message sending), 
and reference assignments (doing type checking while taking the hierarchical 
type system into account). We have successfully specified a small example 
object-oriented language containing these constructs, and constructed an effi- 
cient incremental Door AG evaluator for it. 

Subclassing To handle subclassing, we attribute each class with a 
ClassDoor which is similar to the BIockDoor above. The Path object of the 
ClassDoor contains reference attributes not only to the local and enclosing 
symbol tables, but  also to the chain of symbol tables of its superclasses. This 
way, the Path object describes the visibility rules for free use sites occurring 
inside the class: first look in the local symbol table, next in the chain of super- 
classes, and finally according to the Path of the enclosing block. Methods inside 
the class are also attributed with a door similar to BIockDoor and have a Path 
object combining the local symbol table of the method with the Path of the 
enclosing class. Methods are registered as members of the enclosing class' 
symboltable using DeclDoor objects, in the same way as is done for variables in 
the Algol example. 
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Qual i f ied  access  To handle qualified access, each class is (via its ClassDoor) 
attributed with a RefType object which represents the type of references quali- 
fied by that  class. The RefType object is connected to another Path object, qual- 
Path, which describes the chain of symbol tables of the class and its 
superclasses. Consider a message-send "r.m" where r is a reference qualified by 
class C and m is a method in C. The Path object describing the environment for 
m is then tp.qualPath, where tp is the type of r (i.e., a RefType object). UseDoor 
objects are used for binding both r and m to their appropriate declarations. 

R e f e r e n c e  a s s i g n m e n t  In a reference assignment "rl := r2", the qualifica- 
tions of rl and r2 must be compared, taking the type hierarchy resulting from 
subclassing into account. To support this, each RefType object is connected to 
the RefType object of the corresponding superclass. However, these connec- 
tions may change if the user changes the class hierarchy in the program. The 
comparison is thus dependent on non-local information, and therefore embed- 
ded in a CompareDoor. The syntax tree propagates the reference types of rl 
and r2 into the CompareDoor, and obtains the result of the comparison as a 
synthesized attribute of the door. 

4 Incremental attribute evaluation 

We have developed a systematic technique for constructing efficient incremen- 
tal attribute evaluators for Door AGs. The evaluation is driven by visit proce- 
dures which are added to the node classes and door classes in the grammar. A 
visit procedure evaluates attributes and calls visit procedures of other objects 
in order to propagate the evaluation according to the attribute dependencies. 

4.1 Main grammar and door package 

We use the terms main grammar to refer to the set of node classes, and door 
package to refer to the set of door and semantic classes of a Door AG. 

From an implementation point of view, the main grammar is very similar to 
a standard AG. Although it differs from a standard AG by allowing reference 
attributes, it contains no non-local dependencies, and the reference attributes 
can therefore be treated just like any other attributes in the dependency anal- 
ysis. This allows the visit procedures for the main grammar to be constructed 
automatically, using standard AG methods. A door object can be treated as a 
special kind of son node since a syntax node communicates with its door 
objects in exactly the same way as with its son nodes - using inherited and 
synthesized attributes. 

The visit procedures for the door package are more difficult to construct due 
to the non-local dependencies present between the door objects. We have devel- 
oped a systematic method for constructing these visit procedures, but this 
method involves manual decisions. 

The partitioning of a Door AG into a main grammar and a door package is 
very important from a practical point of view: the part which can be imple- 
mented automatically (the main grammar) is isolated from the part which 
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requires manual implementation (the door package). This allows door pack- 
ages to be viewed as tool boxes which extend standard AGs. Advanced facili- 
ties for common problems in static semantics can be implemented in a door 
package which can be used by many main grammars describing different lan- 
guages. 

4.2 Evaluator architecture 

The attribute evaluator is implemented as a global object with operations to be 
called by the editor. Basic operations are: replace a subtree, insert/delete a 
sublist, and evaluate a whole new syntax tree. We will only discuss the 
replace-subtree operation since the other operations can be seen as special 
cases of this operation. 

The evaluator starts the attribute evaluation by calling visit procedures in 
the syntax nodes and door objects. Syntax nodes propagate the evaluation by 
calling visit procedures of their neighbors in the EST. Door objects may call 
visit procedures of other door objects, arbitrarily far away in the EST, in order 
to propagate the evaluation along non-local dependencies. 

