
A Portable and Optimizing Back End for the
SML/NJ Compiler

Lal George 1, Florent Guillame 2, John H. Reppy 1

1 AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, USA
2]~cole Normale Sup6rieure, 45, rue d'Ulm, 75005 Paris, France

Email: {george, jhr}*research.att.com, guillaum~clipper.ens.fr

Abs t r ac t . There are two major goals that must be addressed in a
portable back end: a good sequence of instructions must be selected mak-
ing full use of the capabilities of the machine, and it must be possible to
orchestrate target-specific optimizations. A key to the first problem is the
language MLRISC, intended in part; to represent the simplest and most
basic operations implementable in hardware. The importance of MLRISC
is that it provides a common representation for expressing the instruc-
tion set of any hardware platform. Bottom-up tree pattern matching with
dynamic programming, expressed using succinct and clear specifications
of the target instruction set, is used to generate target machine code
from an MLRISC program. Target-specific optimizations are performed
by parameterizing off-the-shelf optimization modules with concepts com-
mon across architectures. The specification of a variety of architectures,
and the ability to mix and match sophisticated optimization algorithms
are shown. The resulting back end is independent of the intermediate
language used in SML/NJ, and could in principle be used in a compiler
for a source language quite different from SML. We argue that porting
the compiler to a new architecture requires substantially less effort than
the existing abstract machine approach, and report significant gains from
preliminary architecture description driven optimizations.

1 I n t r o d u c t i o n

Portabil i ty is crucial to the widespread use and acceptance of any new language.
Not only must the compiler be readily portable to a wide variety of architectures,
but it must also generate code that is competi t ive with one where portabil i ty is
not an issue. The compiler cannot be biased towards one architecture.

The Standard ML of New Jersey system (SML/NJ)[3, 4] is a highly opti-
mizing compiler that uses the Continuation Passing Style (CPS) intermediate
form for optimization[2]. Most of the optimizations in the compiler are done at
this level. The code generation model has been based on an abstract machine
called the cmachine for code machine. The cmachine has a small set of registers,
and a fairly high level instruction set. There is a r instruction tha t can
expand to severM hundred instructions. Registers include: an allocation pointer
representing the next available location in the heap, a limit register representing
the highest address in the heap, a set of miscellaneous registers for paramete r

84

passing, and others. The compiler is ported to a new architecture by providing
a mapping of the cmach• registers to physical registers, and templates that
macro-expand cmach• instructions into target machine instructions. Such a
port is unsatisfactory in several ways: useful low level optimizations are omitted
in the translation to machine code; it may not be possible to use the full ca-
pabilities of the target architecture and its instruction set, and it is sometimes
difficult to incorporate target-specific optimizations. The back end is respon-
sible for linking, scheduling, span-dependency analysis, and binary instruction
output. There is no dependence on the host assembler and linker. Various target
specific optimizations, such as scheduling are manually implemented for each
architecture.

Two major problems must be addressed in a portable back end, namely: a
good sequence of instructions must be selected for the task, making full use of
the available registers and instructions, and it must be possible to orchestrate
optimizations specific to the architecture, without compromising portability.

2 O v e r v i e w o f O u r A p p r o a c h

Our new approach is not biased towards any architecture. CPS is compiled to a
tree language called MLRISC; intended in part, to describe the simplest kinds
of operations implementable in hardware. No assumptions are made regarding
addressing modes or types of instructions, and because of our register alloca-
tion scheme, there are few assumptions made about physical registers. The ML-
RISC is then converted to a flow graph of target machine instructions, which
is optimized using generic optimization modules parameterized over a machine
description.

The importance of MLRISC is that it provides a common medium for the
specification of any instruction set. There are basic operations implementable
in hardware, and instructions are made up of these operations. An instruction
ought to be definable using these basic operations.

