
Global Code Selection for
Directed Acyclic Graphs*

Andreas Fauth 1, Gfinter Hommel 1, Alois Knoll 2, Carsten Mfiller 1
f auth~cs, tu-berlin, de

1 Technische Universits Berlin, Institut flit Technische Informatik,
Franklinstr. 28/29, D-10587 Berlin, Germany
2 Universitgt Bielefeld, Technische Fakults

Postfach 10 01 31, D-33501 Bielefeld, Germany

Abstract . We describe a novel technique for code selection based on
data-flow graphs, which arise naturally in the domain of digital signal
processing. Code selection is the optimized mapping of abstract opera-
tions to partial machine instructions. The presented method performs an
important task within the retargetable microcode generator CBC, which
was designed to cope with the requirements arising in the context of cus-
tom digital signal processor (DSP) programming. The algorithm exploits
a graph representation in which control-flow is modeled by scopes.

1 I n t r o d u c t i o n

In the domain of medium-throughput digital signal processing, micro-programm-
able processor cores are frequently chosen for system realization. By adding
dedicated hardware (accelerator paths), these cores are tailored to the needs of
new applications. Optimized processor modules can be reused, which is a major
benefit compared to high-level synthesis [28] where a completely new design is
developed for each application. Because of the application-specific add-ons and
the rather short lifetimes of a specific design, there is a need for retargetable
software development tools, especially code-generators.

1.1 O ve rv i e w

In the next section we will shortly discuss several related approaches to code
generation and point out some differences of our system. Section 3 introduces
the overall architecture and functionality of the CBC code generator. Section 4
explains the code selection task and the basic techniques used. In section 5 our
algorithm is presented. We conclude the paper with experimental results.

* Part of this research is supported by the ESPRIT 2260 ("SPRITE") project of the
European Community and Siemens AG, Miinchen.

129

2 Related Work

Lansdkov et al. [27] present a machine model and methods for microcode genera-
tion. A subtask of code selection called bundling and a subset of scheduling called
compaction are described. Both methods have a local view on the subject pro-
gram. The YC system [6] deals with code selection but does not provide detailed
scheduling. A phase called combiner only tries to concatenate adjacent opera-
tions. The work of Rimey [31, 32] describes a compiler for application-specific
DSPs. The main attention, however, is paid to scheduling and data-routing (i.e.
mainly register assignment and spilling). Code selection and scheduling are only
performed on straight-line code. Optimizations across branch boundaries are
not performed. The MARION system [2, 3] performs code generation for RISC
architectures. Here, a simple approach for code selection is chosen. A recursive-
descent brute-force tree pattern matcher neither considers graph structure of
the intermediate code nor global subexpressions. Our implementation, is based
on the work of Fraser et al. [13, 14].

Points of major differences between our code selection approach and similar
tasks in "classic" code generation (CG) are:

- Complexity of datapaths. CBC has to deal with highly specialized and op-
timized datapaths. The hardware units make the efficient execution of fre-
quently used operation sequences possible. Operation patterns for the func-
tional units of these datapaths are much more complex than for standard
microprocessors.

- Type-handling. DSP algorithms may employ a large variety of different word
lengths and numerical types. The hardware operators are restricted to fixed
word lengths. A correct mapping must always be found. In most CG work
this topic is neglected because language definitions (and hence the compilers)
are restricted to "implementation-dependent" types.

- Evaluation order. Approaches like [6, 7] dealing with code selection assume
a fixed evaluation order, which is usually derived from the imperative source
code. There is no explicit scheduling phase included in the back-ends. Com-
monly, register allocation is performed during code selection. Most of the
time this is done by graph coloring [4] or "on-the-fly".

- Parallelism of functional blocks. Most DSP architectures contain several
functional units that work in parallel. Therefore, the final code cannot be
emitted during or immediately after the code selection phase because partial
instructions must be "compacted" into complete instructions at a later stage
of compilation exploiting the possible parallelism. Consequently, code selec-
tion must not specify the complete behavior of the machine for each cycle.
It must only select code for each of the individual units.

- Expressions are DA Gs. Intermediate programs formulated in directed acyclic
graphs (DAGs) pose a problem to classic code selection approaches. "We
assume that the intermediate code and the target code are presented as trees
or terms" [8] is a typical statement. Tree matching methods [1] are popular.