The evaluator keeps a worklist of non-locally dependent doors. When evalu- 
ation propagates to a non-locally dependent door, appropriate attributes and 
conditions in that  door are re-evaluated, but the evaluation is not immediately 
propagated into the owning syntax node. Instead, the door is put on the 
worklist and the evaluation at this site is resumed at a later stage in the eval- 
uation. This ensures that  the different evaluation threads do not collide (i.e., it 
is ensured that  a visit procedure is never called in an object where there is 
already an active visit procedure). 

The evaluation after a subtree replacement proceeds in the following four 
steps. During each of these steps, the evaluation may propagate to non-local 
dependent doors which are then put on the evaluator's worklist. 

1. E x h a u s t i v e  de -eva lua t ion  The conditions in the doors of the 
replaced subtree are de-evaluated. I.e., objects in the replaced subtree 
which are members of collection objects are removed from those collec- 
tions. 

2. Exhaus t i ve  e v a l u a t i o n  All attributes and conditions in the inserted 
subtree are evaluated. 

3. Local  incrementa l  eva luat ion  Incremental evaluation proceeds in 
the syntax tree, starting at the successors of the synthesized attributes 
of the root of the inserted subtree. 

4. Non-local  incrementa l  evaluat ion For each door on the worklist, 
the evaluation is propagated into the owning syntax node, and from 
there further on into the tree. 

4.3 Visit procedure protocol 

The different evaluation steps make use of different visit procedures as shown 
in figure 4. Currently, we use a simple 1-visit algorithm for the main grammar, 
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but this could easily be generalized to any standard AG algorithm. Below, we 
summarize the tasks of the different visit procedures. 

�9 d.exhDeEvalVisit De-evaluates all the conditions in the door object d. 

�9 n.exhVisit Evaluates all the equations in the node n. 
�9 d.exhEvalVisit Evaluates all equations and conditions in the door d. 

�9 n.incDoorVisit(d) Re-evaluates equations in node n which depend on the 
synthesized attributes of its door d. 

�9 n.incSonVisit(s) Re-evaluates equations in node n which depend on the 
synthesized attributes of its son node s. 

�9 n . i n c F a t h e r V i s i t  Re-evaluates equations in node n which depend on the 
inherited attr ibutes of n. 

�9 d.incOwnerVisit Re-evaluates equations and conditions in door d which 
depend on inherited attributes in d. 

�9 d.deEvalL, d.eval L This pair of door procedures models, a non-local visit 
to a door ci from another door. They de-evaluate and evaluate equations 
and conditions according to a given non-local dependency labelled L. 

5 Construction of visit procedures 

We now show in  some deta i l  how the v is i t  procedures for a Door AG are con- 
structed. The fu l l  deta i ls  are avai lab le  in  [7]. 

Exhaustive de-evaluation (1) 

I exhDeEva[Yisit I -J~ 

Exhaustive evaluation (2) 

() 

I exhEvalVisit I 

5 

Incremental evaluation steps (3 and 4) 

incFatherVisit I 

( 
I incSonVisit 

( 
I incDoorVisit incOwnerVisit I 

All steps (1, 2, 3, and 4) 

I '~ I deEvalL, evalL] ~ 

Figure 4 Visit procedure calls 
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5.1 Main grammar visit procedures 

As mentioned earlier, the visit procedures for the main grammar can be con- 
structed automatically from the grammar. In our implementation, the visit 
procedures implement a 1-visit evaluator (i.e. similar to an Ordered AG [15] 
but requiring only one visit to each node). As discussed in [7], it is possible to 
adapt any standard AG algorithm to the main grammars, in order to handle 
more advanced dependencies. This would imply merging of the exhaustive 
evaluation and local incremental evaluation steps. However, we have found 
that  for our example languages we need only a 1-visit evaluator, even though 
the languages we have implemented would require general Ordered AGs, had 
the semantics been defined using a standard AG. This is because the use of 
references and objects in Door AGs reduces the need for complex local 
attribute dependencies. 

5.2 Door dependency graphs 

The construction of the visit procedures for the door package follows a system- 
atic method where a dependency graph is constructed for each door class. Spe- 
cial send and receive vertices are added to represent the outgoing and 
incoming non-local dependencies. For each send vertex, a function is imple- 
mented which returns the actual set of dependent door objects. In order to 
implement these functions efficiently one may add so called dependency 
attributes to the door classes. These attributes are defined using equations or 
conditions, just like ordinary attributes, but their purpose is to make the 
incremental evaluator run faster. Time/space trade-offs can be made by choos- 
ing different dependency attributes. 