Bottom-up tree pattern matching with dynamic programming (BURG) is
central to our approach. The translation from CPS to target machine code pro-
ceeds in three major phases, two of which involve BURG specifications (Figure 1).
The high level CPS is first translated into a simpler form called ctrees , suitable
as input to BURG. Several optimizations are performed during this simplifi-
cation. Using the BURG specification ~, the c t r e e language is rewritten to
MLRISC trees, optimizing the tagging and untagging of arithmetic operations
along the way. BURG is used once again to translate MLRISC to a flowgraph
of target machine instructions. The specification �9 is a description of the target
architecture instruction set and registers. Various optimizations such as liveness
analysis, scheduling, span-dependency analysis, and graph-coloring register al-
location are performed on the target machine instructions. The optimization
phase is parameterized over a machine description represented as a set of SML
modules. The back end is constructed by a series of functor applications and is
a nice demonstration of the flexibility provided by the module system[15]. The

85

concise description of the instruction set in terms of MLRISC, and the ability to
perform architecture description driven optimizations, are the key contributions.

-I
simplify

tagging/untagging instruction optimization specification

IctreesFBU-~RG MLRISC ~ target
I -L ' flowgraph

machine description
1

~1 optimize
1

m/c

Fig. 1. Flowchart of new code generation model

3 ML-Burg

The new code generation strategy is implemented using a SML version ofiBurg[10,
13]. Given a tree rewriting system augmented with costs, ML-Burg generates a
program to perform bottom-up tree pattern matching with dynamic program-
ming. A successful reduction of the input tree, corresponds to rewriting the
input tree to a special non-terminal symbol called the start non-terminal. Upon
successful reduction, facilities are provided to walk the tree emitting semantic
actions associated with the rules that matched.

Consider the rewrite system specified below:

reg : Lli (I) ;

reg : ADD (reg,Ll~) (I) ;

reg : ADD (reg,reg) (I) ;

ADD is a binary node with the usual meaning, and LIi is a leaf node representing
the integer immediate i. The integer i is not used in pattern matching and is
not part of the rewrite rule, but it is an attribute that may be used in semantic
actions. This grammar specifies that: an input tree matching LIi can be reduced
to the non-terminalreg with a cost of one; an input tree matching ADD (reg, LIi),
where the first child can be reduced to reg, can also be reduced to the non-
terminal rog. The grammar above is clearly ambiguous as there are two ways to
reduce the tree ADD(LI3,LI4) to the non-terminal reg. The two reductions are
shown below, where each reduction is annotated with SPARC assembly code.
The registers, Z1; 1, Y.t2, and Y.t3 are pseudo-registers that are assigned to physical
registers in a later register allocation pass.

86

ADD(LI~,LI4) ADD(LIs,LI4)
I ;; add ~g0,3,~tl I

ADD(reg,LI4) ADD(reg,LI4)
I ;; add %gO,4,Zt2 I

ADD(reg,reg) reg
I ;; add Ztl,~t2,%t3

reg

;; add ~go,3,~tl

;; add ~t l ,4 ,~t2

It is precisely this ambiguity in specification that is the strength of tree rewriting
code generation techniques. Dynamic programming finds the cheapest set of
instructions to implement the program. The reduction on the left has a cost of
three, while the one on the right has a cost of two. This example however, does
not demonstrate the ability to describe different register classes available on the
target architecture, or non-regular register sets (Section 6).

4 M L R I S C

Figure 2 shows the SML signature for HLRISC. The instruction set, described
by the datatype mlr isc , makes no assumptions about addressing modes on the
target machine. It is possible to JMP to anything, and LOAD/STORE from anything.
Each mlr i sc instruction defines a basic combinator that will be used to describe
the target instruction set. A BURG grammar is used to define the instruction
set, and the associated semantic actions can be used to effectively utilize the
hardware.

Non-commutative arithmetic operations specify the order of evaluation of
arguments, using the type order. The order of evaluation must be recorded to
preserve the semantics with respect to arithmetic exceptions. Thus instructions
like SUB and DIV, etc., specify the order of evaluation. The order is assumed to
be left-to-right for commutative operators.