130

- Machine description. In the compiler writer community machine descriptions
are mainly intended to be used by the code generator only. Some detailed
knowledge of the compiler is necessary to write good descriptions. By giv-
ing the semantics for each instruction as a transformation of the machine
state, we describe the instruction set in a behavioral way. Out of this ma-
chine description, various machine models can be generated depending on
the application (e.g. code generator, assembler or simulator).

- In termediate representation. Our intermediate representation is based on a
data- and control-flow graph description that differs from the representations
used in many compilers.

3 Anatomy of the Compiler

In CBC, code generation is split into different tasks. Each of these is performed
by a specific tool. The intermediate results are passed on in human-readable text
files. Figure 1 shows the general layout of the code generator, the underlying
data- and rule-base as well as the retargeting mechanism.

data- & rule-base

~ w e

target indep.

,,_,J scheduling &
~ v I data-routing

Fig. 1. System overview of CBC's code-generator and its retargeting process.

The primary goal is to generate highly optimized code from the description
of the algorithm, which is specified graphically or textually in a signal fl0w
graph. In principle, it is also possible to write the algorithm in other languages
that are capable of modeling parallel behavior in an adequate way, e.g. the
synchronous subset of the applicative real-time DSP language ALDiSP [16]. The
intermediate representation can be easily obtained from a signal flow graph and
will be described in section 3.3.

3.1 Retargeting

In our approach, the language nML [15] is used to describe the target architecture
(see Fig. 2). Originally designed as a simple means for expressing programming

131

models as found in the usual programmer's manuals, it has turned out to be
powerful enough to describe current and future DSP cores - it may even serve
as the basis for high-level hardware synthesis [12]. Its main advantage from
the programmer's point of view, however, is its compactness combined with its
readability, nML is intended for describing arbitrary single instruction stream
architectures. Such architectures feature a single program counter, but can oth-
erwise consist of an "unlimited" number of building blocks. Based on at tr ibute
grammars, nML is flexible and reasonably easy to use.

t y p e w o r d = i n t (1 4)

t y p e a d d r = c a r d (2 0)

mere REG [8 , w o r d]

mere RAM [2 * * 2 0 , w o r d]

mem l a t c h [3 ,word]

op i n s t r u c t i o n = j m a p I a l u 0 p I . . .

op a l u (a : a l u A c t i o n , s l : s r c , s 2 : s r c , d : d s t)

a c t i o n = { l a t c h [0] = s l ; l a t c h [1] = s 2 ; a . a c t i o n ; d = l a t c h [2] ; }

s y n t a x = f o r m a t (" ~ s ~ s , ~ s , ~ s " , a . s y n t a x , s l . s y n t a x )

image = . . .

op a l u A c t i o n = s u b I a d d I . . .

op s u b ()

a c t i o n = { l a t c h [2] = l a t c h [0] - l a t c h [1] ; }

mode s r c = r e g I . . .

mode r e g (n : c a r d (3)) = REG[n]

s y n t a x = f o r m a t ("RY, d " , n)

i m a g e = f o r m a t ("01Y, b " , n)

Fig. 2. Excerpt from an nML machine description.

When retargeting the compiler, the nML analyzer examines the instruction
set and the memory description of the target processor and builds a machine
model, i.e. a representation of the capabilities and constraints of the machine.
The process of building this model is detailed in [10, 12]. The machine model,
along with 'the datapath constraints and machine-independent transformation
rules are given as input to the generic (parameterized) code generator. The
transformation rules specify, for example, how to perform a 32-bit addition on
a 16-bit machine. The phases of code generation and the construction of the
generic compiler are outlined in [9, 11].

132

3.2 Code G e n e r a t i o n Script

The main tasks of code generation are:

- Signal flow graph translation. This is the algorithmic design entry to the code
generator. The specification of the application program is constructed using
a schematic editor and a simulation tool. The resultant signal flow graph is
translated by this front-end into the code generator's internal data format.