Figure 5 shows dependency graphs constructed for our example door pack- 
age. Receive vertices are added to represent the incoming non-local dependen- 
cies resulting from non-local attribute access. For example, the attribute tp in 
UseDoor is defined by a non-local access binding.tp. This dependency is repre- 
sented by the receive vertex tpChanged. Similarly, a receive vertex 
lookupChanged is added to represent the non-local dependencies in the defini- 
tion of the binding attribute. 

For each receive vertex one or many send vertices are added, to represent 
matching outgoing non-local dependencies. In the DeclDoor graph, a send ver- 
tex (tpChanged, UseDoor, fUses) is added. Here, fUses is a dependency func- 
tion which computes the set of UseDoors affected by a change to the tp 
attribute of the DeclDoor. To be able to compute this set efficiently at evalua- 
tion time, we need to add dependency attributes (see the appendix). We have 
added a collection uses to the DeclDoor which collects all UseDoors whose 
binding denotes the DeclDoor. This collection is defined by a new condition 
cUses in UseDoor. 

To handle the IookupChanged dependency, we partly rely on the uses collec- 
tion, but to efficiently handle the case of inserting a new declaration, we also 
add a collection attempted to the symbol tables. It collects UseDoors that have 
attempted to find a declaration for a given identifier in the symbol table, and is 
defined by the condition cAttempted in UseDoor. 
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DeclDoor: 

F f I 
r tpChanged 
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fUses ~.  
~ ~ - - -  d d =I IookupChanged ~ I ~ 
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Figure 5 Dependency graphs 

De-evaluation and evaluation edges A dependency graph edge (x,y) indi- 
cates that  a change to x may affect y. An edge labelled d indicates that  only the 
de-evaluation of x affects y. For example, id's outgoing d-labelled edge indicates 
that  if the attribute id is changed, it is the absence of its old value which 
affects the UseDoors computed by uses. The outgoing e-edge indicates that  the 
presence of the new value affects the UseDoors computed by fAffected. 

Fix attributes In order to simplify the implementation of a door package, 
synthesized and inherited attributes of the door classes may be declared as fix. 
This indicates that  the specification must be such that the attribute value will 
never be affected by modifications to the syntax tree, assuming that subtree 
replacement or list insertions/deletions are the only legal syntax tree modifica- 
tions. This allows the dependencies from fix attributes to be ignored for incre- 
mental evaluation, and results in simpler dependency graphs and simpler door 
visit procedures. For example, we have declared the attribute encl of 
BlockDoor as fix. This allows us to ignore the effects of a change to this 
attribute, which explains why there are no send vertices in the dependency 
graph for BlockOoor. 
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5.3 Door visit procedures 

Once the door dependency graphs have been constructed, the construction of 
the door visit procedures is straight-forward. For each of the different proce- 
dures (exhDeEvalVisit, exhEvalVisit, incOwnerVisit, deEvalL/eval L) a characteris- 
tic subgraph of the dependency graph is considered, and the visit procedure is 
constructed according to the following basic outline: 

1. Compute the sets of dependent doors according to the send vertices. 
2. Call deEvalk for each dependent door (k is the appropriate send vertex 

label) 
3. De-evaluate local conditions 
4. Evaluate local conditions and equations 
5. Call evalk for each dependent door 
6. Add the dependent doors to the evaluator's worklist 

For example, to construct the exhDeEvalVisit procedure one considers a Charac- 
teristic subgraph containing all the condition vertices, none of the local equa- 
tion vertices, and only those send vertices which have an incoming d-edge 
reachable from a condition vertex. 

6 Practical experience 

We have specified and implemented Door AGs for both block-structured and 
object-oriented languages with homogeneous namespaces. In addition, an ear- 
lier variant of the technique was used for implementing the incremental 
static-semantic analyzer for Simula in the Mjr Orm environment [18]. 
Both Orm and the Door AG evaluators are implemented in Simula and run on 
SUN SPARC stations. Below, we summarize our experience by comparing our 
example Door AGs with corresponding standard AGs. 

N u m b e r  of  attributes The number of attributes is about the same for Door 
AGs and standard AGs. The Door AGs have additional dependency attributes 
which are not present in the standard AGs. On the other hand, the standard 
AGs have additional auxiliary attributes used to compute the symbol tables. 

