
Strategies in Modular System Design
by Interface Rewriting

S. Cicerone and F. Parisi Presicce*

Dipartimento di Matematica Pura ed Applicata,
Universit~ de L'Aquila, 1-67010 Coppito (AQ), Italy

e-mail: {cicerone, parisi}@vxscaq.aquila.infn.it

Abstract. The problem of designing a modular system, using a set of prede-
fined modules, with a given import and export interface has been reduced to
the problem of generating a specification in an algebraic specification gram-
mar. Here we tackle two important problems connected with the generation:
the strategy to adopt in choosing the rewrite rules and the elimination of un-
necessary searches. The first is investigated using a notion of similarity of spec-
ifications and a definition of value to guide the search algorithm~ the second
is solved using syntactical criteria (independent of the target specification) to
determine that some derivation sequences are superfluous. The latter develop-
ment has been influenced by similar work on graph grammars.

1 I n t r o d u c t i o n

The development of large correct software systems is very difficult without the appro-
priate support of notions such as modularization and interconnection of components
[16,11,10]. In our context, a module specification [10,1,7] consists of four parts: a
parameter part PAR to model genericity and parametrization (as in Ada generics,
for example); an import part IMP (containing PAR) describing what the module
needs from other modules (modelling a "virtual" module to be specified at a later
time); an export interface EXP (containing PAR) specifying what part of the im-
plemented functions are visible from the outside; and a body part BOD (containing
all the others) with the description of how the functionalities exported (EXP) are
implemented using those imported. Interconnection mechanisms for the horizontal
structuring of systems are crucial for the stepwise development of large software
in a flexible manner [7]. Interpreting the interconnections as operations on module
specifications [1] it is easy to give a semantics to the main ones: union performed
componentwise by specifying the common subcomponent to be identified; composi-
tion where the import of one module is matched with the export of another module;
and actualization where the parameter part is replaced by an actual specification

Module specifications designed and verified can be used via their interfaces,
the only parts visible from the outside. A common problem is that of designing
an interconnection of a predefined set of module specifications (of a library, for
example) which realizes a given overall export interface from another given im-
port interface. In [13,14] this problem has been addressed by viewing the visi-

* Current address: Dip. Scienze dell'Informazione , Univ. Roma "La Sapienza", via Salaria
113, 1-00198 ROMA - Italy

166

ble part (PAR,IMP, EXP) of a module specification as a production of an alge-
braic specification grammar (ASG) [8], an extension of the algebraic theory of
graph grammars [4] to structures other than graphs. In this approach, the ap-
plicability of a production (I M P ,-- P A R ---* E X P) to a specification S P E C
to obtain a new specification S P E C ' indicates the existence of a module speci-
fication, obtained from the one which realizes the production, which has S P E C
and S P E C ~ as import and export interface, respectively. A derivation sequence
P R E =~ S P E C 1 . . . =~ SPEC,~ =~ G O A L can be automatically translated into the
appropriate interconnection of the modules realizing the interfaces used as produc-
tions.

In general, given a specification S P E C and a set L I B of productions, there may
be several applicable productions, each with more than one occurrence of the left
hand side in S P E C . The combinatorial explosion of possible sequences of deriva-
tions could be contained by analyzing beforehand the productions to remove from
the search tree any path which will produce specifications already generated. This
reduction is addressed in section 4, where syntactical criteria are given to predict
the applicability of a rule after a derivation which uses another rule, and to avoid
a derivation sequence which is equivalent to another derivation produced with a
different order of the same productions. Many definitions and some results in this
section are inspired by [12].

Having somewhat reduced the search tree, it is still necessary to have some crite-
ria to choose (at least temporarily, trying to avoid' backtracking) which production
to use and which occurrence to apply. This is the topic of section 3, where we in-
troduce the notion of similarity between two specifications and use it as a guide in
selecting the appropriate occurrence. The search algorithm exploits the symmetry
of the notion of direct derivation to develop a strategy based on the application
of deductive (i.e., strict growth) rules in a forward fashion, and of deleting (i.e.,
strict reduction) rules in a backward fashion, interleaved with applications of the
remaining productions.

The discussion in this paper is based on a standard notion of algebraic speci-
fication and a particular choice of specification morphism, needed to exploit some
results in [5]. Some of the results can be extended to other situations, a few to a
framework based on arbitrary institutions. All proofsl for lack of space, are omitted
and can be found in [2].