There is a commitment to general purpose and floating point registers, KEG
and FREG respectively. Nearly all processors today have these sets of registers
and provide dedicated instructions to operate on them. This does not preclude
the Motorola 68000 that does not have general purpose registers. BURG non-
terminals may be used to represent the Motorola 68000, address and data regis-
ters (Section 6).

Lastly, MLRISC has no connection to the CPS intermediate representation
or dedicated registers, and can be easily divorced from SML/NJ system.

5 C t r e e a n d M L R I S C G e n e r a t i o n

The c t r ee representation is used tosimplify the high level semantics of CPS,
and provide a suitable tree representation for input to BURG. Generating a
tree representation from the linear CPS input must observe the semantics with
respect to arithmetic exceptions and memory. Several low level optimizations
may be performed on the c t r ee representation, such as:

87

structure Label : sig

datatype label =

end =

struct ... end

signature MLRISC = sig

datatype order = LR I RL

datatype bcond = LT I LE I EQ i GEU

datatype mlrisc

= REG

FREG

LI

MV

FMV

ADD

SUB

ANDB

LOAD

STORE

(* order of evaluation *)

(* branch conditions *)

(* instructions *)

of int (* register *)

of int (* floating register *)

of int (* integer constant *)
of mlrisc * mlrisc (* move *)
of mlrisc * mlrisc (* floating point move *)

of mlrisc * mlrisc (* addition *)

of mlrisc * mlrisc * order (* subtraction *)

of mlrisc * mlrisc

of mlrisc
of mlrisc * mlrisc

end

(* logical AND *)

(* memory operations *)

CVTI2D of mlrisc (* convert integer to double *)

FADDD of mlrisc * mlrisc (* floating point addition *)

BR of Label.label (* branch instructions *)

JMP of mlrisc

BCC of bcond * mlrisc * mlrisc * Label.label * order

FBCC of bcond * mlrisc * mlrisc * Label.label * order

SEQ of mlrisc * mlrisc (* sequencing *)

Fig. 2. MLRISC specification

- The detection of situations where a record creation in the heap can be im-
plemented as a tight loop copying consecutive locations from one memory
area to the record being created.

- Propagating increments to the allocation pointer, so that it is performed
only once at the function exit points.

Dynamic programming is used to optimize the tagging and untagging of
arithmetic expressions, in the translation of c t r e e s to MLRISC. Integers in SML
are tagged with their lowest bit set to one, (i.e., the integer n is represented
as 2n + 1). On the MIPS, the old code generator expands the CPS program
(x:=a-b; z:=x+y) to:

88

sub a,b,tl Z tl := a - b

add tl,l,x Z x := ~I + I

sub x,l,t2 Z t2 := x - I

add t 2 , y , z Z z := t2 + y

Clearly the intermediate tagging and untagging is unnecessary. Dynamic pro-
gramming using BURG is s fast and elegant solution to this problem. Peterson's
min-cut algorithm is more thorough but expensive (O(n3))[16]. The BURG spec-
ification ~ contains 124 rules (details appear in an extended version[ll]).

The resulting MLRISC program represents the simplest set of operations
required to implement the CPS program. The burden of various optimizations till
this point, in the abstract machine model, would have been on the person porting
the compiler. These optimizations would be repeated for each architecture. Now,
it has been transferred once and for all, to a person that is an expert on the
internals of the compiler. These basic operations must now be combined to match
instructions on the target machine.

6 I n s t r u c t i o n S e t S p e c i f i c a t i o n

As a concrete example, Figure 3 introduces a fragment of the SPARC specifica-
tion. An effective address on the SPARC can either be a register+displacement
or a register+register. This is specified using the non-terminal ea. The semantic
actions associated with rules that reduce to ea, return a value of type eaValue.
The operand to a LOAD must be reduced to the non-terminal ea, and the code
to emit is a simple case statement over the various eaValue constructors. For-
tunately, no restrictions were imposed on the operand to LOAD in the MLRISC
design. This example extends to handle the full set of addressing modes and
instructions found on CISC machines such as the Intel i486 or Motorola 68000.
A description of the i486 addressing modes involves just 10 lines of BURG spec-
ification.

