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A b s t r a c t .  Reasoning about prograanming language semantics with an 
automated proof tool requires that the semantics definition be stated in a 
formalism that is suitable for the tool. This paper presents a method to 
transform a structured operational semantics (SOS) definition 8, given by 
a special form of deduction system, into a term rewriting system 7~. This 
system 7~ simulates $ very closely in that sense that the sets of possible 
configuration sequences are essentially the same. Since only standard un- 
conditional rewrite rules are used, every theorem prover based on rewriting 
can be employed to implement this kind of semantics definitions, and so 
to reason about them. 

1 I n t r o d u c t i o n  

A common way to describe the semantics of a p rogramming language is to give 
an operat ional  definition. This means that  an abstract  machine is introduced, 
and tha t  the elements of the language are explained in terms of the machine 
instructions. I f  we want to reason about  such a definition with the help of  a 
proof  support  system, we have to express the explanations within the tool 's  
formalism. 

In this paper,  we demonstra te  a way how this can be done for structured 
operat ional  semantics (SOS) definitions in the sense of  Plotkin (of. [21]), and 
proof  tools based on te rm rewriting. An SOS definition is given by means of 
a transit ion system, where the transit ion relation is presented in form of a set 
of  deduction rules. These rules cannot be used directly as rewrite rules since 
the conditions on the variables that  occur in rewrite rules are more restrictive 
than  those required for deduction rules. Our way to solve this problem is to use 
a l imited subset of A-calculus to model the rules. This subset can be expressed 
completely by rewrite rules; thus no new formalism is needed. We can prove tha t  
our method leads to a very close simulation of the original transit ion system. 
Since only simple rewrite rules are used, the method can be implemented with 
every proof  tool tha t  supports  te rm rewriting. 

* Partially supported by Esprit BRA projects 3104 "ProCoS" and 7071 "ProCoS II" 
and Deutsche Forschungsgemeinschaft, grants La 426/12-1 and La 426/12-2. 
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An application of this approach is presented in [7], where the Larch Prover 
[11] is used as a proof assistant in an equivalence proof for different semantics 
definitions. The motivation for the work emerged from verification work in the 
ESPRIT BRA project ProCoS (Provably Correct Systems, cf. [4]). Several of the 
ProCoS project languages have been defined operationally, and therefore there 
is a need to reason about  SOS definitions. 

We start  in section 2 with a short account of term rewriting, followed in 
section 3 by an introduction to SOS definitions. Section 4 presents the transfor- 
mat ion of deduction into rewrite rules. A summary of the simulation properties 
of the derived rewriting system is given in section 5. The proofs for the results 
can be found in the full version of this paper ([6]). Section 6 describes in which 
way the simulating rewrite system can be applied. 

2 Term rewriting controlled by contexts 

The approach to term rewriting we use in our simulation is a typed one, based on 
a many-sorted logic (for details, cf. [9]). We only employ unconditional rewrite 
rules; so any standard tool can be used for the implementation of the ideas. 

A t e r m  r e w r i t i n g  s y s t e m  ( T R S  for short) is a finite set of rules ~ ~ p, 
where ~ and p are terms of the same type, and p does not contain extra variables 
w. r. t. ~, i .e .  all variables in p are also in k. An f - t e r m  is a term whose 
outermost operator is f .  An f - r u l e  is a rule A --,- p where the left-hand side 
is an f - term.  For a signature 2Y and a set of variables V, T (~U, V) denotes the 
set of all terms built over ~U and V. For n e N0, we define [n] =dy { 1 , . . . ,  n}. 

Our simulation relies on terms of the form T =- let x = el in e2, since this 
is a convenient way to give names to intermediate results: z is a name for the 
result of "evaluating" el. Now T is just another notation for ()tx.ez)el, and so we 
have started using concepts of k-calculus. But we need not merge rewriting and 
/3-reduction as it is done in e. g. [10, 18]; since we only have )t-abstractions that  
are directly applied to non-functional arguments, we can use standard rewrite 
systems to evaluate/~-reductions. This method,  presented e. g. in [1], is based 
on the replacement of bound variables by de Bruijn indices ([5]). For details, cf. 
[6]; in the following, we will only use the let form to write such terms. 

In order to obtain a correct simulation, we need to control the rewriting 
process in two ways (for the examples, assume that  f is a unary operator): 

�9 We want to be able to perform just  one top-level rewriting of an f - t e rm 
t without restricting the rewriting of subterms. This cannot be done by 
ordinary methods like restricting the length of rewriting sequences to 1. 

