
Simulation of SOS Definitions
with Term Rewriting Systems

Karl-Heinz Buth*

Institut ffir Informatik und Praktische Mathematik
Christian-Albrechts- Universit ~t Kiel

Preusserstr. 1-9, D-24105 Kiel, Germany
e-mM]: khb@inf ormatik, uni-kiel, d400. de

A b s t r a c t . Reasoning about prograanming language semantics with an
automated proof tool requires that the semantics definition be stated in a
formalism that is suitable for the tool. This paper presents a method to
transform a structured operational semantics (SOS) definition 8, given by
a special form of deduction system, into a term rewriting system 7~. This
system 7~ simulates $ very closely in that sense that the sets of possible
configuration sequences are essentially the same. Since only standard un-
conditional rewrite rules are used, every theorem prover based on rewriting
can be employed to implement this kind of semantics definitions, and so
to reason about them.

1 I n t r o d u c t i o n

A common way to describe the semantics of a p rogramming language is to give
an operat ional definition. This means that an abstract machine is introduced,
and tha t the elements of the language are explained in terms of the machine
instructions. I f we want to reason about such a definition with the help of a
proof support system, we have to express the explanations within the tool 's
formalism.

In this paper, we demonstra te a way how this can be done for structured
operat ional semantics (SOS) definitions in the sense of Plotkin (of. [21]), and
proof tools based on te rm rewriting. An SOS definition is given by means of
a transit ion system, where the transit ion relation is presented in form of a set
of deduction rules. These rules cannot be used directly as rewrite rules since
the conditions on the variables that occur in rewrite rules are more restrictive
than those required for deduction rules. Our way to solve this problem is to use
a l imited subset of A-calculus to model the rules. This subset can be expressed
completely by rewrite rules; thus no new formalism is needed. We can prove tha t
our method leads to a very close simulation of the original transit ion system.
Since only simple rewrite rules are used, the method can be implemented with
every proof tool tha t supports te rm rewriting.

* Partially supported by Esprit BRA projects 3104 "ProCoS" and 7071 "ProCoS II"
and Deutsche Forschungsgemeinschaft, grants La 426/12-1 and La 426/12-2.

151

An application of this approach is presented in [7], where the Larch Prover
[11] is used as a proof assistant in an equivalence proof for different semantics
definitions. The motivation for the work emerged from verification work in the
ESPRIT BRA project ProCoS (Provably Correct Systems, cf. [4]). Several of the
ProCoS project languages have been defined operationally, and therefore there
is a need to reason about SOS definitions.

We start in section 2 with a short account of term rewriting, followed in
section 3 by an introduction to SOS definitions. Section 4 presents the transfor-
mat ion of deduction into rewrite rules. A summary of the simulation properties
of the derived rewriting system is given in section 5. The proofs for the results
can be found in the full version of this paper ([6]). Section 6 describes in which
way the simulating rewrite system can be applied.

2 Term rewriting controlled by contexts

The approach to term rewriting we use in our simulation is a typed one, based on
a many-sorted logic (for details, cf. [9]). We only employ unconditional rewrite
rules; so any standard tool can be used for the implementation of the ideas.

A t e r m r e w r i t i n g s y s t e m (T R S for short) is a finite set of rules ~ ~ p,
where ~ and p are terms of the same type, and p does not contain extra variables
w. r. t. ~, i .e . all variables in p are also in k. An f - t e r m is a term whose
outermost operator is f . An f - r u l e is a rule A --,- p where the left-hand side
is an f - term. For a signature 2Y and a set of variables V, T (~U, V) denotes the
set of all terms built over ~U and V. For n e N0, we define [n] =dy { 1 , . . . , n}.

Our simulation relies on terms of the form T =- let x = el in e2, since this
is a convenient way to give names to intermediate results: z is a name for the
result of "evaluating" el. Now T is just another notation for ()tx.ez)el, and so we
have started using concepts of k-calculus. But we need not merge rewriting and
/3-reduction as it is done in e. g. [10, 18]; since we only have)t-abstractions that
are directly applied to non-functional arguments, we can use standard rewrite
systems to evaluate/~-reductions. This method, presented e. g. in [1], is based
on the replacement of bound variables by de Bruijn indices ([5]). For details, cf.
[6]; in the following, we will only use the let form to write such terms.

In order to obtain a correct simulation, we need to control the rewriting
process in two ways (for the examples, assume that f is a unary operator):

�9 We want to be able to perform just one top-level rewriting of an f - t e rm
t without restricting the rewriting of subterms. This cannot be done by
ordinary methods like restricting the length of rewriting sequences to 1.

�9 We want to allow a rule of the form
f (tl) --" if b then f (t2) else f (tl)

This rule is obviously non-terminating (in the usual sense), but we want to
be able to apply it without successive selections of the else part. This means
that when an instance of b is known to reduce to false, the corresponding
instance of this rule shall be "de-activated".