- Control-flow transformations. Transformations concerning the mutually ex-
clusive execution of operations depending on certain conditions are per-
formed to reduce the overall execution time. A pure data-driven representa-
tion is translated into a hybrid data/control-driven representation reflecting �9
the requirements of branch controllers and conditional transfers used in pro-
grammable DSP systems [11, 26]. 3

- Code selection. Subsets of the algorithm are mapped to datapaths. First,
high-level operations of the algorithmic input are expanded into machine-
executable operations. Then, chains of expanded operations are merged to
form more complex operations that are provided by the machine. This clus-
tering reduces the complexity of the scheduling task and allows optimized
code generation in reasonable time.

- Scheduling and data-routing. The operations in the graph are ordered in
time. To produce high quality code, efficient scheduling is a necessity. The
goal of scheduling is minimum execution time for a given algorithm on an
architecture which is fixed at compile-time. Therefore, the assignment of
registers to intermediate values, the generation of data-routes (including
spill-code) and scheduling are performed in parallel [23, 32].

3.3 I n t e r m e d i a t e Rep re sen t a t i on

The intermediate representation is a control/data-flow graph (CDFG). A CDFG
is a program description based on a directed graph (N, E) consisting of two finite
sets: the nodes ni E N represent the operations of the program and the directed
edges ei E E which are ordered pairs of nodes ei = (nj, nk) display dependencies
between the operations. An edge can either model a data-flow dependency (i.e. a
data flow path) or an additional control-flow constraint. 4 The CDFG describes
the body of the main execution loop of an application. Cycles in the graph result
only from algorithmic delay operations which are used to refer to values from
earlier incarnations of loops.

The data-flow graph models all data dependencies and operations. An op-
eration node can be executed whenever input data is available. 5 Inputs and
outputs of the program are represented as data sources and data sinks. Data is

a This task is actually split in two: One phase before and one phase after code selection.
The first phase rewrites scope structures and the second inserts jump operations.

4 Note that each data-flow edge implicitly models a control-flow constraint.
5 All preceding control-flow constraints must also be satisfied.

133

Fig. 3. A CDFG with nested conditional scopes. Each box represents one scope. The
two large boxes represent top-level exclusive scopes. The two small boxes represent a
pair of exclusive scopes local to the left top-level scope. The nodes represent opera-
tions and the arcs represent data-flow edges. The dashed arcs are flag edges from the
condition to the true and the false case.

represented as signals. A signal represents an infinite stream of values. For syn-
chronous data-flow, the amount of data produced and consumed for each node
is specified a priori. Our data-flow model limits the amour of data produced
and consumed in a single cycle to exactly one. The execution of an operation
therefore consists mainly of the use of one signal at each incoming edge and the
definition of one signal at each outgoing edge. 6

The control-flow graph is basically a hierarchical structure of macro nodes. A
macro node is a cluster of operations and other macro nodes. They are used to
model loops and conditional scopes. All operations inside a specific conditional
scope are related to a certain condition. Additionally, control-flow edges display
precedence relations between operations. At the beginning of code generation
there are few control-flow edges; later phases insert additional control-flow infor-
mation modeling in-place storage of signals and the programming of the branch
controller. The scheduler must find an explicit execution order for all operations,
resulting in a sequentially executable microprogram.

For the different stages of code generation, three distinct sets of arithmetic
and logic operations exist in a common library:

- Abstract operations (AOs). This is set of high-level operations that is avail-
able in the initial input-level graph.

- Machine-executable operations (MEOs). This set consists of operations which
correspond to primitives of the nML description. All initial CDFG operations
must be mapped to members of this set.

- Datapath operations (DOs). The third set comprises operations which occupy
a full datapath. They are the basic entities for the scheduling process. These

6 At this stage of the translation, all multi-rate segments of the program must be
translated into loops or unrolled into straight-line code.

134

operations are formed out of the MEOs during chaining and represent the
valid combinations of MEOs.

Besides these operations, some canonical operations identifying the action
on dedicated hardware (such as accelerator paths) can also be included in the
algorithm at each stage of the translation. Since they represent both abstract
and datapath operations they are included in the CDFG upon entry to the script
and need not be transformed during code selection. Two more groups exist:

- Transfer operations. These are used to describe assignments of data to mem-
ory locations and moves on buses. They are inserted into the description to
route data between different storage locations and correspond to addressing
modes and move operations.