2 Notat ion and Background

In this section we briefly review some basic notions of algebraic specifications ([6])
and of algebraic specification grammars ([13,14]).
Spec i f i ca t ions
An algebraic specification (E, E) constists of a many sorted signature 2: --- (S, OP) ,
and a set E of (positive conditional) equations. The three parts of a specification
S P E C = (S, OP, E) are referred to by using a subsript S s p E v , OPsPEV and
E s p ~ c . If N E O P , dora(N) E S* denotes the domain sorts and cod(N) E S

the codomain sort of N. For s E S, N E OP, e E E we use:
- S O R T (N) as the union of dora(N) and cod(N);

167

- O P N S (s) as the subset of O P containing the operations N with s E S O R T (N) ;
- O P N S (e) as the operations in the terms of e;
- E Q N S (N) as the subset of E that contains equations e with N E O P N S (e)
The notion of specification morphism f : (,~1, Ea)--*(X2, E2) as a triple (fs , f op , rE)
based on the accepted definition of signature morphism f ~ : s 1 6 3 assumes that
the equations of E are labelled, and different labels eqi may correspond to the same
triple (X ,Q, t2) representing the equation eqi : t l = t2; for (eqi : tl = t2) E E1 we
have (fE(eqi) : f # (t l) -- f#(t2)) E E2. We write Specif ication to denote the set of
all specifications.
Specification Grammars
In the well known algebraic approach to Graph Grammars [4] it is possible to replace
the category of graphs by the category of some other structure, giving rise to a new
rewriting theory for high level structures [5].

Among those, a High Level Replacement (HLR) system was IMPq PAR ,EXF
i e

introduced in [13] in order to generate algebraic specifications I t c I r l
using productions and derivations. An algebraic specification
production, shortly SPEC-produetion, is an ordered pair Pro = L.*--~--~ CON a ~ R
(I M P ~ P A R --, E X P) of injective specification morphisms

i : P A R - - * I M P and e : P A R ~ E X P . A direct derivation consists of the two pushout
diagrams of specifications. A production Pro is applicable to a specification L if
there exist a morphism l : I M P E L and a context specification C O N such that
L is the pushout of I M P and C O N . The result R of the derivation is pushout
of E X P and CON. In this case we have the direct derivation Pro : L =~ R (or

L ~ o R), and we say that R is derivable from L via Pro. Notice that a direct
derivation is symmetric and that if Pro : L =~ R, then Pro -1 : R =~ L where
Pro -1 = (E X P ~-- P A R ~ I M P) . If P R O D is a set of SPEC-productions then
the set of all the symmetric productions is denoted by P R O D -1. The specifica-
tion morphisms that guarantee the existence of the pushout complement C O N in a
direct derivation are called occurrence morphisms. A morphism l : I M P - ~ L is an
occurrence if the following Gluing Conditions hold:
a. I D s U D A N G s C_ is(SpAn)
b. I D o p U D A N G o p C i o p (O P P A R) , where
- I D s = {s E S I M P] 38 ! E S I M P , 8 ~ 8 t, lS(8) = Is(s')};
- I D o p = {N E OPIMP [~N ! E OPIMP, N ~ N' , l op (N) = lop(N')};
- D A N G s = {s E PIMP] 3N E OPL \ lop(OPiMP) and ls(s) E S O R T S (N) } ;
- D A N G o p --- {N E OPIMp I Be E EL \ IE(EIMp) and lop(N) E OPNS(e) } .
The occurrence morphism I : IMP--*L identifies in the direct derivation Pro :
L =~ R the L-part DELt = I (I M P \ i (PAR)) , removed from L by the produc-
tion Pro, and the R-part INS l = r (E X P \ e (PAR)) , glued by Pro to the context
C O N to realize the new specification R. Given a set P R O D of SPEC-productions
we write SPEC1 =~ SPEC~ to mean a sequence of n > 0 direct derivations

PROD

SPEC~ ~ SPEC2 ~ . . . ~ SPEC,~+I with P~ E P R O D for i = 1 , . . . , n.

168

3 S t r a t e g y

The following notions are inspired by [12], where Graph Grammars are considered
as models for rule-based systems in which solving state-space problems essentially
requires searching in an exploding number of generated states which cannot be man-
aged. The usual answer to this problem in AI is to prune the search-tree, selecting
only some of the possible expansions of derivations. Any HLR system can be used to
specify in a formal way many other similar problems. Algebraic specification gram-
mars can model problems in which a transformation of a specification P R E by the
rules in a library LIB to obtain a prefixed final specification GOAL, is required.

Def in i t ion 1. a). An (AST-)problem P = (Ax, R, F) consists of a specification Ax,
called axiom, a family of production rules R, and a unary predicate function on
specifications F called filter. A solution for P is any Ax-reachable specification
SPEC, i.e. Ax =~ SPEC, for which F(SPEC) is true.