�9 We want to allow a rule of the form 
f (tl) --" if b then f (t2) else f (tl) 

This rule is obviously non-terminating (in the usual sense), but  we want to 
be able to apply it without successive selections of the else part.  This means 
that  when an instance of b is known to reduce to false, the corresponding 
instance of this rule shall be "de-activated". 
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For the first wish, we need to have some kind of counter, and for the second 
a way of "switching a rule off" (and on again, of course). This is the motivation 
for the following definition. 

D e f i n i t i o n  1. Let ll - "  r l , . . . ,  1, - ~  rn be all the f-rules in our rewrite system. 
Then a c o n t e x t  for  f is an element of {0, 1, *} x {on, off} n. For a e {0, 1, *} 
and s z , . . . ,  Sn E {on, off}, the context ( a, S l , . . . ,  sn ) is called an a - c o n t e x t .  

Contexts can be used for our purposes since they contain a counter compo- 
nent (0, 1 or *) and a switch for each f-rule. Instead of rewriting terms f (t), we 
now rewrite terms f (t) @ (a,  a l , . . . ,  an ) where @ is the special context applica- 
tion operator, a E {0, 1, *} and s l , . . . ,  sn E {on, off}. The intended interpreta- 
tion for a is: 

�9 no more top-level rewriting steps, if a - 0, 
�9 at most one top-level rewriting step, if a = 1, 
�9 no limit on the number of top-level rewriting steps, if a = *. 

The interpretation for the si is that  application of the i-th rule is allowed if 
si -- on and disallowed otherwise. 

But of course it does not suffice to modify the term that  shall be rewritten. We 
also have to build the control mechanism into the f-rules lz --~ rl ,  . . . ,  In --*" rn. 
This is done by supplying all f - terms in all li and r i with appropriate contexts: 
the i-th rule 

f(tl) --~ if b then f(t2) eJse f(tl) 
becomes (assume that  b, tl  and t2 do not contain f-terms) 

f ( t l )  @ ( 1, a l , . . . , s i _ l , o n ,  s i + l , . . . , a n )  
if b then f ( t2 )@ (0, o n , . . . , o n  ) 

else f ( t l )  @ ( 1, s z , . . . ,  8i--1, Off, 8 i + 1 , . . .  , an ) 
In the then case, all rules are switched on, since the rule has been successfully 
applied. Switching rule i off in the else case is the "de-activation" that  was 
mentioned above. 

Usually, the introduction of contexts restricts the rewriting relation of a given 
system 7~. Certain unwanted rewriting sequences are thrown out, but no addi- 
tional sequences become possible. This is because every rewriting step in the 
system with contexts corresponds to a step in the original system; the terms 
themselves are not changed. 

In order not to complicate the control of rewriting, we demand that  f-rules 
must not have nested f- terms on their left-hand sides. This means that  the 
connection between a rule and the corresponding switch position in contexts is 
easy to maintain. 

3 S t r u c t u r e d  o p e r a t i o n a l  s e m a n t i c s  

The operational definition of the semantics of a programming language L is 
accomplished by first defining an abstract machine M and then interpreting 
the constructs of L by means of the machine instructions of M. In Plotkin's 
approach, M is given in the form of a transition system: 
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D e f i n i t i o n 2 .  A t r a n s i t i o n  s y s t e m  is a triple (F, T, --~ ), where F is the set 
of c o n f i g u r a t i o n s ,  T C / ~  is the set of t e r m i n a l  c o n f i g u r a t i o n s ,  and --~ _ 
F x F is the t r a n s i t i o n  r e l a t i o n  satisfying (T • F )  N --~ = 0. 

In order to ease the modelling of interactions with the environment, transi- 
tions are usually labelled with actions: 71 ~ 72 then means that  the step from 
configuration 71 to 72 is taken while performing some action a together with the 
program's environment. Typical  actions of that  kind are communication events. 
There is, however, no greater expressive power in labelled systems. They can be 
simulated by unlabelled systems whose configurations have an extra component 
tha t  contains the sequences of labels; therefore, there is no need to consider 
labelled systems. 

The starting point in defining a transition system is the definition of the 
configurations. So let us assume the two sets F and T given. Furthermore, let 
us assume a signature 5Y and a set of variables V such that  T (~,  V) contains 
all the terms that  we need to express configurations, contexts, and other mathe- 
matical  objects we need. Special subsets of T (Z,  V) a r e / , I  and T I, representing 
schemata for configurations and terminal configurations, respectively. If no con- 
fusion can arise, we will identify configurations and their term representations. 