- Control-flow operations. All conditional and unconditional jumps belong to
this set.

4 T h e P r o b l e m o f C o d e S e l e c t i o n

Prior to code selection, the algorithm consists of operations that are machine-
independent and well-typed. After code selection, the algorithm must consist of
operations that are equivalents for clusters of MEOs. These clusters are associ-
ated with datapaths and must not violate encoding restrictions. The first stage of
code selection consists of two interleaved phases: machine-parameterized macro
expansion and mapping to machine-executable operations. The second stage maps
parts of the algorithm to datapaths.

4.1 The Genera l Approach: Macro Expans ion and Cha in ing

During macro expansion, operations in the CDFG are expanded into opera-
tions available on the machine. For example, multiplications are broken down
to combinations of additions and shifts or into Booth-multiplication steps [24].
This process is controlled by rules, which are parameterized by the set of spe-
cific hardware operators offered by the target machine 7. Therefore, the rules are
machine-independent, but the choice between them is driven by the structure of
the target machine.

When mapping to MEOs, limited word lengths are taken into account, i.e.
the expanded execution of an operation on a smaller word length datapath is
constructed. For example, an addition of two 32 bit values could be performed
on a 16 bit datapath with two additions (assuming an addition with carry is pos-
sible). This task employs the CATHEDRAL-2ND tool for expansion [28]. However,
it relies heavily on our own operation library [29], which is two-fold: A machine-
independent part describes constant folding and other peephole optimizations; a
machine-dependent part describes all MEOs as well as the corresponding expan-
sion rules. The machine-dependent entries are either generated or instantiated

7 This set is identified during the anMysis of the rJIL machine description.

135

from templates during the retargeting process. Implementation alternatives are
given from which the appropriate expansion can be chosen.

To allow the generation of optimized code within reasonable time, it is impor-
tant to reduce the complexity of the scheduling task. Therefore, the second part
of the code selection task maps subsets of the algorithm onto datapaths prior
to scheduling. Once all high-level operations are refined to MEOs, clusters of
direct data-dependent operations which can be performed on a datapath within
a single cycle are identified. These chains of operations are merged and replaced
by a single operation each, thus forming more complex operations that are pro-
vided by the machine. These datapath operations occupy a complete datapath.
In Fig. 4 a CDFG is clustered to be executed on the depicted datapath. The
shift operations (>>) are executed on the SHIFTER, and the arithmetic operations
(+ and -) are executed on the ALU COR,E.

Fig. 4. A CDFG fragment and a datapath

I register file ~ . ~

~r

t

Jatapath

N

Our chaining process resembles code selection in standard compilers since
not all possible combinations of operations are legal chains. Restrictions which
must not be violated result from the instruction set definition (see section 4.3).

4.2 Global Chain ing

As outlined earlier, the goal of chaining is a "good" assignment of machine op-
erations to datapaths. This implies that chaining assists the scheduler; it could
indeed be integrated into the scheduling phase at the expense of increased com-
plexity and run time. On the other hand, when chaining is done outside the
context of scheduling, little information about resource usage is available. Espe-
cially in the presence of multiple similar datapaths s it is hard to estimate the

8 Informally, two datapaths are called similar if they share many chaining patterns.

136

impact of a particular chaining decision on the quality of the resulting code: Op-
erator assignment performed during chaining may result in schedules not fully
exploiting potential parallelism of the machine. To decouple the two tasks, the
chaining tool must annotate chains with implementation alternatives. In this
paper we can thus neglect the problem of similar datapaths.

Since the architectures under consideration feature complex datapaths, we
emphasize that whole expressions are assigned to a single datapath whenever
possible. A chaining decision can affect the choices for distant operations, i.e., it
has global effects. Therefore, large pieces of the CDFG must be considered when
making a specific decision.