An example from the Motorola 68000, illustrates how simple specifications
can later on yield high quality code, and the use of non-terminals to denote
various kinds of register classes. On the 68000, certain kinds of registers are
not permitted as operands to instructions. For example, the operand to LOAD
must be reducible to an address register. The result of the load may be either an
address or data register. This is fairly easy to specify by devoting a non-terminal
to address registers. A possible fragment of the 68000 specification is shown in
Figure 4.

For correctness, a mov]. is required in the implementation of ADD. Since we
assume an infinite number of registers, which are later assigned to physical reg-
isters, these moves normally turn out to be harmless. Coalescing non-interfering
live ranges in a graph-coloring register allocation algorithm[9], collapses rd and
dregl to the same physical register where possible, eliminating the redundant
move. This technique is used quite effectively to handle the non-regular register
set on the Intel i486. These specifications and semantic actions are very simple,
yet they describe quite varied and complex systems.

89

datatype eaValue = DISPea of register * int

I INDXea of register * register

ea: ADD(reg,LIi)

ea: ADD(regl,reg2)
ea: SUB(reg,LI~)

ea: reg
reg: LOAD(ea)

(0) DISPea(reg,i) ;;
(0) INDXea(regl,reg2) ;;
(0) DISPea(reg,~i) ;;
(0) DISPea(reg,0) ;;

(1) l e t val rd : r e g i s t e r = newReg()
in

case ea

of DISPea(rt,n) => emit(id(rt,IMMED n,rd))
I INDXea(rs,rt)=> emit(id(rs,REG rt,rd))

(* esac *);
rd

end ;;

Fig. 3. SPARC instruction set specification

areg:
dreg:
dreg:

LOAD(areg) (1) . . .
LOAD(areg) (1) . . .
ADD(dregl,dreg2) (1) l e t val rd = newDreg()

in
emit(movl(rd,dregl)) ;
emit(addl(rd,dreg2))

end

Fig. 4. Motorola 68000 instruction set specification

The combination of ML-Burg and MLRISC is an elegant way to solve the
instruction selection problem. BURG is expressive enough to allow the con-
cise specification of most instruction set. A similar observation was reported by
Appel[5], who wrote TWIG[l] specifications for the VAX and Motorola 68000;
detailed information was encoded in the cost function to aid in the selection
of the best rule. Porting the compiler does not require knowledge of any com-
piler internals, such as tagging schemes, runtime representations, and semantics
of high level abstract instructions (often specific to SML). The instruction set
must be specifiable in MLRISC, which is then used to pick the cheapest instruc-
tions to emit with respect to the cost function. Since the generated MLRISC
data structure is larger than the source CPS, the instruction selection is done in
small units.

90

7 T a r g e t M a c h i n e A r c h i t e c t u r a l D e s c r i p t i o n

Once instruction selection has been performed, facilities exist to generate a
generic control flowgraph, where the nodes contain target machine instructions.
It is not possible to directly output the binary representation of instructions as
they contain pseudo-registers and symbolic labels. Instruction scheduling, span-
dependency resolution, and further optimizations, may be necessary before final
binary code emission. Writing target-specific optimizations for each architecture
would be a portability nightmare. Instead, we use a scheme where off-the-shelf
optimization modules are parameterized over a description of the target machine.