The transition relation ~ is now defined by means of a special kind of 
deduction system: 

D e f i n i t i o n 3 .  An SOS d e d u c t i o n  s y s t e m  for F and T consists of the term 
sets T (~, V), F' and T ~, and inference rule schemata of the following kind: 

}_ p n L j  * s 
^ Ai+  7) ^ Bk 

The bi are basic predicate terms restricting the input variables in 7 ("precondi- 
tions"), and the Bj are predicate terms restricting the output  variables not in y 
("postconditions"). In transitions, extra variables w. r. t. ~ must only occur on 
the right-hand side; all variables in ~1 must also occur in some other configura- 
tion term. Lj may be 1, denoting one-step transition, o r . ,  denoting an arbitrary 
number of steps. 2 In the latter case, 7~ must be terminal, i. e. a normal form. 

The semantics of this kind of inference rules is as usual: An instance of the 
conclusion is established if the corresponding instance of the hypothesis can be 
established using the rules of the system. All variables of the rules are implicitly 
universally quantified. 

As a consequence of this definition, the restriction to conjunctions in the hy- 
pothesis does not limit the expressive power of the formalism. Any quantifier-free 
hypothesis can be implemented by first transforming it into disjunctive normal 
form and then splitting the rule into several rules with the same conclusion, each 
component of the disjunction forming the hypothesis of a separate rule. 

Lj is not an action as they occur in labelled transition systems (see remarks above). 
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As an additional requirement for SOS deduction systems we demand that  
the rules do not permit  non-terminating proof at tempts.  The simplest example 
for a rule tha t  is forbidden is 

I- 7 ---,- T I 

I- 7 --~ 71 

It has the form of definition 3, but  it cannot be used for proving any tran- 
sition. A way to exclude such unpleasant behaviour is to demand that  all tran- 
sitions in the premise of a rule be smaller than the transition in the conclusion 
w. r. t. some well-founded ordering. The existence of such an ordering is sufficient 
to prevent non-terminating proof attempts.  3 

4 A n  e x a m p l e  f o r  t r a n s f o r m a t i o n  

In this chapter, we will informally describe how we can transform SOS deduction 
rules into term rewriting rules and why some other seemingly "obvious" ways 
do not work. The exact definition of this transformation can be found in [6]. 

4.1 T h e  e x a m p l e  l a n g u a g e  d e f i n i t i o n  

As an example (artificial, but  not overly simple) let us consider an extract  from 
an imperative language L. In L, there is a syntactic class of statements, denoting 
state transformations, and the usual operator ";" for sequential composition: 

Stm~ 9 strut ::= s lmh;  s~mt2 [ . . .  
On the semantic side, we have a set of states Z that  statements can transform. 

The internal structure of states ~ E 27 is not important  to us. A configuration 
can either consist of a s tatement  to be executed together with an initial state 
for this execution, or it can be the final state of an execution: 

Fstmt = Stmt  • ~ U Tstmt 
Tstmt : E 

The execution of a s tatement  list proceeds from left to right. After one com- 
putat ion step, the first s tatement in a list may have terminated, resulting in a 
final state, or there may still be a rest of this s tatement waiting for execution. 
For these two possibilities, we have the following two inference rule schemata: 

I- ( s t m h ,  o')--*Strut crt (1) 
~- ( s~m~l; ~tm~2, ~) ~ s~m~ ( s t m ~ 2 ,  ~1 ) 

Rule (1) deals with the case of termination of s tmh  and (2) with the other case. 
stmf,~ is what remains of stmQ after one computat ion step. 

3 This is the usual method to prove termination of rewrite systems. There the right- 
hand side of a rule must be smaller than its left-ha~d side. 
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4.2 T r a n s f o r m a t i o n  i n t o  r e w r i t e  r u l e s  

The simplest possible approach to the problem of transforming a rule 

~- hypo 
t- 7 --~ 7 ' 

into a rewrite rule is to simulate the rule's semantics ("if  hypo holds, then 
the step from 7 to 7 ~ is possible") with the conditional operator if _ then _ else _: 

7 --~ if hypo then 71 else 7 'l 
where 7"  has to be defined appropriately. But of course this is only possible 
when there are no extra variables in hypo, which is an exceptional case (e. g. 
both (1) and (2) contain extra variables, viz. ~1 and stmt~). Furthermore, the 
problem of defining a suitable 7" is not trivial (we will return to this problem). 