4.3 Encod ing Res t r i c t ions

In general, the set of operation tuples executable on a datapath is not equal to
all possible combinations of the hardware operators' functionalities; the designer
may (and usually will) have imposed restrictions on operation chains. This is
quite natural: the number of possible combinations affects the length of the in-
struction word. It might be necessary to omit some (rarely needed) combinations
to reduce the instruction word length. Furthermore, there may be conflicts in
the datapath hardware that prohibit certain combinations. As a result, code se-
lection has to comply with encoding restrictions. As it is quite clear that the
datapath structure alone is not sufficient to hold this information, we decided to
represent legal chains as a set of rewrite rules. Pattern matching is employed to
find legal chains in the CDFG.

4.4 Ma tch ing on Trees

Pattern matching is an established technique for instruction selection from ex-
pression trees in compilers for imperative languages [17, 21]. Code selection for
stock microprocessors focuses mostly on a good exploitation of complex address-
ing modes. In the context of CBC, however, the emphasis is on good utilization
of the complex datapaths. Nevertheless, similar tools can be used at the tech-
nical level. In the CBC environment, all legal patterns are generated by the
nML front-end [9] and stored as a set of match-replace pairs (see Fig. 5 for an
example). The match-replace database is intentionally held human-readable to
allow an experienced user to modify some rules or add new rules by hand (e.g.
for special optimizations). The depicted rule does not take commutativity of the
add operation into account. This is not a serious problem; the nML front-end
simply generates multiple patterns (in this case, s = a d d (t , i 2) is replaced by
s = a d d (i 2 , t)) .

In the context of our compiler, the term rewrite system is not one mono-
lithic unit; pattern matching an d rewriting are separated phases. The tree parser
generator we use, IBUaG [14], is only concerned with the matching phase; the
connection to the rewrite phase is made by match rule numbers. The tree gram-
mar (from which the tree parser is generated) and the rewrite procedure are
both generated by our chaining preprocessor, which takes the rewrite rules as

MATCH

il = reg;

i2 = reg;

c = const({-8..7});

t = shift(if,c);

s = add(t,i2);

REPLACE COST=I

s = shiftadd(il,i2,c);

ENDM

137

/* A value cons t ra in t . */

Fig. 5. A sample rewrite rule for the datapath of Fig. 4.

its input. The incorporated match algorithm is an extension to the BURS (Bot-
tom Up Rewrite System) [30] theory and allows the computation of an optimal
rewrite sequence for a tree (by matching the rewrite rules to subtrees), given a
fixed set of rewrite rules with fixed costs. This computation takes time linearly
proportional to the size of the tree. For the selection of the optimum match,
tree parsing with dynamic programming is used [1]. The tree parser genera-
tor BURG [13] performs the dynamic programming at parser generation time
and thus generates highly efficient pattern matchers. IBURG, a heavily simplified
BURG version, still generates very efficient parsers, but their running time is no
longer independent of the number, size, and structure of the patterns. 9 Because
of its simplicity, IBURG can be modified quite easily. We extended it to accept
certain match conditions in the rules; this way we can conveniently express type
constraints or other operand constraints which are imposed by the hardware
operators.

5 C o d e S e l e c t i o n o n G r a p h s

Commonly, code selection is performed on expression trees. These are (partial)
statements usually directly reflecting source language statements. The programs
being compiled in our environment contain a large amount of decision making
and common subexpressions. As mentioned above, cycles in the graph only result
from values produced by delay operations. These are not considered during code
selection. 1~ Hence expressions in our CDFG model are DAGs. This means that
intermediate results can have more than one use (Fig. 6a) which can also reside in
different conditional scopes (Fig. 6b). Figure 6c shows a signal that has multiple
definitions in different conditional scopes. In traditional compilers, conditions
are at "borders" of basic blocks. The i f - t h e n - e l s e statements themselves are
also subject to code selection. In our approach, operation nodes of the CDFG

9 However, informally speaking, for our purposes the generated parser have "nearly"
linear behavior and are still fast enough.

10 This is indeed a topic for future investigations.

138

have a conditional context. For each condition a flag is computed and connected
to a macro node, i.e. a scope. Then, global data-flow is specified, i.e. signals
"enter" and "leave" scopes. This representation facilitates code selection that
transcends basic blocks.

~b) if(~ (C)

Fig. 6. Cases of interest to our global chaining approach: (a) multiple uses in the same
scope, (b) multiple uses in different scopes and (c) multiple definitions.

