
An Overview of Door Attribute Grammars

GSrel Hedin

Dept. of Computer Science, Lund University
Box 118, S-221 00 Lurid, Sweden
e-mail: Gorel.Hedin@dna.lth.se

Abstract . An extension to attribute grammars is introduced which
allows objects and references to be specified as part of a syntax tree attri-
bution. Practical advantages of these grammars include a simpler specifi-
cation of many problems in static-semantic analysis, including the
specification of object-oriented languages, and a highly reduced number of
affected attributes after syntax tree modifications. The resulting attribu-
tions are space-efficient and allow efficient incremental attribute evalua-
tion in interactive language-based editors.

1 Introduction

Attribute grammars [16] and incremental attribute evaluation is a well-stud-
ied technique for implementing interactive language-based editors where
static-semantic checking is performed incrementally during editing [20]. The
principal idea of using AGs for incremental updates is very attractive: the
attribution of a syntax tree is described declaratively, and an incremental
attribute evaluator can be derived automatically from the specification. How-
ever, as is well known, there are several problems with using standard AGs [2,
3, 5, 10, 11, 12, 13, 14, 21, 24].

One problem is that standard AGs lead to low-level complex specifications
for many problems in static-semantic checking. An example of this is the spec-
ification of languages with homogeneous name spaces, i.e. where declaration-
sites and use-sites may appear in any order. Another example is the specifica-
tion of languages with advanced scope rules, e.g. object-oriented languages
where name analysis depends on the classification hierarchy and not only on
block structure.

Another problem is that, even for simple languages, there are common situ-
ations where a small syntactic change results in very many affected attributes,
i.e. attributes which require new values. This leads to poor performance dur-
ing incremental evaluation. The typical example of this is the addition of a
new global declaration which affects the environment attributes of essentially
all nodes in the syntax tree.

In this paper we introduce Door attribute grammars, an extension to stan-
dard AGs which provides a solution to the above problems by allowing objects
and reference attributes to be specified as part of an attribution. Door AGs
allow complex problems to be specified in a simpler way than do standard AGs.
Furthermore, the number of affected attributes after a syntax tree modifica-

32

tion is substantially lower than for a standard AG and the potential for effec-
tive incremental evaluation correspondingly higher.

Many other researchers have also suggested solutions to the problems of
using AGs for incremental evaluation, primarily to solve the problems occur-
ring for simple block-structured languages, and to some extent modular lan-
guages. In contrast, we have addressed the more complex problems arising
from specifying object-oriented languages. Our solution is more general than
the earlier solutions in that more advanced attributions can be handled.

This work was done within the Mj~lner project [17] and a more detailed
account of Door AGs is given in the author's thesis [7]. A more elaborate exam-
ple of Door AGs applied to an object-oriented language is given in [9].

This paper is organized as follows. Section 2 describes the elements of a
Door AG specification. Section 3 gives an example of using Door AGs. Section 4
describes an incremental attribute evaluator for Door AGs, based on visit pro-
cedures. Section 5 describes a systematic method for constructing the visit pro-
cedures. Section 6 discusses our experience with constructing Door AG
specifications and evaluators, and compares the approach to standard AGs.
Section 7 discusses related work, and section 8 concludes the paper.

2 Door attribute grammars

2.1 Extended syntax trees

Door attribute grammars are based on the view of a syntax tree as a tree of
objects where each object is an instance of a node class [6]. Rather than
expressing the context-free grammar as a set of nonterminals and productions
we express it as a set of node classes where superclasses correspond to nonter-
minals and subclasses to productions. An attributed syntax tree defined by a
Door AG consists of three kinds of objects:

�9 syntax node objects (instances of node classes)
�9 door objects (instances of door classes)
�9 semantic objects (instances of other classes)

The semantic objects can be used for representing static-semantic structures,
for example symbol tables. As we shall see later, it is often advantageous to
model the structured attributes used in a standard AG by semantic objects in
a Door AG. The door objects serve as interface objects between the syntax
nodes and the semantic objects in order to encapsulate the non-local attribute
dependencies which occur in Door AGs (this is treated in more detail below).
Both door objects and semantic objects are introduced by defining them as
direct or indirect part-objects of syntax nodes. An object denotes its part-
objects by means of static references (references which cannot be changed to
denote other objects). Part-objects and static references have the same seman-
tics as in BETA [19].

The Door AG fragment below shows the introduction of part objects. For any
A object a unique D object is created at the same time as the A object, and the

33

A object can refer to its D object by the static reference x. The A object is said to
be the owner of the D object.

A: nodeclass
{ x: object D;
}

-- the static reference x denotes an object of class D

By adding part-objects, the complete set of objects forms an extended syntax
tree, or EST, as shown in figure 1.

syntax node

door obiect

[] semantic object

D static reference

F i g u r e I An extended syntax tree

2.2 Attributes and equations

All of the objects in the EST can have attributes. As for standard AGs the
attributes are defined by equations of the form

a 0 := f (a l , . . an)

where the attribute a o is defined by the side-effect-free function f applied to
the attributes al, . . a n. Attributes are declared as inherited, synthesized, or
local. For syntax nodes, inherited attributes are defined by equations in the
father node, whereas synthesized and local attributes are defined by equations
in the node itself. Similarly for door objects, inherited attributes are defined by
equations in the owning syntax node, whereas the door object itself defines its
local and synthesized attributes. Semantic objects have only local attributes
and no equations. The attributes of a semantic object are instead defined by
equations in its owning door object.

We use the term "inherited" in the sense of attribute grammars, and will
use the term oo-inherited to mean inherited in the sense of object-oriented pro-
grAmming, .Attributes and equations defined in a class are oo-inherited by all
its subclasses.