So we have to be a little bit more inventive and have to find a way of disposing 
of the extra variables. Consider rule (1). The extra variable or1 stands for a 
terminal configuration that  is related to ( s tmt l ,  ~r) by the transition relation. 
Viewing this relation more operationally, we can rephrase this as ~r.1 standing 
for a possible (one-step) result of evaluating (strut1, cr ).4 The name o" 1 itself is 
irrelevant; we only need the property that  it denotes a terminal configuration. 

(s tmtl ,  or) does not contain extra variables; so it may safely occur on the 
right-hand side of the rewrite rule that  we are aiming at. Since we are interested 
in its result, we enclose it by an additional operator eval that  is intended to yield 
the result of evaluating its argument. By using let abstraction, i. e. A-terms, we 
can name this result ~1, and we arrive at the rewrite rule 

( stmtl; stmt2, ~) ~ let ~I = eval( ( strut1, ~r)) in ( stmt2, or1 ) (3) 

Note that  ~rl, although not appearing on the left-hand side, is not an extra 
variable. It is a bound variable of A-calculus and, as much as term rewriting is 
concerned, it is just  a constant of type T ~. We assume that  let terms are evaluated 
in applicative order (in call by value fashion). 

So far, this looks like the kind of rule we wanted. But there still remains a 
problem. We have the other rule (2), and when we apply our procedure to this 
rule, we end up with a rewrite rule like 

( s tmt l ; s tmt2 ,~)  --~ let cf = eval( ( s tm t l ,~ )  ) in ( cf l l ; s tmt2 ,  cf ~2) (4) 

where cf is a variable of type Strut • S and ~ 1 and ~ 2 are the projections 
to the first and second component of a tuple, respectively. Now the left-hand 
sides of (3) and (4) are identical, and each of the two rules can be applied in any 
case where the other could be applied, too. In (1) and (2), the decision which 
rule to apply is taken in the hypothesis by means of a type check. In order to 
get correct rewrite rules, we must add this kind of check as well: We must test 
whether the result of evaluating (s tmt l ,  ~ ) is terminal or not. And for the case 
that  the result is non-terminal even though we chose the rule derived from (1), 

4 There may be more than one possible result if the language is non-deterministic. 
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we must provide a "way back" giving a result that  still allows application of the 
other rule: choosing the wrong rule must not lead into a "dead end". 

Implementing the type check is simple: it amounts to having rules of the 
form: 

( stmtl; strut2, o') --~ 
let ~ = ev~Z( (Umtl ,  o ' ) ) in  if ty~,~ ( ~ ) =  T then ( s t m t ~ , ~ )  e l s e . . .  (5) 

( s~mQ; stmt2, ~) -~  
let cf = eval ( ( strut1, ~ ) ) in 

if type (cf) = Strut x T then ( c /  ~ 1; strut2, cf J. 2) else . . .  
(6) 

More problematic is the "way back" that  must be placed in the else parts of 
(5) and (6). Intuitively, we would demand that  in these cases, the original config- 
uration (s tmtl;  stmt2, or) should remain unchanged. But we cannot simply put 
this into the else parts since it would render the rewrite system non-terminating: 
If the type check failed, the same rule could be applied over and over again. 

So we must find a way to indicate that  a rewrite rule has been tried in vain 
(i. e. its type check has been rewritten to false). For each of the rules generated 
from the SOS rules there must be a flag that  can be raised when the else part 
is selected. This, however, is exactly the kind of situation that  the concept of 
contexts has been defined for. Configuration terms never occur in nested form 
on the left-hand side of rewrite rules, so we can supply each of these with an 
appropriate context. 

In our example, there are only two rules. Hence it suffices to introduce con- 
texts as elements of {0, 1, .} x {on, off} 2 and the desired rewrite rules become 
(for the one-step case) 

( stmt 1; strut2, ~) @ ( 1, on, s ) --,- 
let ~ = e v a l ( ( U m ~ , ~ ) @ ( 1 , o n ,  on) )  in 
if type (~1) = T 

then ( s~mt2, ~1 ) @ ( 1, on, on ) 
else ( s~mt~ ; Um~,  ~ ) @ ( i, off, s ) 

(7) 

( strut1; strut2, or) @ ( 1, s, on ) --,- 
let cf = e~az ( ( u m t l ,  ~) @ ( 1, on, o . )  ) in 
if type (cf) = Stmt • 57 (8) 

then ( cf ~ 1; stmf~2, cf ~ 2 ) @ ( 1, on, on ) 
else ( strut1; stm~2, ~ / ~ ( 1, s, off)  