Consider the architecture depicted in Fig. 4. A value produced by the SHIFTER

is not immediately available for more than one operation. For that purpose an
addition with zero must be performed to pass the value unchanged through the
ALU COaE, i.e. the value is "spilled" to a register. We assume that the data-
paths do not fork (and thus do not allow multiple uses within themselves). This
implies that an operation defining a multiply used value can never be chained.
The CDFG in Fig. 6a would be mapped to three operations (a s h i f t , an add
and a sub) instead of two in the optimal case (a s h i f t - a d d and a s h i f t - s u b) .
The best results possible for the datapath of Fig. 4 are shown in Fig. 7.

{a) (b) (e)

Fig. 7. The best solutions to the three different cases of Fig. 6.

5.1 T h e S i m p l e A p p r o a c h : " U n d a g g i n g "

Earlier section were concerned with tree parsing and pattern matching in trees.
On the other hand, it was unveiled that CDFGs are definitely not tree-like in
the general case. The resulting problems have to be solved. Taking the previ-
ous section into account, it can be seen that some subgraphs indeed have a tree

139

structure; namely those that lie between points of multiple uses and multiple def-
initions. Incidentally, the values which are defined or used more than once must
be held in registers: multiple definitions require a proper modeling of control-
flow which cannot (generally) be mapped onto the datapath; multiple uses map
to different instructions. 11 This leads to a very simple chaining method: Cutting
the DAG whenever a value is defined or used in multiple places yields a set of
(usually small) trees. These trees are then individually processed by the rewrite
system and reconnected afterwards to compose a chained version of the original
DAG.

5.2 A M o r e S o p h i s t i c a t e d A p p r o a c h : H e u r i s t i c N o d e D u p l i c a t i o n

The advantage of the previous method is its simplicity. However, in a significant
number of cases chaining possibilities are lost due to cuts at multiple uses or
definitions. We seek a way to improve this situation. The key insight is that the
CDFG must be modified in order to create more chaining possibilities. 12 Consider
the cases where chaining possibilities may be missed. There are essentially four
of them:

- A signal has one definition and multiple uses in the same scope. This implies
that this signal must be made available to different DOs (since multiple uses
in the datapath are not possible). By duplicating the definition once for each
use, the multiple use has been resolved (while introducing a multiple use at
each operand) and the desired chaining possibilities have been created.

- A signal has one definition and multiple uses, at least one in another scope.
To generate a chaining possibility, the uses must be within the same scope
as the definition. A further look reveals that this case resembles the previous
one; it is solved in basically the same manner.

- A signal has multiple definitions (in mutually exclusive scopes) and one use
outside the scopes of the definitions. A chaining possibility can be created by
duplicating the use and nesting the copies into the scopes of the definitions.
However, we must bear in mind that if the use has yet another operand
multiply defined in different scopes, a particular evaluation order for the
mentioned defining scopes would be enforced. This could be undesirable (see
Fig. 8a).

- A signal has multiple definitions (in mutually exclusive scopes) and multiple
uses. This case is not further considered since there are rarely any cases
where duplication of operations could lead to shorter code. Consider a signal
that has n uses and m definitions. If each of these operations is (trivially)
chained to a single DO, we get n + m operations. If all necessary copies of
operations are generated to get more chaining possibilities and each of these
would actually be chained, the result would be n • m DOs (see Fig. 8b).

11 This is a consequence of the postulation that no multiple uses exist in the datapaths.
a2 More exactly, we do not want to create chaining possibilities per se but only in those

places where this will lead to an improvement of the generated code.

140

(~ (b)

if c l II ff c2 II else if c l if c.2 else

- I i l i i i i i i
Fig. 8. Node duplication examples. Conditions c and d in case (a) are independent of
each other. Conditions cl and c2 in case (b) are exclusive to each other.

It can be seen that the creation of chaining possibilities is associated with
duplication of nodes. When duplicating excessively, the graph might grow too
large. This is overcome by first partitioning the graph, which yields (usually)
small partitions, and then processing each partition in turn. The partitions are
chosen so that no chains across partition boundaries are possible.