Number o f  affected attributes For changes to declarations, the number of 
affected attributes in our Door AGs is proportional to the number of affected 
use sites, i.e. use sites which need to be rebound or re-typechecked. For the 
standard AGs, the number of affected attributes is much larger and grows 
with the size of the syntax tree. For other changes, the number of affected 
attributes is about the same for Door AGs and standard AGs. 

Attribute dependencies  The main grammars for our Door AGs have only 
1-visit dependencies whereas the corresponding standard AGs are Ordered 
AGs. The reason for this is of course that  the standard AGs build up the sym- 
bol table by using auxiliary attributes which in effect correspond to the passes 
of a batch compiler. The Door AGs use collection objects instead. 
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By considering also the non-local dependencies, Door AGs may have circu- 
lar dependencies, which indeed our Door AGs have. However, although the 
grammar as a whole is circular, the simple and efficient 1-visit evaluation 
technique can still be used for the main grammar. The circular evaluation is 
handled during the non-local incremental evaluation (step 4) by the iteration 
over the worklist. A non-locally dependent door on a cycle may be added multi- 
ple times to the worklist during this iteration. 

Space c o n s u m p t i o n  In our Door AG implementations, we have made 
heavy use of demand attributes, i.e. attributes whose values are not stored, but 
instead computed each time they are accessed. As a general rule, we store only 
those attributes where something non-trivial is computed, whereas all 
attributes defined by copy rules are implemented as demand attributes. 

The resulting space consumption for the Door AGs is very low, approaching 
that  of commercial hand-coded systems. The Rational Ada system [27] (a com- 
mercial incrementally compiling programming environment) is reported to use 
an average of 35 bytes per syntax node for syntactic and static-semantic infor- 
mation. By assuming a 12 byte overhead per object for the implementation 
language, lwe have calculated the space required for our Door AGs to be an 
average of 60 bytes per syntax node. (This includes the dependency 
attributes.) The space consumption in our actual implementation is higher, 
due to a higher object overhead in our implementation language. 

Eff ic iency of  e v a l u a t o r  Optimality of incremental attribute evaluators is 
usually defined in terms of the number of attributes re-evaluated as compared 
to the number of actually affected attributes [20]. Using this criterion our Door 
AG evaluators are close to optimal for normal programs. We have some subop- 
timality due the following factors: 

�9 Demand attributes 
�9 Dependency functions which sometimes locate a few too many depen- 

dents. 2 
�9 Uncoordinated evaluation threads in the non-local incremental evalua- 

tion. 
�9 Updating of dependency attributes 

While it is possible to construct pathological programs where these factors do 
make a difference, it is our experience that  they are negligible for normal pro- 
grams. 

For practical purposes the usual optimality criterion is not necessarily a 
very useful measure. From a system perspective, there are only some of the 
attributes that  are actually interesting, whereas many other attributes are 
present only in order to define the interesting attributes. The problem is that  
all these uninteresting attributes are included in the traditional optimality 

1. This would cover one pointer to the class template, one for the static link, and one for garbage 
collection. For an implementation language like C++, our figures would be even lower. 
2. This happens in the Door AG for the object-oriented language when the class hierarchy is 
changed. See [8] for details. 
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criterion. Thus, an optimal algorithm may then optimally evaluate a lot of 
uninteresting attributes, which is exactly the problem with the standard AG 
optimal incremental evaluators. 

A more practically interesting optimality criterion is to compare the evalua- 
tor performance with the number of interesting attributes which are affected. 
If we consider all the attributes of the door packages (excluding dependency 
attributes) to be interesting, our Door AG evaluators are still close to optimal 
for normal programs. The evaluators for standard AGs which are optional in 
terms of the usual criterion, are on the other hand not anywhere near optimal- 
ity using this measure. 

From a practical point of view our Door AG evaluators are fast. This is 
because they are close to optimal, using the interesting optimality criterion, 
and because they are based on static dependency analysis and visit procedures 
which have a very low overhead during evaluation. Although our actual imple- 
mentations leave much to be optimized, we have split-second response-times 
on changes to global declarations regardless of program sizes (the largest 
tested programs are around 1000 lines). 

7 Related work 

Nonlocal  p r o d u c t i o n s  Johnson and Fischer suggested extending AGs with 
non-local productions [12, 13]. A nonlocal production connects a number of 
"interface" syntax nodes which may be distant from each other in the syntax 
tree, and allows attribute values to propagate directly along these connections. 
For example, type-changes can be propagated directly from declared identifi- 
ers to their corresponding uses. However, they do not provide any general 
technique for updating the non-local productions incrementally, and the tech- 
nique does therefore not improve on standard AGs in the case of added and 
removed declarations. 