While all machines are different in detail, they are all very similar in Concept.
The idea behind our machine description is to describe those concepts that are
common across architectures, and use them in generic optimization modules.
The structure of the machine description is shown in Figure 5. At the lowest
level of the module dependency is a description of the storage units on the
machine, specified by the signature CELLS. Several dataflow problems require
efficient operations over sets of cells, so we require the type c e l l s e t and the
usual set operations over them. These are easily constructed using modules de-
fined in the SML/NJ Library[6]. The signature INSTRUCTION is a specification
of the available instructions on the machine in terms of its cells. This hierar-
chy corresponds to the fundamental design of von Neumann machines. Lastly,
the signature INSN PROPERTIES contains the bulk of the machine description.
Useful properties of the instruction set are collected here, and used in generic
optimizations modules. For example: the type kind, returned by the function
ins t rKind, is used to classify instructions as being either a NOP (IK_NOP),
a jump instruction (IK_JUMP), or any other (IK_INSTR); the type t a r g e t re-
turned by bra_nchTargets is used to describe the target of branch instructions.
i n s t r g i n d and branchTargets are used to implement a generic module that
produces a flowgraph specialized over instructions of the target machine.

Figure 6 shows the machine description for the SPARC. The type r in-
cludes: an unlimited supply of general and floating point registers (Reg and
Freg, respectively), the condition code register (CC), and the floating point con-
dition code register (FCC). The stack (STACK) and memory (MEM), which are not
normally considered to be in the same category as registers, are also included.
Instructions that access the memory or stack, will be marked as accessing the
MEM or STACK resource. This information is used during instruction scheduling.
Spa rc ln s t r is the module matching INSTRUCTION in the machine description.
The type operand has been simplified for expository purposes. SparcProps shows
a fragment of the module matching INSN_PROPERTIES. The module is a total of
460 lines, most of which is boiler-plate.

As additional optimization modules are developed, one may expect the sig-
nature for INSN_PROPERTIES to grow, in order to meet the demands for more
information about the target architecture. After a certain point in this evolu-
tion, generating high quality code for a new architecture will involve mixing and
matching off-the-shelf optimization modules to suit the architecture.

91

signature CELLS = sig

type cell

type cellset

val cardinality : cellset -> int

val union : cellset * cellset -> cellset

val add : cell * cellset -> cellset

end

signature INSTRUCTION = sig

structure C : CELLS

type instruction

end

s i g n a t u r e INSN_PROPERTIES = s i g
s t r u c t u r e I : INSTRUCTION

s t r u c t u r e C : CELLS
sharing I.C = C

datatype kind = IK NOP I IK JUMP I IK_INSTR

datatype target = LABELED of Label.label i FALLTHROUGH I ESCAPES

val instrKind : I.instruction -> kind

val defUse : I.instruction -> C.cellset * C.cellset

val branchTargets : I.instruction -> target list

end

F i g . 5. Machine descript ion

8 Target Machine Optimization

A generic basic block scheduler that is parameterized by a machine description,
described above, has been developed. Figure 7 shows the machine properties
required for this purpose. We describe each component individually in more
detail to illustrate their complexity (or more appropriately, lack of):

branchDelayedArch is a boolean flag that indicates if the architecture requires a
branch delay slot. Special considerations are used for picking this instruction
if needed.

latency(instr) is a function that returns the number of cycles needed to execute
the instruction instr.

needsNop(instr,instrs) during scheduling there may not be enough instruc-
tions available to keep the pipeline busy while executing high latency instruc-
tions. Further, some architectures require an explicit NOP (No OPeration)
instruction between two instructions under such circumstances. For example,
on the MIPS, a MFHI instruction must occur at least two instructions after a

92

structure SparcCells = struct

structure S = SortedList

datatype cell = Reg of int

l Freg of int

J CC I FCC J STACK I MEM
type cellset = int list * int list * int list

fun cardinality(r,f,e) = length r + length f + length e

fun union((rl,fl,el),(r2,f2,e2)) =

(S.merge(rl,r2),S.merge(fl,f2),S.merge(el,e2))