One problem not yet mentioned is the identification of chaining possibili-
ties. A simple heuristic is employed: For all pairs of MEOs, the pattern base is
looked up counting the occurrences of an edge between both operations. (This
is quite informal, but should be intuitively justified.) This information is then
used for partitioning; two operations are put into the same partition if a chaining
possibility exists. Partitions including only one operation are trivial cases.

When duplicating into scopes (either at a multipl e definition or at a multiple
use), the code size might be increased but (usually) not the execution time be-
cause only one of the exclusive scopes is executed. To the case shown in Fig. 6a,
however, this argument cannot be applied. Therefore, a common subexpression
el iminat ion (CSE) phase, which succeeds the pattern matcher, removes most of
the unchained operation copies from the graph. This also works for duplications
at scope boundaries. Since with duplication there is a danger that the number
of operations (and thus program size) increases unduly, a cost function is used
to resort to the simple undagging method in cases where the node duplication
heuristic fails. The cost is computed for both the undagging and the node dupli-
cation method 13 as the weighted sum of the number of resulting DOs (a rough
estimate of the code size) and the expected number of executed DOs on each
execution path (a rough estimate of execution time). The better alternative is
kept.

6 R e s u l t s

The experimental results shown in Table 1 are taken from a "real-life" AD-
PCM algorithm, which is incorporated into speech compression applications.
The (exemplary) datapath from Fig. 4 served as target architecture. The tool
was implemented and tested on a SPARC station IPX using C++. All CPU
times including parsing and computation of statistics are less than one minute.
Therefore, they are not explicitely given.

13 This is not overly expensive, as the pattern matching and rewriting is quite fast.

Table 1. Experimental results

141

design
machine-
ex. opns.

datapath operations
undagging node dupl.

ENCODE 514 417 (-18.9%) 399 (-22.4%)
ADQUANT 55 51 (-7.3%) 51 (-7.3%)
IADQUANT 21 16 (-23.8%) 15 (-28.6%)

PREDICT 317 262 (-17.4%) 249 (-21.5%)
TONE_DET 25 17 (-32%) 17 (-32%)

7 Conclusion

We have presented an algorithm for code selection on control/data-flow graphs.
The approach is based on a global view on the subject programs. The points of
interest are multiple uses of values resulting from common subexpressions and
multiple definitions of values resulting from conditional scopes. An implementa-
tion of the algorithm is incorporated into the CBC compiler and was successfully
tested with the Siemens DECT (Digital European Cordless Telephone) design.
One line of future research includes the coupling of code selection and scheduling
as well as the adaption of our technique to loops.

References

1. A.V. Aho, M. Ganapathi, S.W. Tjiang: Code Generation Using Tree Matching
and Dynamic Programming. ACM TOPLAS 11:4 (1989) 491-516

2. D.G. Bradlee, R.R. Henry, S.J. Eggers: The Marion System for Retargetable
Instruction Scheduling. Proc. PDLI'91, SIGPLAN Notices 26:6 (1991) 229-240

3. D.G. Bradlee, S.J. Eggers, R.R. Henry: Integrating Register Allocation and In-
struction Scheduling for RISCs. 4th Int. Conf. on Arch. Support for Prog. Lang.
and Qperating Systems (1991) 122-131

4. P. Briggs: Register Allocation via Graph Coloring. Ph .D. Thesis, Rice Univ.,
Houston, Texas (1992)

5. R.G.G. Cattell: Automatic Derivation of Code Generators from Machine Descrip-
tions. ACM TOPLAS 2:2 (1980) 173-190

6. J.W. Davidson, C.W. Fraser: Code Selection through Object Code Optimization.
ACM TOPLAS 6:4 (1984) 505-526

7. H. Emmelmann, F.-W. SchSer, R. Landwehr: BEG - a Generator for Efficient
Back Ends. Proc. PLDI'89, SIGPLAN Notices 24:7 (1989) 227-237

8. H. Emmelmann: Code Selection by Regularly Controlled Term Rewriting. Code
Generation - Concepts, Tools Techniques, Springer (1992) 3-29

9. A. Fauth, A. Knoll: Automated Generation of DSP Program Development Tools
Utilizing a Machine Description Formalism. Technical Report 1992/31, Techni-
sche Universits Berlin, Fachbereich 20, Informatik, Berlin (1992)