2.3 Reference attributes

Door AGs extend standard ACTs by allowing attributes to be references to other
objects. A reference attribute is declared as follows:

34

r: ref Q;

where Q is a class. The reference attribute r is said to be qualified by Q, i.e. it
may only denote objects of class Q (objects of subclasses to Q are also consid-
ered to be Q-objects). The value of r is the object identity for a Q-object. Each
object has a unique identity which is immutable and not affected by changes to
the attributes of the object (the state of the object). Two reference attributes
are considered equal if and only if they have the same object identity value, i.e.
they denote the same object.

Reference attributes can be used to denote node objects, door objects, and
semantic objects. To define a reference attribute, it is possible to use static ref-
erences, self references, and other attributes. The example below shows the
use of static references and self references. We use the "this"-notation of Sim-
ula [4] for self references.

P: nodeclass
{ x: object D;

Trd: ref D;
Trp: ref P;
rd := x;
rp := this P;

}

-- x is a (static reference to a) part object of c/ass D
-- rd is a synthesized reference attribute denoting a D object
-- rp is a synthesized reference attribute denoting a P object
-- rd is defined to denote the object x
-- rp is defined to denote this P object

By using reference attributes it is possible to propagate a reference from one
part to another in the EST. This allows objects to have references to other
objects arbitrarily far away in the tree and thereby gives the possibility to
define arbitrary directed graphs on top of the EST substrate. Figure 2 shows
an example of such a graph. Note that the graphs may be cyclic. This possibil-
ity to use objects and reference attributes to define graphs is very powerful. It
allows, for example, use sites to be connected directly to declaration sites and
vice versa. In the specification of object-oriented languages it allows subclasses
to be directly connected to superclasses. It also allows mutually recursive
types to be conveniently described as objects containing references to each
other.

attribute

4 - - . __ reference

F igure 2 Graph formed by reference attributes

35

2.4 Accesses via references

An object in an EST may be connected to the following objects:

�9 to its son nodes (in case of a node object) via its son references
�9 to i ts par t objects via i ts static references
�9 to a rb i t ra ry other objects in the EST via its reference a t t r ibutes

The object m a y access the a t t r ibutes of these connected objects using the usual
dot-notation "r.a', where r is a reference and a is an a t t r ibute of the object
denoted by r. The access is said to be a local access i f r is a son reference or a
static reference, and a non-local access i f r is a reference at tr ibute. The use of
non-local accesses leads to non-local dependencies. Consider the following Door
AG fragment:

D: doorclass
{ $ r: ref Q;

1" b: integer;
b := r.a;

}

-- r is an inherited reference attribute, denoting a Q object
-- b is a synthesized integer attribute
-- b is defined using a non-local access

This g rammar defines the a t t r ibute b in t e rms of the non-local access to the
a t t r ibute a. Thus, there is a dependency from a to b, but since a is located in a
O object which can be arbi t rar i ly far away from the D object in the EST, this is
a non-local dependency.

Non-local dependencies are difficult to handle in an incremental a t t r ibute
evaluator: whenever the a t t r ibute a is updated we need to locate the b
a t t r ibute to update it as well. To make the incremental a t t r ibute evaluat ion
practical, Door AGs res t r ic t the use of non-local access to occur only in the door
objects. Fur thermore , only a t t r ibutes of semantic or door objects may be
accessed non-locally. From this follows an impor tan t property:

There are no non-local dependencies involving attributes in the syntax nodes.

Thus, in order to access non-local information, or provide information for non-
local access, i t is necessary to introduce a door object. This design of the Door
AG makes it possible to use s tandard a t t r ibute evaluat ion algori thms for the
syntax nodes, while new algori thms are needed to handle the door objects.

To summarize, the communicat ion of informat ion between objects takes
place locally from neighbor to neighbor within the EST, but can also go non-
locally from a door object to ano ther door object arbi t rar i ly far away in the
EST.

2.5 Handling large attribute values

In s tandard AGs i t is usual ly necessary to have some at t r ibutes with very
large s t ruc tured values. Typically, such a t t r ibutes are used to describe symbol
tables and declarat ive envi ronments in order to define name analysis. Such

36

large attributes are problematic in many ways. From a specification point of
view they are problematic because one needs to introduce auxiliary attributes
which are threaded around in the syntax tree to gather all the "small"
attribute values that contribute to the large value. This leads to low-level com-
plex specifications. From the point of view of incremental evaluation, the large
attributes are also problematic: Using the common evaluation technique of
evaluating all attributes which depend on changed attributes, a small change
to the large attribute leads to subsequent re-evaluation of all "client"
attributes using the large attribute even if most of these client attributes are
not affected by the change.

In Door AGs there are two mechanisms for handling the problems of large
attribute values:

Break up a large value by representing it as several small objects
Define "collection-valued" attributes by membership declarations rather
than by equations

To illustrate the first mechanism, consider the definition of a symbol table
attribute. In a standard AG, a symbol table might be represented as a set of
(STRING, TYPE) pairs:

ST: set (STRING x TYPE)

Each time the type of a declared identifier is changed, the symbol table
attribute ST will get a new value. In a Door AG, a symbol table might instead
be represented as a set of references to Decl objects

ST: set (ref Decl)

where each Decl object has STRING and TYPE attributes. Using this defini-
tion, a change to the type of a declared identifier does not affect the value of
the symbol table attribute - its value is still the same set of references.

To split large values into small objects reduces the number of affected
attributes and also the number of attributes which need to be re-evaluated
(i.e., attributes which depend on affected attributes). To also simplify the spec-
ification, Door AGs have a special mechanism for defining collection-valued
attributes, which we describe in the next section.

2.6 Collection-valued attributes

Symbol tables and declarative environments are usually represented by some
kind of collection-valued attribute, i.e. a set, bag, sequence, finite function, or
similar type. Often, there are many attributes which contribute to the collec-
tion-valued attribute independently of each other. But to define the collection-
valued attribute in a standard AG, one needs to introduce auxiliary attributes
which are propagated around in the tree, gathering the attribute values which
should contribute to the final collection-value, leading to a complex low-level
specification.