The rules that  define the operator eval guarantee that  its argument is evalu- 
ated appropriately (see section 5.1); so (s tmt l ,  a) is evaluated in one step only. 
Furthermore, we can easily prove that  the else parts are smaller than the left- 
hand sides (under the well-founded ordering off < on); there is no termination 
problem when the type check fails. So we see that  (7) and (8) are rules of the 
kind we have been looking for. In the following, we will call them S O S - d e r i v e d  
ru les .  
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What  remains is to mention what happens if the hypothesis contains simple 
Boolean conditions. The preconditions bi can safely be put into the type check 
since they do not contain extra variables. The conditions Bk restricting the 
intermediate and final configurations must also become part of the type check 
with the extra variables being replaced by suitable selection expressions in the 
style that  has been used in rule (8). And finally, multiple transitions in the 
hypothesis are translated into iterated let expressions. 

5 P r o p e r t i e s  o f  t h e  t r a n s f o r m e d  s y s t e m  

5.1 The basic rewrite  sys tem B 

The purpose of our transformation process is to provide a way to simulate pro- 
gram executions as specified by the operational semantics with the help of rewrit- 
ing sequences. Since we want to employ "pure" rewriting and not rewriting mod- 
ulo some equational theory, we also have to supply rewrite rules for modelling 
properties of the underlying data types. These rules form the basic rewrite sys- 
tem B. We require B to allow all rewritings that  are not directly connected 
to application of SOS rules. Especially, all conditions should be decidable by 
rewriting. This amounts to demanding that  B be complete and correct in the 
logical sense (w. r. t. the standard interpretation of logical symbols), and also 
complete, i. e. confluent and terminating, in the sense of term rewriting. 5 So we 
have the g e n e r a l  a s s u m p t i o n  that  B provides (in the logical sense) a correct 
and complete decision procedure for all conditions that  do not depend on the 
semantics definition. This means that  each term expressing such a condition has 
exactly one normal form w. r. t. B, viz. either true or false. 

The operator eval plays a special rSle. It only occurs in terms of the form 
eval ( 7 @ k ) ,  and its purpose is to ensure that  its argument configuration 7 is 
evaluated according to the context k. This is achieved by retaining the eval and 
the context as long as further evaluation is needed; only configurations in a 0- 
context or a terminal configuration in a *-context are completely evaluated. So 
we have the rules 

e v a l ( 7 ~  (0, . . . ) )  --,- 7 
~val( t ~ (  , , . . . )  )- . .  ~ 

where 7 is a variable for configurations and t for terminal configurations. 

5.2 S i m u l a t i o n  

The transformation procedure has been devised in order to produce a rewrite 
system T~ that  models a semantics definition S as closely as possible, the charac- 
teristic feature being the set of possible transition sequences. Therefore the most 
interesting questions to ask about 7r are what rewriting sequences are possible 
and how they are related to the transition sequences of S. We will see that  the 

5 The practical consequences of a system not fulfilling these demands axe discussed in 
[7]. 
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relation between T~ and S is indeed very close; if rewriting is considered mod- 
ulo the equational theory of the basic system B, we have a 1-1 correspondence 
between rewriting sequences and "flattened" transition sequences (where steps 
needed to establish a premise are also visible). 

Let S be defined by the transition system (F, T, "-"s ), and let --*'s be 
given by a set of N E iN deduction rules. We will use the following additional 
abbreviations for contexts, where k E [Y] and rj E {on,off} for j e [N]: 

K01_ )[''~ =a! ( 0, o n , . . .  ,on ) 
K1 =4$ ( 1 , r l , . . . , r k - l , ~  r k + l  . . . .  , rN) 
KS =dr (* ,on , . . . , on )  
K (k) =d] (*, r l , . . - , r k - l , on ,  r k + l , . . . , r N )  

Overview:  The simulation of S by T~ can be described as below. The inter- 
mediate terms in the rewriting sequence result from applying rules from 7~ to 
configuration terms. They need not themselves be configuration terms, but they 
are equal to such a term modulo =R. 

70 -"- 71 *.. 72 ~ .... 