152

For the first wish, we need to have some kind of counter, and for the second
a way of "switching a rule off" (and on again, of course). This is the motivation
for the following definition.

D e f i n i t i o n 1. Let ll - " r l , . . . , 1, - ~ rn be all the f-rules in our rewrite system.
Then a c o n t e x t for f is an element of {0, 1, *} x {on, off} n. For a e {0, 1, *}
and s z , . . . , Sn E {on, off}, the context (a, S l , . . . , sn) is called an a - c o n t e x t .

Contexts can be used for our purposes since they contain a counter compo-
nent (0, 1 or *) and a switch for each f-rule. Instead of rewriting terms f (t), we
now rewrite terms f (t) @ (a, a l , . . . , an) where @ is the special context applica-
tion operator, a E {0, 1, *} and s l , . . . , sn E {on, off}. The intended interpreta-
tion for a is:

�9 no more top-level rewriting steps, if a - 0,
�9 at most one top-level rewriting step, if a = 1,
�9 no limit on the number of top-level rewriting steps, if a = *.

The interpretation for the si is that application of the i-th rule is allowed if
si -- on and disallowed otherwise.

But of course it does not suffice to modify the term that shall be rewritten. We
also have to build the control mechanism into the f-rules lz --~ rl , . . . , In --*" rn.
This is done by supplying all f - terms in all li and r i with appropriate contexts:
the i-th rule

f(tl) --~ if b then f(t2) eJse f(tl)
becomes (assume that b, tl and t2 do not contain f-terms)

f (t l) @ (1, a l , . . . , s i _ l , o n , s i + l , . . . , a n)
if b then f (t2)@ (0, o n , . . . , o n)

else f (t l) @ (1, s z , . . . , 8i--1, Off, 8 i + 1 , . . . , an)
In the then case, all rules are switched on, since the rule has been successfully
applied. Switching rule i off in the else case is the "de-activation" that was
mentioned above.

Usually, the introduction of contexts restricts the rewriting relation of a given
system 7~. Certain unwanted rewriting sequences are thrown out, but no addi-
tional sequences become possible. This is because every rewriting step in the
system with contexts corresponds to a step in the original system; the terms
themselves are not changed.

In order not to complicate the control of rewriting, we demand that f-rules
must not have nested f- terms on their left-hand sides. This means that the
connection between a rule and the corresponding switch position in contexts is
easy to maintain.

3 S t r u c t u r e d o p e r a t i o n a l s e m a n t i c s

The operational definition of the semantics of a programming language L is
accomplished by first defining an abstract machine M and then interpreting
the constructs of L by means of the machine instructions of M. In Plotkin's
approach, M is given in the form of a transition system:

153

D e f i n i t i o n 2 . A t r a n s i t i o n s y s t e m is a triple (F, T, --~), where F is the set
of c o n f i g u r a t i o n s , T C / ~ is the set of t e r m i n a l c o n f i g u r a t i o n s , and --~ _
F x F is the t r a n s i t i o n r e l a t i o n satisfying (T • F) N --~ = 0.

In order to ease the modelling of interactions with the environment, transi-
tions are usually labelled with actions: 71 ~ 72 then means that the step from
configuration 71 to 72 is taken while performing some action a together with the
program's environment. Typical actions of that kind are communication events.
There is, however, no greater expressive power in labelled systems. They can be
simulated by unlabelled systems whose configurations have an extra component
tha t contains the sequences of labels; therefore, there is no need to consider
labelled systems.

The starting point in defining a transition system is the definition of the
configurations. So let us assume the two sets F and T given. Furthermore, let
us assume a signature 5Y and a set of variables V such that T (~, V) contains
all the terms that we need to express configurations, contexts, and other mathe-
matical objects we need. Special subsets of T (Z, V) a r e / , I and T I, representing
schemata for configurations and terminal configurations, respectively. If no con-
fusion can arise, we will identify configurations and their term representations.

The transition relation ~ is now defined by means of a special kind of
deduction system:

D e f i n i t i o n 3 . An SOS d e d u c t i o n s y s t e m for F and T consists of the term
sets T (~, V), F' and T ~, and inference rule schemata of the following kind:

}_ p n L j * s
^ Ai+ 7) ^ Bk

The bi are basic predicate terms restricting the input variables in 7 ("precondi-
tions"), and the Bj are predicate terms restricting the output variables not in y
("postconditions"). In transitions, extra variables w. r. t. ~ must only occur on
the right-hand side; all variables in ~1 must also occur in some other configura-
tion term. Lj may be 1, denoting one-step transition, o r . , denoting an arbitrary
number of steps. 2 In the latter case, 7~ must be terminal, i. e. a normal form.

The semantics of this kind of inference rules is as usual: An instance of the
conclusion is established if the corresponding instance of the hypothesis can be
established using the rules of the system. All variables of the rules are implicitly
universally quantified.