37

To avoid this, Door AGs have a mechanism for defining collection-valued
attributes by so called conditions which allow objects to be declared as mem-
bers of a collection. The collection-valued attribute is placed in a collection
object, which is a semantic object but differs from ordinary semantic objects in
that its attributes are defined by conditions rather than by equations in its
owning door object. Collections are similar to the set attributes introduced by
Kaiser [14] and to the maintained attributes introduced by Beshers [3]. See
section 7 for a comparison.

The following example illustrates the mechanism. Symbol tables are repre-
sented by the class SyrnbolTable. A door class D1 defines a collection object of
class SymbolTable and uses a synthesized attribute tbl to propagate a reference
to the symbol table into the syntax tree.

D1: doorclass
{ collection myTable: object SymbolTable;

1" tbl: ref SymbolTable;
tbl := myTable;

};

The reference to the symbol table object is propagated using synthesized and
inherited attributes through the tree and into zero or more door objects of class
D2. A D2 object has a condition reg (for "register") to define itself as a member
of the symbol table:

D2: doorclass
{ $ tbl: ref SymbolTable;

reg: cond tbl.hasMember(this D2);
};

A condition has a boolean expression which must evaluate to true in a cor-
rectly attributed tree. In the above example, hasMember is a boolean function
in class SymbolTable, and the boolean expression tbl.hasMember(this D2) will
evaluate to true if the D2 object is a member of tbl. To maintain the condition,
two operations need to be implemented in class D2:

�9 evalReg This operation should add the D2 object to tbl, to make the con-
dition expression hold.

�9 deevalReg This operation should remove the D2 object from tbl, to undo
the effects of a previous call to evalReg.

2.7 Constant objects

In addition to node, door, and semantic classes, a Door AG may also contain
constant semantic object definitions. Such objects are declared globally and are
not part of the EST. All their attributes are constant (i.e., they do not depend
on any part of the EST). As an example of the use of constant objects, consider
representing use-declaration bindings as reference attributes. To handle miss-
ing declarations one could declare a constant object noDecl. Each use site could

38

have a reference attribute binding which would normally denote a declaration
object in the EST. But in case there is no matching declaration for the use site,
the binding attribute would denote the constant object noDecl.

3 An example

Figure 3 shows an example of an attributed EST for the following tiny Algol
program:

begin
integer x;
x:= 1;

end;

The Door AG specification of the door classes used is given in the appendix.
For brevity, our example ignores multiple declarations of the same identifier.
See [7] for an example of how that could be added to the specification.

B l o c k D o o r objects are used for extending the syntax tree at each block
statement in the program. A BIockOoor object has two semantic part
objects: a symbol table object (which is a collection of OeclDoor objects)
and a so called "path" object which represents the declarative environ-
ment for use sites within the block. The path object has two attributes
local and encl which connect the path object to the local symbol table (ref-
erence 1) and to the enclosing declarative environment (reference 2). In

|

[]
[]

BlockDoor Program ? emptyPath

DeclDoor " B l o c k S t m ~ ~

u.ooo, 7 \ I

Int- O ' - d ~ I| (s) J ~ . .

Figure 3 Attributed EST for a tiny Algol program

39

this case, the block is at the topmost level in the program and the enclos-
ing environment is represented by the constant object emptyPath.
DeclDoor objects are used for extending the syntax tree at each declara-
tion. A DecIDoor object declares itself as a member of a symbol table tbl
(reference 3) by using a condition reg (membership 4). The tbl attribute is
inherited and defined by propagating the synthesized tbl attribute of a
BIockDoor to each DecIDoor in the block (these propagation attributes are
not shown in the figure).
UseDoor objects are used for extending the syntax tree at each identifier
use site. A UseDoor object has an attribute path (reference 5) which rep-
resents the declarative environment of the use site. The path attribute is
inherited and defined by propagating the synthesized path attribute of a
BIockDoor to each UseDoor in the block (these propagation attributes are
not shown in the figure).

The path attribute is used for defining the binding attribute (reference
6) which denotes the matching DeclDoor object. The definition of binding
uses a lookup function which traverses the symbol table objects reachable
from path. This lookup function performs non-local accesses to attributes
in the DecIDoor objects collected by the symbol tables.

3.1 Supporting an object-oriented language

The space here is too limited to give more than a sketch of how object-oriented
languages can be supported by Door AGs. For details, we refer the reader to
[7] and [9].

We are considering object-oriented programming languages in the style of
Simula, C++, and Eiffel which all have similar scope and type rules. The basic
constructs which need to be addressed for these languages are subclassing (in
combination with block structure), qualified access (e.g., message sending),
and reference assignments (doing type checking while taking the hierarchical
type system into account). We have successfully specified a small example
object-oriented language containing these constructs, and constructed an effi-
cient incremental Door AG evaluator for it.

Subclassing To handle subclassing, we attribute each class with a
ClassDoor which is similar to the BIockDoor above. The Path object of the
ClassDoor contains reference attributes not only to the local and enclosing
symbol tables, but also to the chain of symbol tables of its superclasses. This
way, the Path object describes the visibility rules for free use sites occurring
inside the class: first look in the local symbol table, next in the chain of super-
classes, and finally according to the Path of the enclosing block. Methods inside
the class are also attributed with a door similar to BIockDoor and have a Path
object combining the local symbol table of the method with the Path of the
enclosing class. Methods are registered as members of the enclosing class'
symboltable using DeclDoor objects, in the same way as is done for variables in
the Algol example.

40

Qual i f ied access To handle qualified access, each class is (via its ClassDoor)
attributed with a RefType object which represents the type of references quali-
fied by that class. The RefType object is connected to another Path object, qual-
Path, which describes the chain of symbol tables of the class and its
superclasses. Consider a message-send "r.m" where r is a reference qualified by
class C and m is a method in C. The Path object describing the environment for
m is then tp.qualPath, where tp is the type of r (i.e., a RefType object). UseDoor
objects are used for binding both r and m to their appropriate declarations.