P r e d e f m e d  fini te  funct ion  types Hoover and others [10, 11, 21] have 
developed mechanisms for improving incremental evaluation without extend- 
ing or changing the standard AG formalism as such. They provide special eval- 
uation support for a built-in abstract data type for finite functions ~which is 
useful for defining symbol table attributes. The technique allows changes, 
additions, and deletions of declarations to be propagated directly to the 
affected use sites, thus solving the basic performance problems of standard 
AGs in the case of simple block-structured languages. However, the finite func- 
tion values are not first class values and may not be stored as a part of another 
value. This prevents them from being used in lookup of identifiers whose envi- 
ronment depends on other identifier lookups, which is precisely what is needed 
to handle subclassing and qualified access. 

Col lect ions  The collections and conditions used in Door AGs are similar to 
the set and membership constructs of Kaiser [14], and to the maintained and 
constructor attributes of Beshers [3]. These techniques all allow the distrib- 
uted defmition of a collection-valued attribute. However, the two latter 
approaches are limited compared to Door AGs because they allow non-local 
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access (declaration site memberships or use site lookups) only if the set/main- 
tained attribute is located in an ancestor syntax node. Since collections in Door 
AGs are accessed via reference attributes, there are no such restrictions on the 
location of the collection objects. This is important in order to support sub- 
classing and qualified access, where the symbol tables used in lookup are, in 
general, not in the use site's chain of ancestor nodes. 

Visibility networks Vorthmann has developed a graphical technique called 
visibility networks (VN) for describing name visibility and bindings in pro- 
gramming languages [24, 25]. He has exemplified the power of the technique 
by specifying complex visibility rules of Ada. The technique has several simi- 
larities to Door AGs. The VN language is analogous to an advanced generic 
door package for name analysis which can be parametrized to support differ- 
ent languages. Vorthmann has also implemented an efficient incremental VN 
evaluator which is analogous to a door package evaluator. Combining the two 
approaches seems like a fruitful line of further research. If the VN language 
can in fact be formulated as a real generic door package it would become a very 
powerful library component in a Door AG-based system. From the VN perspec- 
tive, Door AGs would provide an attractive way of formalizing the connections 
between the VNs and the syntax tree. We are currently investigating these 
possibilities together with Vorthmann. 

Attributed Graph Specifications Alpern et al. have developed a specifica- 
tion technique called attributed graph specifications (AGS) which generalizes 
attribute grammars by supporting the specification of attributed general 
graphs rather than attributed trees [1]. This is useful if the underlying edited 
structure is a general graph rather than an abstract syntax tree. Example 
applications include hardware designs and module interconnection graphs. 
AGSs and Door AGs thus aim at solving different problems and extend stan- 
dard AGs in different ways: AGSs by extending the edited substrate from a 
tree to a graph, Door AGs by extending the domain of attribute values to 
include references. The graph formed by the reference attributes in a Door AG 
syntax tree is thus derived from the syntax tree, whereas the graph in an AGS 
system is constructed explicitly by the user. 

H ighe r -Orde r  AGs In Higher-Order AGs [26, 23], a syntax tree may define 
subordinate syntax trees as attributes, installed as so called nonterminal 
attributes. The syntax trees of the nonterminal attributes are themselves 
attributed and may define their own nonterminal attributes, and so on. This 
scheme is useful for modelling transformations to intermediate languages, 
macro processing, and many other interesting applications. Door AGs may at 
first sight seem related to HAGs because the syntax tree is extended by addi- 
tional objects. However, the existence of the door objects and semantic objects 
depend solely on the class of their owning syntax node, and do not at  all 
depend on attribute values. Thus, Door AGs is a first-order formalism, and the 
mechanisms of HAGs are orthogonal to those presented here. 

Syntactic references The Synthesizer Generator (SG) supports syntactic 
references, i.e., references to syntax nodes can be used to define attribute val- 
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ues [22]. This is convenient  because i t  allows, e.g., the  declaration par t  of a 
block's syntax t ree  to be used directly as a symboltable at tr ibute,  r a t h e r  than  
building a corresponding s t ruc ture  in the a t t r ibute  domain. However, an SG 
syntactic reference stands for a complete syntax subtree,  viewed as a struc- 
tured  value. This is fundamenta l ly  different  from Door AGs where a reference 
s tands only for the ident i ty  of an object, and the contents of the object is not  
included in the reference value. ~Thus, the number  of affected a t t r ibutes  does 
not  decrease by using SG syntactic references, and they  cannot be used to con- 
s t ruct  cyclic structures.  Fur thermore ,  the SG syntactic references are consid- 
ered to s tand for unattr ibuted subtrees.  An extension to view them as 
attributed subtrees was proposed in [23], bu t  the implementat ional  conse- 
quences of such an extension were not  investigated.  