As a consequence of this definition, the restriction to conjunctions in the hy-
pothesis does not limit the expressive power of the formalism. Any quantifier-free
hypothesis can be implemented by first transforming it into disjunctive normal
form and then splitting the rule into several rules with the same conclusion, each
component of the disjunction forming the hypothesis of a separate rule.

Lj is not an action as they occur in labelled transition systems (see remarks above).

154

As an additional requirement for SOS deduction systems we demand that
the rules do not permit non-terminating proof at tempts. The simplest example
for a rule tha t is forbidden is

I- 7 ---,- T I

I- 7 --~ 71

It has the form of definition 3, but it cannot be used for proving any tran-
sition. A way to exclude such unpleasant behaviour is to demand that all tran-
sitions in the premise of a rule be smaller than the transition in the conclusion
w. r. t. some well-founded ordering. The existence of such an ordering is sufficient
to prevent non-terminating proof attempts. 3

4 A n e x a m p l e f o r t r a n s f o r m a t i o n

In this chapter, we will informally describe how we can transform SOS deduction
rules into term rewriting rules and why some other seemingly "obvious" ways
do not work. The exact definition of this transformation can be found in [6].

4.1 T h e e x a m p l e l a n g u a g e d e f i n i t i o n

As an example (artificial, but not overly simple) let us consider an extract from
an imperative language L. In L, there is a syntactic class of statements, denoting
state transformations, and the usual operator ";" for sequential composition:

Stm~ 9 strut ::= s lmh; s~mt2 [. . .
On the semantic side, we have a set of states Z that statements can transform.

The internal structure of states ~ E 27 is not important to us. A configuration
can either consist of a s tatement to be executed together with an initial state
for this execution, or it can be the final state of an execution:

Fstmt = Stmt • ~ U Tstmt
Tstmt : E

The execution of a s tatement list proceeds from left to right. After one com-
putat ion step, the first s tatement in a list may have terminated, resulting in a
final state, or there may still be a rest of this s tatement waiting for execution.
For these two possibilities, we have the following two inference rule schemata:

I- (s t m h , o')--*Strut crt (1)
~- (s~m~l; ~tm~2, ~) ~ s~m~ (s t m ~ 2 , ~1)

Rule (1) deals with the case of termination of s tmh and (2) with the other case.
stmf,~ is what remains of stmQ after one computat ion step.

3 This is the usual method to prove termination of rewrite systems. There the right-
hand side of a rule must be smaller than its left-ha~d side.

155

4.2 T r a n s f o r m a t i o n i n t o r e w r i t e r u l e s

The simplest possible approach to the problem of transforming a rule

~- hypo
t- 7 --~ 7 '

into a rewrite rule is to simulate the rule's semantics ("if hypo holds, then
the step from 7 to 7 ~ is possible") with the conditional operator if _ then _ else _:

7 --~ if hypo then 71 else 7 'l
where 7" has to be defined appropriately. But of course this is only possible
when there are no extra variables in hypo, which is an exceptional case (e. g.
both (1) and (2) contain extra variables, viz. ~1 and stmt~). Furthermore, the
problem of defining a suitable 7" is not trivial (we will return to this problem).

So we have to be a little bit more inventive and have to find a way of disposing
of the extra variables. Consider rule (1). The extra variable or1 stands for a
terminal configuration that is related to (s tmt l , ~r) by the transition relation.
Viewing this relation more operationally, we can rephrase this as ~r.1 standing
for a possible (one-step) result of evaluating (strut1, cr).4 The name o" 1 itself is
irrelevant; we only need the property that it denotes a terminal configuration.

(s tmtl , or) does not contain extra variables; so it may safely occur on the
right-hand side of the rewrite rule that we are aiming at. Since we are interested
in its result, we enclose it by an additional operator eval that is intended to yield
the result of evaluating its argument. By using let abstraction, i. e. A-terms, we
can name this result ~1, and we arrive at the rewrite rule

(stmtl; stmt2, ~) ~ let ~I = eval((strut1, ~r)) in (stmt2, or1) (3)

Note that ~rl, although not appearing on the left-hand side, is not an extra
variable. It is a bound variable of A-calculus and, as much as term rewriting is
concerned, it is just a constant of type T ~. We assume that let terms are evaluated
in applicative order (in call by value fashion).

So far, this looks like the kind of rule we wanted. But there still remains a
problem. We have the other rule (2), and when we apply our procedure to this
rule, we end up with a rewrite rule like

(s tmt l ; s tmt2 ,~) --~ let cf = eval((s tm t l ,~)) in (cf l l ; s tmt2 , cf ~2) (4)

where cf is a variable of type Strut • S and ~ 1 and ~ 2 are the projections
to the first and second component of a tuple, respectively. Now the left-hand
sides of (3) and (4) are identical, and each of the two rules can be applied in any
case where the other could be applied, too. In (1) and (2), the decision which
rule to apply is taken in the hypothesis by means of a type check. In order to
get correct rewrite rules, we must add this kind of check as well: We must test
whether the result of evaluating (s tmt l , ~) is terminal or not. And for the case
that the result is non-terminal even though we chose the rule derived from (1),

4 There may be more than one possible result if the language is non-deterministic.

156

we must provide a "way back" giving a result that still allows application of the
other rule: choosing the wrong rule must not lead into a "dead end".