R e f e r e n c e a s s i g n m e n t In a reference assignment "rl := r2", the qualifica-
tions of rl and r2 must be compared, taking the type hierarchy resulting from
subclassing into account. To support this, each RefType object is connected to
the RefType object of the corresponding superclass. However, these connec-
tions may change if the user changes the class hierarchy in the program. The
comparison is thus dependent on non-local information, and therefore embed-
ded in a CompareDoor. The syntax tree propagates the reference types of rl
and r2 into the CompareDoor, and obtains the result of the comparison as a
synthesized attribute of the door.

4 Incremental attribute evaluation

We have developed a systematic technique for constructing efficient incremen-
tal attribute evaluators for Door AGs. The evaluation is driven by visit proce-
dures which are added to the node classes and door classes in the grammar. A
visit procedure evaluates attributes and calls visit procedures of other objects
in order to propagate the evaluation according to the attribute dependencies.

4.1 Main grammar and door package

We use the terms main grammar to refer to the set of node classes, and door
package to refer to the set of door and semantic classes of a Door AG.

From an implementation point of view, the main grammar is very similar to
a standard AG. Although it differs from a standard AG by allowing reference
attributes, it contains no non-local dependencies, and the reference attributes
can therefore be treated just like any other attributes in the dependency anal-
ysis. This allows the visit procedures for the main grammar to be constructed
automatically, using standard AG methods. A door object can be treated as a
special kind of son node since a syntax node communicates with its door
objects in exactly the same way as with its son nodes - using inherited and
synthesized attributes.

The visit procedures for the door package are more difficult to construct due
to the non-local dependencies present between the door objects. We have devel-
oped a systematic method for constructing these visit procedures, but this
method involves manual decisions.

The partitioning of a Door AG into a main grammar and a door package is
very important from a practical point of view: the part which can be imple-
mented automatically (the main grammar) is isolated from the part which

41

requires manual implementation (the door package). This allows door pack-
ages to be viewed as tool boxes which extend standard AGs. Advanced facili-
ties for common problems in static semantics can be implemented in a door
package which can be used by many main grammars describing different lan-
guages.

4.2 Evaluator architecture

The attribute evaluator is implemented as a global object with operations to be
called by the editor. Basic operations are: replace a subtree, insert/delete a
sublist, and evaluate a whole new syntax tree. We will only discuss the
replace-subtree operation since the other operations can be seen as special
cases of this operation.

The evaluator starts the attribute evaluation by calling visit procedures in
the syntax nodes and door objects. Syntax nodes propagate the evaluation by
calling visit procedures of their neighbors in the EST. Door objects may call
visit procedures of other door objects, arbitrarily far away in the EST, in order
to propagate the evaluation along non-local dependencies.

The evaluator keeps a worklist of non-locally dependent doors. When evalu-
ation propagates to a non-locally dependent door, appropriate attributes and
conditions in that door are re-evaluated, but the evaluation is not immediately
propagated into the owning syntax node. Instead, the door is put on the
worklist and the evaluation at this site is resumed at a later stage in the eval-
uation. This ensures that the different evaluation threads do not collide (i.e., it
is ensured that a visit procedure is never called in an object where there is
already an active visit procedure).

The evaluation after a subtree replacement proceeds in the following four
steps. During each of these steps, the evaluation may propagate to non-local
dependent doors which are then put on the evaluator's worklist.

1. E x h a u s t i v e de -eva lua t ion The conditions in the doors of the
replaced subtree are de-evaluated. I.e., objects in the replaced subtree
which are members of collection objects are removed from those collec-
tions.

2. Exhaus t i ve e v a l u a t i o n All attributes and conditions in the inserted
subtree are evaluated.

3. Local incrementa l eva luat ion Incremental evaluation proceeds in
the syntax tree, starting at the successors of the synthesized attributes
of the root of the inserted subtree.

4. Non-local incrementa l evaluat ion For each door on the worklist,
the evaluation is propagated into the owning syntax node, and from
there further on into the tree.

4.3 Visit procedure protocol

The different evaluation steps make use of different visit procedures as shown
in figure 4. Currently, we use a simple 1-visit algorithm for the main grammar,

42

but this could easily be generalized to any standard AG algorithm. Below, we
summarize the tasks of the different visit procedures.

�9 d.exhDeEvalVisit De-evaluates all the conditions in the door object d.

�9 n.exhVisit Evaluates all the equations in the node n.
�9 d.exhEvalVisit Evaluates all equations and conditions in the door d.

�9 n.incDoorVisit(d) Re-evaluates equations in node n which depend on the
synthesized attributes of its door d.

�9 n.incSonVisit(s) Re-evaluates equations in node n which depend on the
synthesized attributes of its son node s.

�9 n . i n c F a t h e r V i s i t Re-evaluates equations in node n which depend on the
inherited attr ibutes of n.

�9 d.incOwnerVisit Re-evaluates equations and conditions in door d which
depend on inherited attributes in d.

�9 d.deEvalL, d.eval L This pair of door procedures models, a non-local visit
to a door ci from another door. They de-evaluate and evaluate equations
and conditions according to a given non-local dependency labelled L.

5 Construction of visit procedures

We now show in some deta i l how the v is i t procedures for a Door AG are con-
structed. The fu l l deta i ls are avai lab le in [7].