I I I  r iti~ 
. . . .  . . . .  . . . .  - - , ' -  . . . .  

rewriting steps 

Each transition step is modelled by a rewriting sequence in T~ which generally 
has more than just one step. In order to be allowed to perform one step 71 "*'s 72 
using the transition system, we usually have to perform other transitions before 
that correspond to premises of transition rules. These "hidden" transitions only 
contribute indirectly to 71 "~'s 72 by determining parts of 72- So the transition 
process is not organized in linear form; each transition is equipped with a tree 
of other transitions (a proof tree) that justifies it. The corresponding rewriting 
process, however, can only construct flat sequences of terms. Therefore all the 
hidden transitions become part of the simulating sequence 71 @ KI - ~ ' n  7~ @ KI 
as well. Furthermore, rewriting makes use of the rules in B, while transition takes 
place modulo =B. 

Simulation works in the other direction as well. If we have a rewriting se- 
quence that uses one SOS-derived rule, then this sequence corresponds to a 
transition sequence that is obtained via this particular SOS rule. 

We have the following simulation results: 

One - s t ep  comple t enes s  

V7,7' E E Vk E [N] Vr l , . . . , rk -z ,  rk+ l , . . . , rN  E {on, of[}: 
if 7 "~s  7' using rule k then 7 ~ K(k) +--'~'T~ V" @ Kof 

(9) 
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This is the basic building stone for the simulation results, viz. the simulation of 
one transition step by a rewriting sequence. 

One - s t ep  cor rec tness  
VT, 7' E F Vk E [N] Vr t , . . . ,  rk-t ,  rk+l , . . . ,  rN e {on, off} : 

if 7 @ K(~) --~ '~ 7' @ K0I then 7 -~s  7' (10) 

The names "correctness" and "completeness" are used in the logical sense: Any 
transition corresponds to a rewriting sequence (completeness), and any rewriting 
sequence that contains one outermost application of an SOS-derived rule corre- 
sponds to a transition step (correctness). Note how the use of 1-contexts K (k) 
restricts rewriting to exactly one transition-related step. 

N o r m a l  fo rm  comple t eness  and  cor rec tness  

VvE FVt ET :v-Z~st ~=~ 7@Kf -Z~t@K! (11) 

Building up inductively from the one-step results, we can obtain simulation prop- 
erties for longer transition sequences. One special case is of particular interest: 
sequences that end with a terminal configuration describe the complete evalu- 
ation of their initial configuration. Furthermore, expressions like 7 - ~ s  t (7 E 
F, t E T) may occur in the premises of SOS rules. 

The proofs for these results can be found in [6]. Because one-step and normal 
form transitions are intertwined via transitions in the premises of rules, all results 
must be proved by one simultaneous induction (on the number of applications 
of SOS-derived rules). 

D ive rgence  comple t eness  
From one-step completess, we immediately obtain that each infinite transition 
sequence corresponds to an infinite rewriting sequence. So non-termination is 
preserved by the rewrite system: 

V {7 (0} e r N : 
(Vi E N : 7({) -4,- s 7({+1)) =~ (V/E N : 7 ({) @ K! -~-~ 7(i+t) @ K!)  (12) 

Dive rgence  cor rec tness  
On the other hand I all infinite rewriting sequences correpond to "infinite be- 
haviour" of the transition system. Because of the additional requirement in 
section 3 about terminating transition systems, the rewriting sequence keeps 
"coming back" to configurations, i. e. each tail of the sequence contains a con- 
figuration-context pair; therefore one-step correctness yields the existence of a 
corresponding infinite transition sequence: 

V7 6 F V{t(0} E T (Z, V) N : t(t) = 7 @ K! A (V{ E I~ : t(0 "~'~z t(~+l)) 
9 {7(0} E/~N 9j : I~ --*- I~1 strictly monotonic : (13) 
(Vi e I~1:7(0 = (t(J(0) I 1) A 7(0 "*'s .f(i+O) 

5.3 Conf luence  and  t e r m i n a t i o n  

The system /~ consists of two parts: the basic system B and the system T~' 
containing the SOS-derived rules. As already mentioned in section 5.1, we assume 



160 

B to be complete, i. e. confluent and terminating, so there are no problems with 
this part. But for 7~', the situation is totally different because these properties 
are completely determined by the semantics of the language L. 

As we have seen in the previous section, every rewriting sequence in 7~ has 
a direct counterpart in S and vice versa. This has immediate consequences for 
confluence and termination. Assume 7d is terminating. This means that there is 
no configuration-context pair that is the initial point for an infinite rewriting se- 
quence. Therefore there is also no configuration that starts an infinite transition 
sequence in S. Obviously, this property is equivalent to L being a language that 
only contains terminating programs. 