Implementing the type check is simple: it amounts to having rules of the
form:

(stmtl; strut2, o') --~
let ~ = ev~Z((Umtl , o ')) in if ty~,~ (~) = T then (s t m t ~ , ~) e l s e . . . (5)

(s~mQ; stmt2, ~) -~
let cf = eval ((strut1, ~)) in

if type (cf) = Strut x T then (c / ~ 1; strut2, cf J. 2) else . . .
(6)

More problematic is the "way back" that must be placed in the else parts of
(5) and (6). Intuitively, we would demand that in these cases, the original config-
uration (s tmtl; stmt2, or) should remain unchanged. But we cannot simply put
this into the else parts since it would render the rewrite system non-terminating:
If the type check failed, the same rule could be applied over and over again.

So we must find a way to indicate that a rewrite rule has been tried in vain
(i. e. its type check has been rewritten to false). For each of the rules generated
from the SOS rules there must be a flag that can be raised when the else part
is selected. This, however, is exactly the kind of situation that the concept of
contexts has been defined for. Configuration terms never occur in nested form
on the left-hand side of rewrite rules, so we can supply each of these with an
appropriate context.

In our example, there are only two rules. Hence it suffices to introduce con-
texts as elements of {0, 1, .} x {on, off} 2 and the desired rewrite rules become
(for the one-step case)

(stmt 1; strut2, ~) @ (1, on, s) --,-
let ~ = e v a l ((U m ~ , ~) @ (1 , o n , on)) in
if type (~1) = T

then (s~mt2, ~1) @ (1, on, on)
else (s~mt~ ; Um~, ~) @ (i, off, s)

(7)

(strut1; strut2, or) @ (1, s, on) --,-
let cf = e~az ((u m t l , ~) @ (1, on, o .)) in
if type (cf) = Stmt • 57 (8)

then (cf ~ 1; stmf~2, cf ~ 2) @ (1, on, on)
else (strut1; stm~2, ~ / ~ (1, s, off)

The rules that define the operator eval guarantee that its argument is evalu-
ated appropriately (see section 5.1); so (s tmt l , a) is evaluated in one step only.
Furthermore, we can easily prove that the else parts are smaller than the left-
hand sides (under the well-founded ordering off < on); there is no termination
problem when the type check fails. So we see that (7) and (8) are rules of the
kind we have been looking for. In the following, we will call them S O S - d e r i v e d
ru les .

157

What remains is to mention what happens if the hypothesis contains simple
Boolean conditions. The preconditions bi can safely be put into the type check
since they do not contain extra variables. The conditions Bk restricting the
intermediate and final configurations must also become part of the type check
with the extra variables being replaced by suitable selection expressions in the
style that has been used in rule (8). And finally, multiple transitions in the
hypothesis are translated into iterated let expressions.

5 P r o p e r t i e s o f t h e t r a n s f o r m e d s y s t e m

5.1 The basic rewrite sys tem B

The purpose of our transformation process is to provide a way to simulate pro-
gram executions as specified by the operational semantics with the help of rewrit-
ing sequences. Since we want to employ "pure" rewriting and not rewriting mod-
ulo some equational theory, we also have to supply rewrite rules for modelling
properties of the underlying data types. These rules form the basic rewrite sys-
tem B. We require B to allow all rewritings that are not directly connected
to application of SOS rules. Especially, all conditions should be decidable by
rewriting. This amounts to demanding that B be complete and correct in the
logical sense (w. r. t. the standard interpretation of logical symbols), and also
complete, i. e. confluent and terminating, in the sense of term rewriting. 5 So we
have the g e n e r a l a s s u m p t i o n that B provides (in the logical sense) a correct
and complete decision procedure for all conditions that do not depend on the
semantics definition. This means that each term expressing such a condition has
exactly one normal form w. r. t. B, viz. either true or false.

The operator eval plays a special rSle. It only occurs in terms of the form
eval (7 @ k) , and its purpose is to ensure that its argument configuration 7 is
evaluated according to the context k. This is achieved by retaining the eval and
the context as long as further evaluation is needed; only configurations in a 0-
context or a terminal configuration in a *-context are completely evaluated. So
we have the rules

e v a l (7 ~ (0, . . .)) --,- 7
~val(t ~ (, , . . .))- . . ~

where 7 is a variable for configurations and t for terminal configurations.

5.2 S i m u l a t i o n

The transformation procedure has been devised in order to produce a rewrite
system T~ that models a semantics definition S as closely as possible, the charac-
teristic feature being the set of possible transition sequences. Therefore the most
interesting questions to ask about 7r are what rewriting sequences are possible
and how they are related to the transition sequences of S. We will see that the

5 The practical consequences of a system not fulfilling these demands axe discussed in
[7].

158

relation between T~ and S is indeed very close; if rewriting is considered mod-
ulo the equational theory of the basic system B, we have a 1-1 correspondence
between rewriting sequences and "flattened" transition sequences (where steps
needed to establish a premise are also visible).