Exhaustive de-evaluation (1)

I exhDeEva[Yisit I -J~

Exhaustive evaluation (2)

()

I exhEvalVisit I

5

Incremental evaluation steps (3 and 4)

incFatherVisit I

(
I incSonVisit

(
I incDoorVisit incOwnerVisit I

All steps (1, 2, 3, and 4)

I '~ I deEvalL, evalL] ~

Figure 4 Visit procedure calls

43

5.1 Main grammar visit procedures

As mentioned earlier, the visit procedures for the main grammar can be con-
structed automatically from the grammar. In our implementation, the visit
procedures implement a 1-visit evaluator (i.e. similar to an Ordered AG [15]
but requiring only one visit to each node). As discussed in [7], it is possible to
adapt any standard AG algorithm to the main grammars, in order to handle
more advanced dependencies. This would imply merging of the exhaustive
evaluation and local incremental evaluation steps. However, we have found
that for our example languages we need only a 1-visit evaluator, even though
the languages we have implemented would require general Ordered AGs, had
the semantics been defined using a standard AG. This is because the use of
references and objects in Door AGs reduces the need for complex local
attribute dependencies.

5.2 Door dependency graphs

The construction of the visit procedures for the door package follows a system-
atic method where a dependency graph is constructed for each door class. Spe-
cial send and receive vertices are added to represent the outgoing and
incoming non-local dependencies. For each send vertex, a function is imple-
mented which returns the actual set of dependent door objects. In order to
implement these functions efficiently one may add so called dependency
attributes to the door classes. These attributes are defined using equations or
conditions, just like ordinary attributes, but their purpose is to make the
incremental evaluator run faster. Time/space trade-offs can be made by choos-
ing different dependency attributes.

Figure 5 shows dependency graphs constructed for our example door pack-
age. Receive vertices are added to represent the incoming non-local dependen-
cies resulting from non-local attribute access. For example, the attribute tp in
UseDoor is defined by a non-local access binding.tp. This dependency is repre-
sented by the receive vertex tpChanged. Similarly, a receive vertex
lookupChanged is added to represent the non-local dependencies in the defini-
tion of the binding attribute.

For each receive vertex one or many send vertices are added, to represent
matching outgoing non-local dependencies. In the DeclDoor graph, a send ver-
tex (tpChanged, UseDoor, fUses) is added. Here, fUses is a dependency func-
tion which computes the set of UseDoors affected by a change to the tp
attribute of the DeclDoor. To be able to compute this set efficiently at evalua-
tion time, we need to add dependency attributes (see the appendix). We have
added a collection uses to the DeclDoor which collects all UseDoors whose
binding denotes the DeclDoor. This collection is defined by a new condition
cUses in UseDoor.

To handle the IookupChanged dependency, we partly rely on the uses collec-
tion, but to efficiently handle the case of inserting a new declaration, we also
add a collection attempted to the symbol tables. It collects UseDoors that have
attempted to find a declaration for a given identifier in the symbol table, and is
defined by the condition cAttempted in UseDoor.

44

BlockDoor: I- T I
\

I myPath.local] I myPath.encl I

DeclDoor:

F f I
r tpChanged
g--] , UseDoor

fUses ~.
~ ~ - - - d d =I IookupChanged ~ I ~

UseDoor I s e n d
L vert ices 7 fUses I

i

e 1 IookupChanged -->] .~"'"
UseDoor

------- e �9 - I fAttempted

UseDoor:

~ tpChanged ~ I ~'. rece ive

"~ J.> vert ices

Figure 5 Dependency graphs

De-evaluation and evaluation edges A dependency graph edge (x,y) indi-
cates that a change to x may affect y. An edge labelled d indicates that only the
de-evaluation of x affects y. For example, id's outgoing d-labelled edge indicates
that if the attribute id is changed, it is the absence of its old value which
affects the UseDoors computed by uses. The outgoing e-edge indicates that the
presence of the new value affects the UseDoors computed by fAffected.

Fix attributes In order to simplify the implementation of a door package,
synthesized and inherited attributes of the door classes may be declared as fix.
This indicates that the specification must be such that the attribute value will
never be affected by modifications to the syntax tree, assuming that subtree
replacement or list insertions/deletions are the only legal syntax tree modifica-
tions. This allows the dependencies from fix attributes to be ignored for incre-
mental evaluation, and results in simpler dependency graphs and simpler door
visit procedures. For example, we have declared the attribute encl of
BlockDoor as fix. This allows us to ignore the effects of a change to this
attribute, which explains why there are no send vertices in the dependency
graph for BlockOoor.

45

5.3 Door visit procedures

Once the door dependency graphs have been constructed, the construction of
the door visit procedures is straight-forward. For each of the different proce-
dures (exhDeEvalVisit, exhEvalVisit, incOwnerVisit, deEvalL/eval L) a characteris-
tic subgraph of the dependency graph is considered, and the visit procedure is
constructed according to the following basic outline:

1. Compute the sets of dependent doors according to the send vertices.
2. Call deEvalk for each dependent door (k is the appropriate send vertex

label)
3. De-evaluate local conditions
4. Evaluate local conditions and equations
5. Call evalk for each dependent door
6. Add the dependent doors to the evaluator's worklist

For example, to construct the exhDeEvalVisit procedure one considers a Charac-
teristic subgraph containing all the condition vertices, none of the local equa-
tion vertices, and only those send vertices which have an incoming d-edge
reachable from a condition vertex.

6 Practical experience

We have specified and implemented Door AGs for both block-structured and
object-oriented languages with homogeneous namespaces. In addition, an ear-
lier variant of the technique was used for implementing the incremental
static-semantic analyzer for Simula in the Mjr Orm environment [18].
Both Orm and the Door AG evaluators are implemented in Simula and run on
SUN SPARC stations. Below, we summarize our experience by comparing our
example Door AGs with corresponding standard AGs.

N u m b e r of attributes The number of attributes is about the same for Door
AGs and standard AGs. The Door AGs have additional dependency attributes
which are not present in the standard AGs. On the other hand, the standard
AGs have additional auxiliary attributes used to compute the symbol tables.