For confluence, the situation is very similar. Consider rewriting modulo the 
equational theory E generated by the basic system B. Then the only rewrite rules 
that we need are those derived from the SOS system. Confluence of this rewrite 
system means that every configuration has at most one normal form (modulo 
E). As a consequence, for each initial state and each program starting in this 
state, there is at most one final state, and hence the programming language must 
be deterministic. 6 

So typically 7~ is not complete. In most cases, it will be non-terminating, 
and therefore normalization of configuration terms must be handled with care. 
Languages in the tradition of CSP ([16]) and Occam ([17]) do not even lead to 
confluent systems since they contain a non-deterministic choice operator. This 
might seem a serious drawback of the method, but it only reflects the desire 
to have a rewrite system that models the semantics as closely as possible. And 
the problem is very well known: Interpreters for functional languages, say, usu- 
ally do not terminate when interpreting programs that are (semantically) "nbn- 
terminating", disregarding restrictions like finite stack size. 

There is also no point in completing the system 7~, e. g. b y  applying the 
Knuth-Bendix procedure (cf. [19]). Completion would add new rules to the sys- 
tem, and for these rules there would be no counterpart in the original SOS 
system. So the simulation property would disappear; essentially, the result of 
completion corresponds to a language where all non-determinism has been arti- 
ficially removed by declaring different results for one program as equal. 

6 A p p l i c a t i o n  

The method presented has been successfully applied in solving a problem orig- 
inating from the ProCoS project. For a language named PL0 rt, two different 
semantics definitions have been given (SOS and denotational), and the aim is to 
prove their equivalence. In [20], a standard mathematical hand proof is presented, 
its single steps mainly being based on induction on the structure of programs. 
A typical feature of such proofs is that subproofs are repeated in several places 
identically or only slightly modified, due to the similarity of semantics defini- 
tions for different language constructs. Therefore the use of an automated tool 
to check hand proofs or to assist in them is desirable. 

r This requirement can be slightly weakened; e. g. the evaluation order of parameters 
for function calls is unimportant as long as this evaluation has no side effects. 



161 

First results of applying the Larch Prover ([11]) to this problem are reported 
in [7]. By now, all the essential steps of the whole equivalence proof have been 
completed. For the basic idea behind application of the transformed rewrite sys- 
tem 7~ let us consider the subproblem of proving the equivalence of the semantics 
definitions of expressions (in a slightly simplified form). 

Expressions ezp E Expr  are evaluated w. r. t. to an environment p E OpEnv 
and a state cr E 2J, whose internal structure are not important  here. The result is 
a value v E Va]. So configurations for the operational semantics are either tuples 
( e zp ,  p, cr I E Ezpr  x OpEnv x Z (non-terminal) or values from Va] (terminal). 
The denotational semantics for expressions is given by a function ~ : Expr x 
OpEnv x State ~ Va], and we have to prove: 

Vezp e Ezpr ,  p E OpEnv, r Z :  ( exp, p, ~ )  " - '~Expr  ~[exp] p~r (14) 

where ~ Expr is the SOS transition relation for expressions. 
Now we transform * ~ p r  into rewrite rules as described above, generat- 

ing the system 7~ = 7~ I U B. The denotational semantics is defined in form of 
equations that  can directly be turned into rewrite rules; these rules belong to 
the basic system B. 

The proof that  we have performed with the help of LP proceeds by induction 
on the structure of expressions. This form of induction is supported by LP; the 
necessary induction subgoals and hypotheses are generated automatically. For 
given ezp, p and ~r, the proof is structured as follows: 

�9 First g[exp~ per is evaluated using rules from B; this results in some term 71- 
�9 Next, the configuration/context term t = eval ( ( exp, p, r @ ( 1, o n , . . . ,  on ) ) 

is evaluated using all the rules in 7~; this results in some term 72- In this 
phase, the induction hypotheses for the subexpressions of ezp will also be 
used as rewrite rules. 
Note that  the rules for eval (cf. section 5.1) together with the 1-context in t 
guarantee a one-step evaluation of ( exp, p, a ). 

�9 Finally, equality of 71 and 72 is proved using the rules of B. 