Let S be defined by the transition system (F, T, "-"s), and let --*'s be
given by a set of N E iN deduction rules. We will use the following additional
abbreviations for contexts, where k E [Y] and rj E {on,off} for j e [N]:

K01_)[''~ =a! (0, o n , . . . ,on)
K1 =4$ (1 , r l , . . . , r k - l , ~ r k + l , rN)
KS =dr (* ,on , . . . , on)
K (k) =d] (*, r l , . . - , r k - l , on , r k + l , . . . , r N)

Overview: The simulation of S by T~ can be described as below. The inter-
mediate terms in the rewriting sequence result from applying rules from 7~ to
configuration terms. They need not themselves be configuration terms, but they
are equal to such a term modulo =R.

70 -"- 71 *.. 72 ~

I I I r iti~
. - - , ' -

rewriting steps

Each transition step is modelled by a rewriting sequence in T~ which generally
has more than just one step. In order to be allowed to perform one step 71 "*'s 72
using the transition system, we usually have to perform other transitions before
that correspond to premises of transition rules. These "hidden" transitions only
contribute indirectly to 71 "~'s 72 by determining parts of 72- So the transition
process is not organized in linear form; each transition is equipped with a tree
of other transitions (a proof tree) that justifies it. The corresponding rewriting
process, however, can only construct flat sequences of terms. Therefore all the
hidden transitions become part of the simulating sequence 71 @ KI - ~ ' n 7~ @ KI
as well. Furthermore, rewriting makes use of the rules in B, while transition takes
place modulo =B.

Simulation works in the other direction as well. If we have a rewriting se-
quence that uses one SOS-derived rule, then this sequence corresponds to a
transition sequence that is obtained via this particular SOS rule.

We have the following simulation results:

One - s t ep comple t enes s

V7,7' E E Vk E [N] Vr l , . . . , rk -z , rk+ l , . . . , rN E {on, of[}:
if 7 "~s 7' using rule k then 7 ~ K(k) +--'~'T~ V" @ Kof

(9)

159

This is the basic building stone for the simulation results, viz. the simulation of
one transition step by a rewriting sequence.

One - s t ep cor rec tness
VT, 7' E F Vk E [N] Vr t , . . . , rk-t , rk+l , . . . , rN e {on, off} :

if 7 @ K(~) --~ '~ 7' @ K0I then 7 -~s 7' (10)

The names "correctness" and "completeness" are used in the logical sense: Any
transition corresponds to a rewriting sequence (completeness), and any rewriting
sequence that contains one outermost application of an SOS-derived rule corre-
sponds to a transition step (correctness). Note how the use of 1-contexts K (k)
restricts rewriting to exactly one transition-related step.

N o r m a l fo rm comple t eness and cor rec tness

VvE FVt ET :v-Z~st ~=~ 7@Kf -Z~t@K! (11)

Building up inductively from the one-step results, we can obtain simulation prop-
erties for longer transition sequences. One special case is of particular interest:
sequences that end with a terminal configuration describe the complete evalu-
ation of their initial configuration. Furthermore, expressions like 7 - ~ s t (7 E
F, t E T) may occur in the premises of SOS rules.

The proofs for these results can be found in [6]. Because one-step and normal
form transitions are intertwined via transitions in the premises of rules, all results
must be proved by one simultaneous induction (on the number of applications
of SOS-derived rules).

D ive rgence comple t eness
From one-step completess, we immediately obtain that each infinite transition
sequence corresponds to an infinite rewriting sequence. So non-termination is
preserved by the rewrite system:

V {7 (0} e r N :
(Vi E N : 7({) -4,- s 7({+1)) =~ (V/E N : 7 ({) @ K! -~-~ 7(i+t) @ K!) (12)

Dive rgence cor rec tness
On the other hand I all infinite rewriting sequences correpond to "infinite be-
haviour" of the transition system. Because of the additional requirement in
section 3 about terminating transition systems, the rewriting sequence keeps
"coming back" to configurations, i. e. each tail of the sequence contains a con-
figuration-context pair; therefore one-step correctness yields the existence of a
corresponding infinite transition sequence:

V7 6 F V{t(0} E T (Z, V) N : t(t) = 7 @ K! A (V{ E I~ : t(0 "~'~z t(~+l))
9 {7(0} E/~N 9j : I~ --*- I~1 strictly monotonic : (13)
(Vi e I~1:7(0 = (t(J(0) I 1) A 7(0 "*'s .f(i+O)

5.3 Conf luence and t e r m i n a t i o n

The system /~ consists of two parts: the basic system B and the system T~'
containing the SOS-derived rules. As already mentioned in section 5.1, we assume

160

B to be complete, i. e. confluent and terminating, so there are no problems with
this part. But for 7~', the situation is totally different because these properties
are completely determined by the semantics of the language L.