Number o f affected attributes For changes to declarations, the number of
affected attributes in our Door AGs is proportional to the number of affected
use sites, i.e. use sites which need to be rebound or re-typechecked. For the
standard AGs, the number of affected attributes is much larger and grows
with the size of the syntax tree. For other changes, the number of affected
attributes is about the same for Door AGs and standard AGs.

Attribute dependencies The main grammars for our Door AGs have only
1-visit dependencies whereas the corresponding standard AGs are Ordered
AGs. The reason for this is of course that the standard AGs build up the sym-
bol table by using auxiliary attributes which in effect correspond to the passes
of a batch compiler. The Door AGs use collection objects instead.

46

By considering also the non-local dependencies, Door AGs may have circu-
lar dependencies, which indeed our Door AGs have. However, although the
grammar as a whole is circular, the simple and efficient 1-visit evaluation
technique can still be used for the main grammar. The circular evaluation is
handled during the non-local incremental evaluation (step 4) by the iteration
over the worklist. A non-locally dependent door on a cycle may be added multi-
ple times to the worklist during this iteration.

Space c o n s u m p t i o n In our Door AG implementations, we have made
heavy use of demand attributes, i.e. attributes whose values are not stored, but
instead computed each time they are accessed. As a general rule, we store only
those attributes where something non-trivial is computed, whereas all
attributes defined by copy rules are implemented as demand attributes.

The resulting space consumption for the Door AGs is very low, approaching
that of commercial hand-coded systems. The Rational Ada system [27] (a com-
mercial incrementally compiling programming environment) is reported to use
an average of 35 bytes per syntax node for syntactic and static-semantic infor-
mation. By assuming a 12 byte overhead per object for the implementation
language, lwe have calculated the space required for our Door AGs to be an
average of 60 bytes per syntax node. (This includes the dependency
attributes.) The space consumption in our actual implementation is higher,
due to a higher object overhead in our implementation language.

Eff ic iency of e v a l u a t o r Optimality of incremental attribute evaluators is
usually defined in terms of the number of attributes re-evaluated as compared
to the number of actually affected attributes [20]. Using this criterion our Door
AG evaluators are close to optimal for normal programs. We have some subop-
timality due the following factors:

�9 Demand attributes
�9 Dependency functions which sometimes locate a few too many depen-

dents. 2
�9 Uncoordinated evaluation threads in the non-local incremental evalua-

tion.
�9 Updating of dependency attributes

While it is possible to construct pathological programs where these factors do
make a difference, it is our experience that they are negligible for normal pro-
grams.

For practical purposes the usual optimality criterion is not necessarily a
very useful measure. From a system perspective, there are only some of the
attributes that are actually interesting, whereas many other attributes are
present only in order to define the interesting attributes. The problem is that
all these uninteresting attributes are included in the traditional optimality

1. This would cover one pointer to the class template, one for the static link, and one for garbage
collection. For an implementation language like C++, our figures would be even lower.
2. This happens in the Door AG for the object-oriented language when the class hierarchy is
changed. See [8] for details.

47

criterion. Thus, an optimal algorithm may then optimally evaluate a lot of
uninteresting attributes, which is exactly the problem with the standard AG
optimal incremental evaluators.

A more practically interesting optimality criterion is to compare the evalua-
tor performance with the number of interesting attributes which are affected.
If we consider all the attributes of the door packages (excluding dependency
attributes) to be interesting, our Door AG evaluators are still close to optimal
for normal programs. The evaluators for standard AGs which are optional in
terms of the usual criterion, are on the other hand not anywhere near optimal-
ity using this measure.

From a practical point of view our Door AG evaluators are fast. This is
because they are close to optimal, using the interesting optimality criterion,
and because they are based on static dependency analysis and visit procedures
which have a very low overhead during evaluation. Although our actual imple-
mentations leave much to be optimized, we have split-second response-times
on changes to global declarations regardless of program sizes (the largest
tested programs are around 1000 lines).

7 Related work

Nonlocal p r o d u c t i o n s Johnson and Fischer suggested extending AGs with
non-local productions [12, 13]. A nonlocal production connects a number of
"interface" syntax nodes which may be distant from each other in the syntax
tree, and allows attribute values to propagate directly along these connections.
For example, type-changes can be propagated directly from declared identifi-
ers to their corresponding uses. However, they do not provide any general
technique for updating the non-local productions incrementally, and the tech-
nique does therefore not improve on standard AGs in the case of added and
removed declarations.

P r e d e f m e d fini te funct ion types Hoover and others [10, 11, 21] have
developed mechanisms for improving incremental evaluation without extend-
ing or changing the standard AG formalism as such. They provide special eval-
uation support for a built-in abstract data type for finite functions ~which is
useful for defining symbol table attributes. The technique allows changes,
additions, and deletions of declarations to be propagated directly to the
affected use sites, thus solving the basic performance problems of standard
AGs in the case of simple block-structured languages. However, the finite func-
tion values are not first class values and may not be stored as a part of another
value. This prevents them from being used in lookup of identifiers whose envi-
ronment depends on other identifier lookups, which is precisely what is needed
to handle subclassing and qualified access.

Col lect ions The collections and conditions used in Door AGs are similar to
the set and membership constructs of Kaiser [14], and to the maintained and
constructor attributes of Beshers [3]. These techniques all allow the distrib-
uted defmition of a collection-valued attribute. However, the two latter
approaches are limited compared to Door AGs because they allow non-local

48

access (declaration site memberships or use site lookups) only if the set/main-
tained attribute is located in an ancestor syntax node. Since collections in Door
AGs are accessed via reference attributes, there are no such restrictions on the
location of the collection objects. This is important in order to support sub-
classing and qualified access, where the symbol tables used in lookup are, in
general, not in the use site's chain of ancestor nodes.