8 Concluding remarks 

In this paper  we have given an overview of Door AGs and the implementa t ion 
of incremental  a t t r ibute  evaluators  for such grammars .  Our experience is tha t  
the use of references and objects in the syntax tree at t r ibut ions is very  power- 
ful and great ly  facilitates the specification of complex problems, in par t icu lar  
name analysis. Due to l imited space we had to focus on a simple example of a 
block-structured language, bu t  the advantages are even more apparen t  when 
specifying more complex languages like object-oriented languages. We 
sketched how the technique can be used to specify subclassing, qualified 
access, and type checking of reference assignments.  The resul t ing at t r ibut ions 
have a low cost in space and the incrementa l  a t t r ibute  evaluators  we have con- 
s tructed are fast  in practice. 

There  are many  in teres t ing  possibilities for future  work. One is to work on 
automat iz ing the implementa t ion  of the door packages, e i ther  for a rb i t ra ry  
packages, or for some suitable subcategories. Another  impor tan t  issue is to 
develop more examples,  both in the direction of providing general  door pack- 
ages which are applicable to many  different  languages,  and in the direction of 
support ing more advanced language constructs,  e.g. the vir tual  classes of 
BETA [19]. We also believe tha t  the use of references and objects in specifica- 
tions has a wider general  applicability. 
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Appendix 

Path: class 
{ lookup: ref (DeclDoor) func (id: STRING); 
}; 

BlockPath: class Path 
{ local: ref SymbolTable; 

encl: ref Path; 
impl lookup 

:= let res := Iocal.lookup(id) in 
if res = none 
then encl.lookup(id) 
else res; 

}; 

emptyPath: object Path 
{ impl lookup 

:= none; 
}; 

SymbolTable: class 
{ state: seq( ref DeclDoor); 

add: proc(d: ref DeclDoor) { ... ); 
rein: proc(d: ref DeclDoor) { ... }; 
hasMember: boolean func 

(d: ref DeclDoor) : . . . .  ; 
lookup: ref (DeclDoor) func 

(id: STRING) : . . . .  ; 
); 

D o o r  p a c k a g e  

BlockDoor: doorclass 
{ $ encl: ref Path fix; 

$ path: ref Path fix; 
1" tbl: ref SymbolTabte fix; 
collection myTable: object SymbolTable; 
myPath: object BlockPath; 
myPath.local := myTable; 
myPath.encl := encl; 
path := myPath; 
tbl := myTable; 

}; 

DeclDoor: doorclass 
{ $ tbl: ref SymbolTable fix; 

$ tp: TYPE; 
$ id: STRING; 
reg: cond tbl.hasMember(this DeclDoor); 

}; 

UseDoor: doorclass 
{ $ path: ref Path;' 

$ id: STRING; 
1" tp: TYPE; 
binding: ref DeclDoor; 
binding := path.lookup(id); 
tp := if binding= none 

then unknownType 
else binding.tp; 

}; 
Dependency  a t t r ibutes  and functions 

addto SymbolTable 
{ collection attempted: object 

{ state: set(STRING x set (ref UseDoor)); 
hasMember: boolean func (id: STRING, u: ref UseDoor) : . . . .  ; 
attemptsAt: set(ref UseDoor) func (id: STRING) 

: . . . .  returns the set of UseDoors associated with id; 
}; 

); 

addto DeclDoor 
{ collection uses: object 

{ state: set (ref UseDoor); 
hasMember: boolean funr (u: ref UseDoor) : . . . .  ; 

}; 
fUses: set (ref UseDoor) func := uses.state; 
fAttempted: set (ref UseDoor) func(id: STRING) := tbl.attempted.attemptsAt(id); 

); 

addto UseDoor ' 
{ cUses: cond 

if binding ~ none 
then binding.uses.hasMember(this UseDoor) 
else true; 

cAttempted: cond 
the expression t.attempted.hasMember(id, this UseDoor) is true for each symbo/ 
tab/e t occurring on path before the symbo/ tab/e where binding is found (or for all the 
symbo/ tab/es on path in case binding = none). 