end

structure SparcInstr = struct

structure C = SparcCells

datatype operand = REGrand of int

[IMrand of int

I LABrand of Label.label

datatype cond_code = CC_A l CC_E l CC_NE l CC_G [CC_GE

l CC_L l CC_LE l CC_GEU l CC_LEU

datatype instruction

= NOP

l LD of int * operand * int

[ADD of int * operand * int

[ADDCC of int * operand * int

I JMPL of int * Label.label list

l BCC of cond_code * Label.label

l FBCC of cond_code * Label.label

end

structure SparcProps = struct

structure I = SparcInstr

structure C = SparcCells

datatype kind = IK_NOP l IK_JUMP [IK_INSTR

datatype target = LABELED of Label.label l FALLTHROUGH l ESCAPES

fun instrKind(I.NOP) = IK NOP

[instrXind(I.BCC _) = IK_JUMP

[instrKind(I.JMPL _) = IK JUMP

[instrKind(I.FBCC _) = IK_JUMP

[instrKind _ = IK INSTR

fun branchTargets(I.BCC(I.CC_A,lab))

[branchTargets(I.BCC(_,lab))

. o .

end

= [LABELLED lab]

= [LABELLED Iab,FALLTHROUGH]

Fig. 6. S P A R C m a c h i n e d e s c r i p t i o n

val branchDelayedArch : bool

val latency : l.instruction

val needsNop : I.instruction

val defUse : I.instruction

val isSdi

val minSize

val maxSize

val sdiSize

val expand

: l.instruction

: l.instruction

: l.instruction

: I.instruction

: I.instruction

93

-> int

* l.instruction list -> int

-> int list * int list

-> beol

-> int

-> int

* (int -> int) * int -> int

* int * (int -> int) ->

l.instruction list

Fig. 7. Machine properties for basic block scheduling

MULT instruction, needsNop returns the number of NOPs required between
instr (the instruction being emitted), and instrs (the previous instructions
emitted).

defUse (instr) returns list of resources defined and used by the instruction. This
is used to construct the data dependency graph.

i sSdi (ins t r) returns true if instr is a span-dependent instruction whose size is
determined by the final value of labels.

minSize/maxSize(instr) returns the minimum/maximum size of the instruc-
tion instr. These two functions are used to schedule blocks with span-
dependent instructions. The value of labels is calculated assuming all in-
structions expand to their minimum size. Another calculation is performed
assuming all labels expand to their maximum size. If the size of a span-
dependent instruction does not vary under these extremities, then it may
be expanded, and scheduled along with the other instructions in that block.
Such a block is said to be stable. Scheduling a basic block refines the value
of labels under these two extremities and may stablize an otherwise unstable
block. If unstable blocks still persist, then there is no option but to expand
the span-dependent instructions to their maximum size.

sd iSize (instr,labMap,loc) returns the size of the span-dependent instruction
instr, under the assignment of labels given by labMap, where the current
location counter is loc.

expand(instr, size,labMap) returns the sequence of instructions when the span-
dependent instruction instr is expanded to size number of instructions, as-
suming the assignment of labels given by labMap.

The generic basic block scheduler is 397 lines of SML code. The module to
perform span-dependency analysis is 384 lines. In a similar fashion to basic block
scheduling, we have developed a generic graph-coloring register allocator used
to allocate general purpose and floating point registers on most target machines.
In addition, on the IBM RS/6000 it is used to allocate pseudo condition code
registers among the eight condition code registers available. More optimizations
are planned in the near future.

9 M i x and M a t c h

94

Figure 8 shows the construction of the SPARC code generator, which is formed
by linking several optimization phases. The FlowGzaph functor produces a flow-
graph data structure specialized over the SPARC instructions. The Liveness
functor exports a function called l iveness , which will annotate the flowgraph
with liveness information at block boundaries. Optimizations are mixed and
matched using functor applications. The functors RegAllocator and FlowGraphGsn
implement a certain optimization, and requires a function codegen that will be
invoked to perform the rest of the optimizations. The functor BBSched that per-
forms basic block scheduling, is the last in the chain, and exports a function
called f i n i s h that does the final machine code output. The SPARC code gen-
erator, in Figure 8, strings together: flowgraph generation that includes liveness
analysis (FlowGen); integer register allocation (IntRAlloc); floating point regis-
ter allocation (FloatRAlloc), and finally basic block scheduling (BBsched). The
various parameters to these functors are unimportant except to note that they
are specified by signatures that describe generic properties of architectures. The
example illustrates that the use of functor application makes it easy to mix and
match generic optimization modules to suit the SPARC architecture.