Visibility networks Vorthmann has developed a graphical technique called
visibility networks (VN) for describing name visibility and bindings in pro-
gramming languages [24, 25]. He has exemplified the power of the technique
by specifying complex visibility rules of Ada. The technique has several simi-
larities to Door AGs. The VN language is analogous to an advanced generic
door package for name analysis which can be parametrized to support differ-
ent languages. Vorthmann has also implemented an efficient incremental VN
evaluator which is analogous to a door package evaluator. Combining the two
approaches seems like a fruitful line of further research. If the VN language
can in fact be formulated as a real generic door package it would become a very
powerful library component in a Door AG-based system. From the VN perspec-
tive, Door AGs would provide an attractive way of formalizing the connections
between the VNs and the syntax tree. We are currently investigating these
possibilities together with Vorthmann.

Attributed Graph Specifications Alpern et al. have developed a specifica-
tion technique called attributed graph specifications (AGS) which generalizes
attribute grammars by supporting the specification of attributed general
graphs rather than attributed trees [1]. This is useful if the underlying edited
structure is a general graph rather than an abstract syntax tree. Example
applications include hardware designs and module interconnection graphs.
AGSs and Door AGs thus aim at solving different problems and extend stan-
dard AGs in different ways: AGSs by extending the edited substrate from a
tree to a graph, Door AGs by extending the domain of attribute values to
include references. The graph formed by the reference attributes in a Door AG
syntax tree is thus derived from the syntax tree, whereas the graph in an AGS
system is constructed explicitly by the user.

H ighe r -Orde r AGs In Higher-Order AGs [26, 23], a syntax tree may define
subordinate syntax trees as attributes, installed as so called nonterminal
attributes. The syntax trees of the nonterminal attributes are themselves
attributed and may define their own nonterminal attributes, and so on. This
scheme is useful for modelling transformations to intermediate languages,
macro processing, and many other interesting applications. Door AGs may at
first sight seem related to HAGs because the syntax tree is extended by addi-
tional objects. However, the existence of the door objects and semantic objects
depend solely on the class of their owning syntax node, and do not at all
depend on attribute values. Thus, Door AGs is a first-order formalism, and the
mechanisms of HAGs are orthogonal to those presented here.

Syntactic references The Synthesizer Generator (SG) supports syntactic
references, i.e., references to syntax nodes can be used to define attribute val-

49

ues [22]. This is convenient because i t allows, e.g., the declaration par t of a
block's syntax t ree to be used directly as a symboltable at tr ibute, r a t h e r than
building a corresponding s t ruc ture in the a t t r ibute domain. However, an SG
syntactic reference stands for a complete syntax subtree, viewed as a struc-
tured value. This is fundamenta l ly different from Door AGs where a reference
s tands only for the ident i ty of an object, and the contents of the object is not
included in the reference value. ~Thus, the number of affected a t t r ibutes does
not decrease by using SG syntactic references, and they cannot be used to con-
s t ruct cyclic structures. Fur thermore , the SG syntactic references are consid-
ered to s tand for unattr ibuted subtrees. An extension to view them as
attributed subtrees was proposed in [23], bu t the implementat ional conse-
quences of such an extension were not investigated.

8 Concluding remarks

In this paper we have given an overview of Door AGs and the implementa t ion
of incremental a t t r ibute evaluators for such grammars . Our experience is tha t
the use of references and objects in the syntax tree at t r ibut ions is very power-
ful and great ly facilitates the specification of complex problems, in par t icu lar
name analysis. Due to l imited space we had to focus on a simple example of a
block-structured language, bu t the advantages are even more apparen t when
specifying more complex languages like object-oriented languages. We
sketched how the technique can be used to specify subclassing, qualified
access, and type checking of reference assignments. The resul t ing at t r ibut ions
have a low cost in space and the incrementa l a t t r ibute evaluators we have con-
s tructed are fast in practice.

There are many in teres t ing possibilities for future work. One is to work on
automat iz ing the implementa t ion of the door packages, e i ther for a rb i t ra ry
packages, or for some suitable subcategories. Another impor tan t issue is to
develop more examples, both in the direction of providing general door pack-
ages which are applicable to many different languages, and in the direction of
support ing more advanced language constructs, e.g. the vir tual classes of
BETA [19]. We also believe tha t the use of references and objects in specifica-
tions has a wider general applicability.

Acknowledgments
I would like to thank Boris Magnusson, Bill Maddox, and the anonymous ref-
erees for useful comments on an earl ier draft of this paper.

References

[1] B. Alpern, A. Car]e, B. Rosen, P. Sweeney, and K. Zadeck. Graph attribution as a
specification paradigm. In Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, pp 121-129.
Boston, Ma., 1988. ACM SIGPLAN Notices 24(2).

[2] R.A. Ballance. Syntactic and Semantic Checking in Language-Based Editing Systems.
PhD thesis, Computer Science Division - EECS, Univ. of California, Berkeley, 1989. TR
UCB/CSD 89/548.

50

[3] G.M. Beshers and R.H. Campbell. Maintained and constructor attributes. In
Proceedings of the SIGPLAN 85 Symposium on Language Issues in Programming
Environments, pages 34-42, Seattle, Wa., 1985. ACM. SIGPLAN Notices, 20(7).

[4] O.-J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA 67 common base language. NCC
Publ. S-2, Norwegian Computing Centre, Oslo, May 1968. Revised 1970 (Publ. S-22),
1972, and 1984. Swedish Standard SS 63 61 14, 1987.

[5] A. Demers, A. Rogers, and F. I~ Zadeck. Attribute propagation by message passing. In
Proceedings of the SIGPLAN 85 Symposium on Language Issues in Programming
Environments, pp 43-59, 1985. ACM. SIGPLAN Notices, 20(7).

[6] G. Hedin. An object-oriented notation for attribute grammars. In S. Cook, editor,
Proceedings of the 3rd European Conference on Object-Oriented Programming
(ECOOP'89), BCS Workshop Series, pages 329-345, Nottingham, U.K., July 1989.

C
Cambridge University Press.