10. A. Fauth, A. Knoll: Automatic-Generation of DSP Program Development Tools
Using a Machine Description Formalism. Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (1993) 457-460

142

11. A. Fauth, A. Knoll: Translating Signal Flowcharts into Microcode for Custom
Digital Signal Processors. Proc. Int. Conf. on Signal Processing (1993) 65-72

12. A. Fauth, M. Freericks, A. Knoll: Generation of Hardware Machine Models from
Instruction Set Descriptions. VLSI Signal Processing VI (1993) 242-250

13. C.W. Fraser, R.R. Henry, T.A. Proebsting: BURG - Fast Optimal Instruction
Selection and Tree Parsing. ACM SIGPLAN Notices 27:4 (1992) 68-76

14. C.W. Fraser, D.R. Hanson, T.A. Proebsting: Engineering a Simple, Efficient Code
Generator Generator. ACM Letters on Prog. Lang. and Systems 1:3 (1993) 213-
226

15. M. Freericks: The nl~L Machine Description Formalism. Technical Report 1991/15,
Technische Universit~t Berlin, Fachbereich 20, Informatik, Berlin (1991)

16. M. Freericks, A. Knoll: Formally Correct Translation of DSP Algorithms Specified
in an Asynchronous Applicative Language. Proc. Int. Conf. on Acoustics, Speech
and Signal Processing (1993) 417-420

17. M. Ganapathi, C.N. Fischer: Description-driven code generation using attribute
grammars. Proc. of the 9th POPL (1982) 108-119

18. M. Ganapathi, C.N. Fischer, J.L. Hennessy: Retargetable Compiler Code Gener-
ation. Computing Surveys 14:4 (1982) 573-592

19. M. Ganapathi, C.N. Fischer: Affix Grammar Driven Code Generation. ACM
TOPLAS 7:4 (1985) 560-599

20. M. Ganapathi, C.N. Fischer: Integrating Code Generation and Peephole Opti-
mization. Acta Informatica 25 (1988) 85-109

21. R. Giegerich: Code selection by inversion of order-sorted derivors. Theoretical
Computer Science 73 (1990) 177-211

22. R.S. Glanville, S.L. Graham: A new method for compiler code generation (Ex-
tended Abstract). Conf. Record of the 5th POPL (1978) 231-240

23. R. Hartmann: Combined scheduling and data routing for programmable ASIC
systems. Proc. European Design Automation Conference EDAC'92 (1992)

24. J.L. Hennessy, D.A. Patterson: Computer architecture: a quantitative approach.
Morgan Kaufmann Publishers (1990)

25. C.M. Hoffmann, M.J O'Donnell: Pattern Matching in Trees. JACM 29:1 (1982)
68-95

26. M. Rim, R. Jain: Representing Conditional Branches for High-Level Synthesis
Applications. Proc. 29 Design Automation Conf. (1992) 106-1il

27. D. Landskov, S. Davidson, B.D. Shriver, P.W. Mallet: Local microcode com-
paction techniques. Computing Surveys 12:9 (1980) 261-294

28. D. Lanneer, F. Catthoor, G. Goossens, M. Pauwels, J. Van Meerbergen, H. De
Man: Open-ended System for High-Level Synthesis of Flexible Signal Processors.
Proc. European Design Automation Conf. EDAC'90 (1990) 272-276

29. G. Meyer-Berg: The Library LIB for the Hardware Independent Compiler CBC.
ESPRIT-II Project 2260 "SPRITE" Report CBC.b/Siemens/Y4m12/2 (1992)

30. T.A. Proebsting: Simple and efficient BURS table generation. Proc. PLDI'92,
SIGPLAN Notices 27:6 (1992) 331-340

31. K. Rimey, P.N. Hilfinger: A Compiler for Application-Specific Signal Processors.
VLSI Signal Processing III (1988) 341-351

32. K. Rimey, P.N. Hilfinger: Lazy data routing and greedy scheduling. 21st Annual
Workshop on Microprogramming MICRO-21 (1988) 111-115

33. Discussion: Code Generator Specification Techniques. Led by Chris Fraser, Sum-
marized by J. Boyland and H. Emmelmann, Code Generation - Concepts, Tools
Techniques, Springer (1992) 66-69