structure SparcFlow = FlowGraph(structure Instr = Sparclnstr)

structure SparcLive = Liveness(structure Flowgraph = SparcFlow

structure InsnProps = SparcProps)

structure BBsched = BBSched(structure Flowgraph = SparcFlow

structure InsnProps = SparcPreps

structure Emitter = SparcMCEmitter)

structure FloatRAlloc = RegAllocator(structure Ra = FloatRA_Arg

val codegen = BBsched.bbsched)

structure IntRAlloc = RegAllocator(structure Ra = IntRAArg

val codegen = FloatRAlloc.ra)

structure FlowGen = FlowGraphGen(
structure Flowgraph= SparcFlow

structure InsnProps = SparcProps

val codegen = SparcLive.liveness)

Fig. 8. Gluing the SPARC code generator together

95

10 R e s u l t s

At the time of writing, we have working code generators for the MIPS, IBM
RS/6000 and SPARC, an an untested specification for the Intel i486. The pre-
liminary results reported here are only for the SPARC.

A fairly standard set of SML benchmarks are used[2]. We first measure
the improvements from using a more sophisticated register allocation scheme.
SML/NJ supports a register passing style for parameters, and it is essential that
operands be computed in the right register. Register constraints may require that
the operand be first computed into a temporary and later moved into the correct
register before a function call. The first column of Figure 9 shows the number
of register-register moves required at function call boundaries in the existing
compiler (version 0.93). The second column shows the performance of our new
graph-coloring register allocator. At least 40% of the original register-register
moves are removed.

Figure 10 shows the improvements from dynamic programming and the al-
location pointer optimization described (Section 5). The first column shows the
static code size (in number of instructions) without any optimization, and the
second with these optimizations. There is a static code size improvement of 2-
5%. In terms of dynamic instruction counts, this corresponds to roughly 1-3%
improvement. This is encouraging as these improvements have come largely for
free in our attempt to improve portability. Machines such as the Dec Alpha or
the IBM RS/6000, should do even better, because multiple overflow checks may
be collapsed into one.

While compile time speeds are acceptable, we do not report them since the
new system is not tuned or optimized for this. The back end in the current
SML/NJ compiler takes about 25% of the total compilation time. This percent-
age does not include CPS optimization. The new back end is currently about
3-4 times slower.

11 F u t u r e W o r k

Machine descriptions are required for all the architectures that the SML/NJ
compiler currently supports, which include, the Motorola 68000, and the HPPA.
Work is in progress on a DEC Alpha port. The main areas for future work
relate to the speed of compilation, and further optimizations relevant to RISC
processors. Our compilation scheme is highly symbolic - - developing fast table
driven optimizations[17] derived from a more concise machine description, and
the use of partial evaluation[7] ought to produce a faster backend. Composing
BURG specifications similar to that done for attribute grammars may also prove
worthwhile[8]. Lastly, a pre-pass global scheduler is extremely important for
superpiplined and superscalar machines[12, 14].

mandelbrot
life
kbendix
simple
lexgen
yacc

96

SML/NJ 0.93 New back end ratio
46 5 0.11
299 212 0.71
968 594 0.61
1089 657 0.60
1965 1121 0.57
4090 2222 0.54

Fig. 9. register-register moves with 6 callee-save registers

mandelbrot
life
kbendix
simple
lexgen
yacc

static code size
before after % improvement

625 561 11.4
6333 6032 5.0

13209 12808 3.1
30492 29263 4.2
24671 24217 1.9
96925 94666 2.4

dynamic instruction count
% improvement

16.2
0.8
3.2
1.9
2,2
2.3

Fig. 10. Static code size and dynamic instruction count improvements

12 Conclusions

A highly portable and optimizing back end has been described. It addresses the
problems of target machine instruction selection and machine specific optimiza-
tion. Porting the compiler to a new architectural platform is expected to be
trivial for someone ignorant of the internal of the compiler, but familiar with
the architecture. Off-the-shelf optimization modules can be easily constructed to
suit a particular machine. The set of optimizations currently implemented show
encouraging results.