[7] G. Hedin. Incremental semantic analysis. PhD thesis, Lund University, Lund, Sweden,
1992. Tech. Rep. LUTEDX/(TECS-1003)/1-276/(1992).

[8] G. Hedin. Incremental name analysis for object-oriented langauges. In [17].
[9] G. Hedin. Using door attribute grammars for incremental name analysis. In [17].
[10] R. Hoover. Incremental Graph Evaluation. PhD thesis, Cornell University, Ithaca, N.Y.,

May 1987. Tech. Rep. 87-836.
[11] R. Hoover and T. Teitelbaum. Efficient incremental evaluation of aggregate values in

attribute grammars. In Proceedings of the SIGPLAN '86 Symposium on Compiler
Construction, pages 39:-50, July 1986. ACM SIGPLAN Notices, 21(7).

[12] G.F. Johnson and C. N. Fischer. Non-syntactic attribute flow in language based editors.
In Proc. 9th POPL, pp 185-195, Albuquerque, N.M., January 1982. ACM.

[13] G.F. Johnson and C. N. Fischer. A meta-language and system for nonlocal incremental
attribute evaluation in language-based editors. In Proc. 12th POPL, pages 141-151, New
Orleans, La., January 1985. ACM.

[14] G. Kaiser. Semantics for Structure Editing Environments. PhD thesis, Carnegie-Mellon
University, Pittsburgh, Pa., May 1985. CMU-CS-85-131.

[15] U. Kastens. Ordered attribute grammars. Acta Informatica, 13:229-256, 1980.
[16] D.E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,

2(2):127-145, June 1968.
[17] J. L. Knudsen, M. LSfgren, O. L. Madsen, and B. Magnusson. Object oriented

environments: the Mj~Iner approach. Prentice Hall, 1993.
[18] B. Magnusson. The Mjr Orm system. In [17].
[19] O.L. Madsen, B. Mr and I~ Nygaard. Object Oriented Programming in the

BETA Programming Language. ACM Press, 1993.
[20] T. Reps. Generating Language-Based Environments. MIT Press, 1984.
[21] T. Reps, C. Marceau, and T. Teitelbaum. Remote attribute updating for language-based

editors. In Proc. 13th POPL, pages 1-13, January 1986. ACM.
[22] T.W. Reps and T. Teitelbaum. The Synthesizer Generator. A system for constructing

language-based editors. Springer-Verlag, 1988.
[23] T. Teitelbaum and R. Chapman. Higher-order attribute grammars and editing

environments. In Proceedings of the ACM SIGPLAN'90 Conference on Programming
Language Design and Implementation, pages 197-208. White Plains, N. Y., June 1990.

[24] S.A. Vorthmann. Syntax-Directed Editor Support for Incremental Consistency
Maintenance. PhD thesis, Georgia Institute of Technology, Atlanta, Ga., June 1990. TR
GIT-ICS-90/03.

[25] S.A. Vorthmann. Modelling and Specifying Name Visibility and Binding Semantics.
CMU-CS-93-158. Carnegie Mellon University, Pittsburgh, Pa., July 1993.

[26] H .H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher-order attribute grammars. In
Proceedings of the ACM SIGPLAN "89 Conference on Programming Language Design and
Implementation, pages 131-145, Portland, Or., June 1989. ACM SIGPLAN Notices, 24(7).

[27] T. Wilcox and H. Larsen. The interactive and incremental compilation of ADA using
Diana. Internal report, Rational, 1986.

51

Appendix

Path: class
{ lookup: ref (DeclDoor) func (id: STRING);
};

BlockPath: class Path
{ local: ref SymbolTable;

encl: ref Path;
impl lookup

:= let res := Iocal.lookup(id) in
if res = none
then encl.lookup(id)
else res;

};

emptyPath: object Path
{ impl lookup

:= none;
};

SymbolTable: class
{ state: seq(ref DeclDoor);

add: proc(d: ref DeclDoor) { ...);
rein: proc(d: ref DeclDoor) { ... };
hasMember: boolean func

(d: ref DeclDoor) : ;
lookup: ref (DeclDoor) func

(id: STRING) : ;
);

D o o r p a c k a g e

BlockDoor: doorclass
{ $ encl: ref Path fix;

$ path: ref Path fix;
1" tbl: ref SymbolTabte fix;
collection myTable: object SymbolTable;
myPath: object BlockPath;
myPath.local := myTable;
myPath.encl := encl;
path := myPath;
tbl := myTable;

};

DeclDoor: doorclass
{ $ tbl: ref SymbolTable fix;

$ tp: TYPE;
$ id: STRING;
reg: cond tbl.hasMember(this DeclDoor);

};

UseDoor: doorclass
{ $ path: ref Path;'

$ id: STRING;
1" tp: TYPE;
binding: ref DeclDoor;
binding := path.lookup(id);
tp := if binding= none

then unknownType
else binding.tp;

};
Dependency a t t r ibutes and functions

addto SymbolTable
{ collection attempted: object

{ state: set(STRING x set (ref UseDoor));
hasMember: boolean func (id: STRING, u: ref UseDoor) : ;
attemptsAt: set(ref UseDoor) func (id: STRING)

: returns the set of UseDoors associated with id;
};

);

addto DeclDoor
{ collection uses: object

{ state: set (ref UseDoor);
hasMember: boolean funr (u: ref UseDoor) : ;

};
fUses: set (ref UseDoor) func := uses.state;
fAttempted: set (ref UseDoor) func(id: STRING) := tbl.attempted.attemptsAt(id);

);

addto UseDoor '
{ cUses: cond

if binding ~ none
then binding.uses.hasMember(this UseDoor)
else true;

cAttempted: cond
the expression t.attempted.hasMember(id, this UseDoor) is true for each symbo/
tab/e t occurring on path before the symbo/ tab/e where binding is found (or for all the
symbo/ tab/es on path in case binding = none).