As we have seen in the previous section, every rewriting sequence in 7~ has
a direct counterpart in S and vice versa. This has immediate consequences for
confluence and termination. Assume 7d is terminating. This means that there is
no configuration-context pair that is the initial point for an infinite rewriting se-
quence. Therefore there is also no configuration that starts an infinite transition
sequence in S. Obviously, this property is equivalent to L being a language that
only contains terminating programs.

For confluence, the situation is very similar. Consider rewriting modulo the
equational theory E generated by the basic system B. Then the only rewrite rules
that we need are those derived from the SOS system. Confluence of this rewrite
system means that every configuration has at most one normal form (modulo
E). As a consequence, for each initial state and each program starting in this
state, there is at most one final state, and hence the programming language must
be deterministic. 6

So typically 7~ is not complete. In most cases, it will be non-terminating,
and therefore normalization of configuration terms must be handled with care.
Languages in the tradition of CSP ([16]) and Occam ([17]) do not even lead to
confluent systems since they contain a non-deterministic choice operator. This
might seem a serious drawback of the method, but it only reflects the desire
to have a rewrite system that models the semantics as closely as possible. And
the problem is very well known: Interpreters for functional languages, say, usu-
ally do not terminate when interpreting programs that are (semantically) "nbn-
terminating", disregarding restrictions like finite stack size.

There is also no point in completing the system 7~, e. g. b y applying the
Knuth-Bendix procedure (cf. [19]). Completion would add new rules to the sys-
tem, and for these rules there would be no counterpart in the original SOS
system. So the simulation property would disappear; essentially, the result of
completion corresponds to a language where all non-determinism has been arti-
ficially removed by declaring different results for one program as equal.

6 A p p l i c a t i o n

The method presented has been successfully applied in solving a problem orig-
inating from the ProCoS project. For a language named PL0 rt, two different
semantics definitions have been given (SOS and denotational), and the aim is to
prove their equivalence. In [20], a standard mathematical hand proof is presented,
its single steps mainly being based on induction on the structure of programs.
A typical feature of such proofs is that subproofs are repeated in several places
identically or only slightly modified, due to the similarity of semantics defini-
tions for different language constructs. Therefore the use of an automated tool
to check hand proofs or to assist in them is desirable.

r This requirement can be slightly weakened; e. g. the evaluation order of parameters
for function calls is unimportant as long as this evaluation has no side effects.

161

First results of applying the Larch Prover ([11]) to this problem are reported
in [7]. By now, all the essential steps of the whole equivalence proof have been
completed. For the basic idea behind application of the transformed rewrite sys-
tem 7~ let us consider the subproblem of proving the equivalence of the semantics
definitions of expressions (in a slightly simplified form).

Expressions ezp E Expr are evaluated w. r. t. to an environment p E OpEnv
and a state cr E 2J, whose internal structure are not important here. The result is
a value v E Va]. So configurations for the operational semantics are either tuples
(e zp , p, cr I E Ezpr x OpEnv x Z (non-terminal) or values from Va] (terminal).
The denotational semantics for expressions is given by a function ~ : Expr x
OpEnv x State ~ Va], and we have to prove:

Vezp e Ezpr , p E OpEnv, r Z : (exp, p, ~) " - '~Expr ~[exp] p~r (14)

where ~ Expr is the SOS transition relation for expressions.
Now we transform * ~ p r into rewrite rules as described above, generat-

ing the system 7~ = 7~ I U B. The denotational semantics is defined in form of
equations that can directly be turned into rewrite rules; these rules belong to
the basic system B.

The proof that we have performed with the help of LP proceeds by induction
on the structure of expressions. This form of induction is supported by LP; the
necessary induction subgoals and hypotheses are generated automatically. For
given ezp, p and ~r, the proof is structured as follows:

�9 First g[exp~ per is evaluated using rules from B; this results in some term 71-
�9 Next, the configuration/context term t = eval ((exp, p, r @ (1, o n , . . . , on))

is evaluated using all the rules in 7~; this results in some term 72- In this
phase, the induction hypotheses for the subexpressions of ezp will also be
used as rewrite rules.
Note that the rules for eval (cf. section 5.1) together with the 1-context in t
guarantee a one-step evaluation of (exp, p, a).

�9 Finally, equality of 71 and 72 is proved using the rules of B.

After the last step, we have proved

t -- eval ((exp, p, a) @ (1, o n , . . . , on)) "-~'7r 72 =t~ 71 B " ~ ~[exp] po"

eval operators are only introduced by the rules simulating the SOS transition
rules. Thus 71 cannot contain such an operator, and there must be a point in
the above rewriting sequence where it is removed from t. From the special form
of the eval elimination rules (cf. section 5.1), it follows that there must be an
intermediate configuration term with a 0-context in the rewriting sequence (this
term is the result of a successful application of a rule from T~):

eval ((ezp, p, ~) @ (1, on, . . . , on)) +*Taeva l (7~@(0 , . . .)) - -~ -B72

The eval elimination could not be applied in the first subsequence; so we
have

(exp,p,~)@(1,on,...,on) +'~'~7~@(0,...)