References

1. AHO, A., GANAPATHI, M., AND TJIANG, S. Code generation using tree matching
and dynamic programming. A CM Transactions on Programming Languages and
Systems 11, 4 (Oct. 1989), 491-516.

2. APPEL, A. Compiling with Continuations. Cambridge Univ. Press, 1992.
3. APPEL, A., AND MAcQUEEN, D. A Standard ML compiler. In Functional Pro-

gramming Languages and Computer Architecture, G. Kahn, Ed. Springer-Verlag,
1987, pp. 301-324. LCNS No.274.

4. APPEL, A., AND MAcQUEEN, D..Standard ML of New Jersey. In Third Int'l Symp.
on Prog. Lang. Implementation and Logic Programming (New York, August 1991),
M. Wirsing, Ed., Springer-Verlag. (in press).

97

5. APPEL, A. W. Concise specifiations of locally optimal code generators. Tech. Rep.
CS-TR-080-87, Princeton University, Feb. 1987. Dept. of Computer Science.

6. ATgzT. The Standard ML of New Jersey Library, Reference Manual, 0.2 ed.
AT&T Bell Laboratories, 600 Mountain Ave, Murray Hill, NJ 07974, 1993.

7. BIRKEDAL, L., AND WELINDER, M. Partial evaluation of Standard ML. Master's
thesis, University of Copenhagen, October 22 1993. Dept. of Computer Science.

8. BOYLAND, J., AND GRAHAM, S. Composing tree attributions. In POPL '94:
21st A CM SIGPLAN-SIGA CT symposium on principles of programming languages
(January 1994), ACM, pp. 375-388. Portland,Oregon.

9. CHAITIN, G. Register allocation and spilling via graph coloring. SIGPLAN Notices
17(6) (June 1982), 98-105. Proceeding of the ACM SIGPLAN '82 Symposium on
Compiler Construction.

10. FRASER, C., HANSON, D., AND PROEBSTING, T. Engineering a simple, efficient
code generator generator. In Letters on Programming Languages and Systems
(1992), ACM.

11. GEORGE, L., GUILLAME, F., AND REPPY, J. A portable and optimizing back
end for the SML/NJ compiler. Tech. Rep. BL112610-931103-38TM, AT&T Bell
Laboratories, November 1993.

12. GOODMAN, J., AND HSU, W.-C. Code scheduling and register allocation in large
basic blocks. In Proceedings of the 1988 International Conference on Supercom-
puting (July 1988), ACM, pp. 442-452.

13. GUILLAUME, F., AND GEORGE, L. ML-Burg -- Documentation, 1.0 ed. AT&T
Bell Laboratories, 600 Mountain Ave, Murray Hill, NJ 07974, 1993.

14. GWENNAP, L. Cyrix describes pentium competitor. Microprocessor Report 7, 14
(October 1993), 5-10.

15. MAcQUEEN, D. Modules for Standard ML. In Proc. 1984 ACM Con]. on LISP
and Functional Programming (New York, 1984), ACM Press, pp. 198-207.

16. PETERSON, J. Untagged data in tagged environments: Choosing optimal repre-
sentations at compile time. In Functional programming languages and computer
architecture (September 1989), ACM, pp. 89-99.

17. PROEBSTING, W., AND FRASER, C. Detecting pipeline structural hazards quickly.
In Principles of Programming Languages (January 1994), ACM.