After the last step, we have proved 

t -- eval ( ( exp, p, a)  @ ( 1, o n , . . . ,  on ) ) "-~'7r 72 =t~ 71 B " ~  ~[exp] po" 

eval operators are only introduced by the rules simulating the SOS transition 
rules. Thus 71 cannot contain such an operator, and there must be a point in 
the above rewriting sequence where it is removed from t. From the special form 
of the eval elimination rules (cf. section 5.1), it follows that  there must be an 
intermediate configuration term with a 0-context in the rewriting sequence (this 
term is the result of a successful application of a rule from T~): 

eval ( ( ezp, p, ~ ) @ (1,  on, . . . , on ) ) +*Taeva l (7~@(0 , . . . ) ) - -~ -B72  

The eval elimination could not be applied in the first subsequence; so we 
have 

(exp,p,~)@(1,on,...,on) +'~'~7~@(0,...) 
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and by one-step correctness (9) the rewriting proof turns out to be sufficient to 
prove the original goal (14) since the "*'B steps can be neglected (transitions 
with the SOS system take take place modulo --B)- 

Proofs about non-deterministic languages normally cannot be performed in 
a single step. For in such proofs, each possible result for a non-deterministic 
construct has to be considered, and this is most easily done by subsequently 
selecting all branches (by deleting those SOS rules that lead to other branches). 

The Larch Prover turned out to be a suitable tool for implementing the 
transformed SOS rules since it is largely oriented towards easy formulation and 
application of rewrite rules. A major advantage of the system concerning our 
simulation is that normally intermediate results occurring in rewriting sequences 
are not displayed. This means that appliciation of the rules in 7~' remains com- 
pletely hidden, and therefore the user is not confused by terms appearing dur- 
ing E-reduction or evaluation of type check conditions in SOS rules. Since the 
transformation of SOS rules into rewrite rules is very systematic, it was easy to 
implement a tool that generates LP input from SOS system descriptions. This 
tool has proved very helpful in the example proofs: 

Another useful feature of LP's is that the user can control the rewriting 
process to a very large extent. E. g. the evaluation order can be changed (inside- 
out or outside-in), and rewrite rules can be prevented from being considered. 
This can be used to increase the efficiency of the system, since typically large 
groups of rules are known not to be applicable, and so the time for testing 
whether they match a given term can be saved. 

Among the disadvantages of LP are the lack of powerful proof control mech- 
anisms like strategies or tactics (as they are provided e. g. in HOL [13] or in 
KIV [15]) and its weak type concept. LP only supports a subset of many-sorted 
first-order logic. During our experiments, this never prevented any proofs, but 
it made their formulation a lot more complicated. In an order-sorted system like 
OBJ3 [12] or PVS [22], terms could be kept smaller 7, and in a higher-order 
logic (present e. g. in tIOL and PVS), many properties could be formulated 
much easier, since the rules about function application and extensionality would 
be supplied automatically. These rules can be simulated in LP's first-order logic, 
but a large number of explicit rules are needed for this. 

7 C o n c l u s i o n  

In this paper, we have presented a way to simulate a special form of SOS defi- 
nitions by standard term rewriting systems. Another approach to relating SOS 
definitions and equational logic is presented in [2]. Here an algorithm is de- 
scribed that transforms SOS rules into set of equations such that every true 
formula about the language can be proved in this theory. In [3] it is proved that 
for SOS definitions that only describe finite systems, these equations can be 
transformed into a complete term rewriting system. This technique, however, is 
restricted to SOS rules in a special format (GSOS) that is incomparable to the 

r If we have sorts T1 C T2 _C T3, we would like to be allowed to write t E T3 for all 
t E T1. In LP, however, we have to write the injections, e. g. in-T3(in-T2(t)). 
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format  of definition 3. There exist other special rule formats, e. g. the tyfl/tyxt 
format  of [14], that  have received special attention because of certain pleasant 
properties tha t  such systems possess. These formats are less restrictive than the 
GSOS format,  but such definitions have not yet been axiomatized by equations 
or rewrite rules. [8] shows how to model SOS definitions with other methods 
than term rewriting, using the facilities of the HOL system. 

Other ways to combine A-calculus and term rewriting are described in [18] 
and [10]. But both approaches extend the A-calculus, and do not t ry  to include 
some of its concepts in pure term rewriting. 

Our method provides a very close simulation of transition rules by standard 
term rewriting rules. Since no additional formalism is needed, ordinary rewriting- 
based proof assistants can be used to implement it in reasoning about SOS 
definitions. In [7], we have described a successful example application where 
the Larch Prover [11] is used to assist in a proof of equivalence between an 
operational and a denotational semantics definition. During this experiment, 
it turned out that  the rather complicated structure of the SOS-derived rules 
does not lead to difficulties. On the one hand, these rules can be generated 
automatically from the original SOS form, due to their systematic definition. 
And on the other hand, their application usually remains hidden in normalization 
processes. This means that  the user of the proof tool need not worry about 
involved intermediate terms, but can concentrate on the logical structure of the 
proofi 
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