162

and by one-step correctness (9) the rewriting proof turns out to be sufficient to
prove the original goal (14) since the "*'B steps can be neglected (transitions
with the SOS system take take place modulo --B)-

Proofs about non-deterministic languages normally cannot be performed in
a single step. For in such proofs, each possible result for a non-deterministic
construct has to be considered, and this is most easily done by subsequently
selecting all branches (by deleting those SOS rules that lead to other branches).

The Larch Prover turned out to be a suitable tool for implementing the
transformed SOS rules since it is largely oriented towards easy formulation and
application of rewrite rules. A major advantage of the system concerning our
simulation is that normally intermediate results occurring in rewriting sequences
are not displayed. This means that appliciation of the rules in 7~' remains com-
pletely hidden, and therefore the user is not confused by terms appearing dur-
ing E-reduction or evaluation of type check conditions in SOS rules. Since the
transformation of SOS rules into rewrite rules is very systematic, it was easy to
implement a tool that generates LP input from SOS system descriptions. This
tool has proved very helpful in the example proofs:

Another useful feature of LP's is that the user can control the rewriting
process to a very large extent. E. g. the evaluation order can be changed (inside-
out or outside-in), and rewrite rules can be prevented from being considered.
This can be used to increase the efficiency of the system, since typically large
groups of rules are known not to be applicable, and so the time for testing
whether they match a given term can be saved.

Among the disadvantages of LP are the lack of powerful proof control mech-
anisms like strategies or tactics (as they are provided e. g. in HOL [13] or in
KIV [15]) and its weak type concept. LP only supports a subset of many-sorted
first-order logic. During our experiments, this never prevented any proofs, but
it made their formulation a lot more complicated. In an order-sorted system like
OBJ3 [12] or PVS [22], terms could be kept smaller 7, and in a higher-order
logic (present e. g. in tIOL and PVS), many properties could be formulated
much easier, since the rules about function application and extensionality would
be supplied automatically. These rules can be simulated in LP's first-order logic,
but a large number of explicit rules are needed for this.

7 C o n c l u s i o n

In this paper, we have presented a way to simulate a special form of SOS defi-
nitions by standard term rewriting systems. Another approach to relating SOS
definitions and equational logic is presented in [2]. Here an algorithm is de-
scribed that transforms SOS rules into set of equations such that every true
formula about the language can be proved in this theory. In [3] it is proved that
for SOS definitions that only describe finite systems, these equations can be
transformed into a complete term rewriting system. This technique, however, is
restricted to SOS rules in a special format (GSOS) that is incomparable to the

r If we have sorts T1 C T2 _C T3, we would like to be allowed to write t E T3 for all
t E T1. In LP, however, we have to write the injections, e. g. in-T3(in-T2(t)).

163

format of definition 3. There exist other special rule formats, e. g. the tyfl/tyxt
format of [14], that have received special attention because of certain pleasant
properties tha t such systems possess. These formats are less restrictive than the
GSOS format, but such definitions have not yet been axiomatized by equations
or rewrite rules. [8] shows how to model SOS definitions with other methods
than term rewriting, using the facilities of the HOL system.

Other ways to combine A-calculus and term rewriting are described in [18]
and [10]. But both approaches extend the A-calculus, and do not t ry to include
some of its concepts in pure term rewriting.

Our method provides a very close simulation of transition rules by standard
term rewriting rules. Since no additional formalism is needed, ordinary rewriting-
based proof assistants can be used to implement it in reasoning about SOS
definitions. In [7], we have described a successful example application where
the Larch Prover [11] is used to assist in a proof of equivalence between an
operational and a denotational semantics definition. During this experiment,
it turned out that the rather complicated structure of the SOS-derived rules
does not lead to difficulties. On the one hand, these rules can be generated
automatically from the original SOS form, due to their systematic definition.
And on the other hand, their application usually remains hidden in normalization
processes. This means that the user of the proof tool need not worry about
involved intermediate terms, but can concentrate on the logical structure of the
proofi

A c k n o w l e d g e m e n t s : I would like to thank the ProCoS group in Kiel, espe-
cially Bett ina Buth, Yassine Lakhneche and Markus Miiller-Olm, for their help
in clarifying my ideas, Ursula Martin for drawing my attention to [1], and the
anonymous referees for many helpful comments.

R e f e r e n c e s

1. M. ABADI, L. CARDELLI, P.-L. CUPdEN, AND J.-J. L~vY. Explicit substitutions.
In Proceedings of the 17th ACM Symposium on Principles of Programming Lan-
guages, pages 31-46, 1990.

2. LUCA ACETO, BARD BLOOM, AND FRITS VAANDRAGER. Turning SOS rules into
equations. In Proceedings of the 7th !EEE Symposium on Logic in Computer Sci-
ence, Santa Cruz, CA, pages 113-124, 1992. Full version available as CWI Report
CS-R 9218, Centrum voor Wiskunde en Informatica, Amsterdam, June 1992.

3. DOEKO BOSSCHER. Term rewriting properties of SOS axiomatisations. In Pro-
ceedings of the Conference on Theoretical Aspects of Computer Science, LNCS.
Springer-Verlag, 1994. To appear.

4. JONATHAN BOWEN ET AL.. A ProCoS II project description: ESPRIT Basic Re-
search project 7071. Bulletin of the EATCS 50, 128-137, 1993.

5. N. DE BRUIJN. Lambda-calculus notation with nameless dummies. Indagationes
Mathematicae 34, 381-392, 1972.

6. KAttL-HEINZ BUTH. Simulation of transition systems with term rewriting sys-
tems. Bericht 9212, Institut ffir Informatik und Praktische Mathematik, Christian-
Albrechts-Universits Kiel, 1992.

164

7. KARL-HEINZ BUTH. Using SOS definitions in term rewriting proofs. In URSULA H.
MARTIN AND JEANNETTE M. WING, editors, Proceedings of the First International
Workshop on Larch, Dedham, MA, 199P, Workshops in Computing Series, pages
36-54. Springer-Vedag, 1993.

8. JUANITO CAMILLERI AND TOM MELHAM. Reasoning with inductively defined rela-
tions in the HOL theorem prover. Technical Report 265, University of Cambridge
Computer Laboratory, August 1992.

9. NACHUM DERSHOWITZ AND JEAN-PmRRE JOUANNAUD. Rewrite systems. In JAN
VAN LEEUWEN, editor, Handbook of Theoretical Computer Science, Vol. B: Formal
Models and Semantics, chapter 6, pages 243-320. Elsevier/MIT Press, 1990.

10. DANmL J. DOUGHERTY. Adding algebraic rewriting to the untyped lambda calcu-
lus. In RONALD V. BooK, editor, Proceedings of the 4th International Conference
on Rewriting Techniques and Applications, Como, Italy, LNCS 488, pages 37-48.
Springer-Verlag, April 1991.

11. STEPHEN J. GARLAND AND :JOHN V. GUTTAG. An overview of LP, the Larch
Prover. In NACHtYM DERSHOWITZ, editor, Proceedings of the Third International
Conference on Rewriting Techniques and Applications, LNCS 355, pages 137-155.
Springer-Verlag, 1989.

12. JOSEPH h. GOGUEN. OBJ as a theorem prover with applications to hardware
verification. Technical Report SRI-CSL-88-4R2, SRI International, August 1988.

13. MICHAEL J. C. GORDON. HOL: A proof generating system for higher-order logic.
In G. BIRTWlSTLE AND P.A. SUBRAMANYAM, editors, VLSI Specification, Verifi-
cation and Synthesis, pages 73-128. Kluwer, 1988.

14. JAN FRISO GROOTE AND FRITS VAANDRAGER. Structured operational semantics
and bisimulation as a congruence. Information and Computation 100(2), 202-260,
October 1992.

15. MARITTA HEISEL, WOLFGANG REIF, AND WERNER STEPHAN. Tactical theorem
proving in program verification. In MARK E. STICKEL, editor, Proceedings of the
lOth International Conference on Automated Deduction, LNCS 449, pages 117-131.
Springer-Verlag, 1990.

16. C. A. R. HOARE. Communicating Sequential Processes. Series in Computer Sci-
ence. Prentice-Hall International, 1985.

17. INMOS LTD. occam 2 Reference Manual. Series in Computer Science. Prentice-Hall
International, 1988.

18. STEFAN KAHRS.)t-rewriting. PhD thesis, Fachbereich Mathematik und Infor-
matik, Universits Bremen, January 1991.

19. DONALD E. KNUTH AND PETER B. BENDIX. Simple word problems in universal
algebras. In J. LEECH, editor, Proceedings of the Conference on Computational
Problems in Abstract Algebra, Oxford, 1967, pages 263-298. Pergamon Press, 1970.

20. YASSINE LAKHNECHE. Equivalence of denotational and structural operational
semantics of PL0 R. ProCoS Technical Report Kiel YL1, Christian-Albrechts-
Universits Kiel, 1991.

21. GORDON D. PLOTKIN. An operational semantics for CSP. In DINES BJORNER,
editor, Formal Description of Programming Concepts - H, pages 199-225. North-
Holland, 1983.

22. JOHN RUSHEY. A tutorial on specification and verification using PVS. In JAMES
C. P. WOODCOCK AND PETER GORM LARSEN, editors, Tutorial Materialfor FME
'93: Industrial-Strength Formal Methods. Proceedings of the First International
Symposium of Formal Methods Europe, Odense, Denmark, pages 357--406, April
1993.