P

b) . Given a class PC = (AX, R, F) of AST-problems, P = (Ax, R, F) with Ax 6
.AX, an algorithm S is called a search algorithm (w.r.t. PC), if and only if, when
supplied with Ax E AX, the algorithm terminates with either a specification or
the message FAIL. The result of S is correct if it is indeed a solution of P or
FAIL otherwise.

c). A production-system (PC, S) for AST-problems, briefly an AST-PS, consists of
a class of AST-problems PC and a search algorithm S.

According to the basic execution model of production systems, derivations of a
specification SPEC based on a production rule Pro consists of two steps: retrieving
the informations of how to apply Pro to SPEC, which can then be used to derive the
new specification SPEC' from SPEC. In terms of AST notions, this corresponds
to two primitive functions:

Recognize :Specification x Rule-~OccurrenceSet
where Recognize(SPEC, I M P ~-- PAR --~ E X P) = {gl, g2 , . . . , gin} is
the set of all occurrences g~ : I M P ~ S P E C .

Derive :Specification x Occurrence--~ Speci f ication
where Derive(SPEC, g) = SPEC' with S P E C =~ SPEC', assuming that
an 'occurrence' carries the information about the corresponding rule.

Difficult problems arise in executing each of the two operations above, as well as in
evaluating the filter F on specifications. The cost of the latter depends on the specific
problem; the cost of the operations other than Recognize and Der ive is ignored.
The following notion of cost covers both, the problem of a search-space-reduction,
and the efforts to determine the applicability of rules.

De f in i t i on2 . Given an AST-PS=(PC, S), the cost of the search algorithm S is
based on the primitive function Recognize and Derive; it is defined to be (N1, N2)
with N1 and N2 being the number of calls for those functions. The cost (N1, N2) is
said to be no greater than (N1, N2) iff N~ < N~ for i -= 1, 2.

169

Since we do not want to adopt a specific search algorithm, we aim for a notion of
optimization which guarantees that every search algorithm can be improved.

Def in i t ion 3. Given an AST-PS=(PC, S), and a search algoritm O w.r.t. PC, we
call O an optimization w.r.t. S iff O yields the correct solution whenever S does and
the cost of O is not greater than the cost of S.

The formalization can be given by the AST-problem P = (PRE, LIB, F), where
PRE is the predefined data type, LIB is the library of reusable modules defining
the transformation rules, F the filter defined by:
- F (SPEC) = true iff S P E C -- GOAL
An analysis of P could produce a search algorithm for PC (def. 1) independent
of the initial axioms PRE. From the definition of P we observe that there is only
one PRE-reachable specification that is a solution for P itself: a potential search
algorithm for P should select in the search-tree a path from PRE to GOAL. If LIB
has reasonable dimensions, it is impossible to think of selecting such a path visiting
the tree in an exaustive way; it is enough to observe that not only there exist several
ways to transform each specification, but each rule in its own can generate many
different results using all the occurrences selected by the Recognize primitive. For
this reason it is difficult to work with search algorithms that exploit a backtracking
going back for more than one level. Then, for each step the algorithm should check
all the transformations, and then go down toward the specification that promises
a 'better result'. I t is necessary to find some criteria to assign a value showing the
capability of each specification to lead to the final GOAL specification. To this end
we can assign a value to a specification according to the number of elements shared
by GOAL.

3 .1 S i m i l a r i t y

Def in i t ion 4. a) Let SPEC1 = ($1, OP1, El) and SPEC2 = ($2, OP2, E2) be al-
gebraic specifications and let (S, OP, E) be a subspecification of SPEC1 such
that S C $1, ~ ~: OP C OP1, E C_ El. A specification morphism f :
(S, OP, E)---*SPEC2 having injective components f s : S-~$2, fOP : OP~ OP2
and fE : E~E2, is called sharing mo~hism of SPEC1 into SPEC2.

b) In this case we call SPEC1 Partially Similar to SPEC2 and denote it by
f

SPEC1 ~_ SPEC2.
c) If the components of f are also surjective, we call SPEC1 Totally Similar to

SPEC2 and denote it by SPEC1 ~ SPEC2.
d) The specification SPEC1 is called Comparison Specification and SPEC2 is

called Target Specification. The subspecification (S, OP, E) and the elements
in SPEC1 \ (S, OP, E) are denoted by Core(SPEC1) and Remainder(SPEC1)
respectively, via the sharing morphism f : (S, OP, E)~SPEC2.

The set M = {fISPEC1 ~. f SPEC2} containing the sharing morphisms of SPEC1
into SPEC2 may have more than one element. To chose one we associate to the
Target Specification SPEC2 = ($2, OP2, E2), a mapping c = (cs, cop, c~) that
weighs sorts, operations and equations with cs : S2---~N, cop : OP2--~N, CE : E2--*N

170

and define a function val : M - ~ N tha t evaluates the resources tha t the Comparison
and the Target specifications share. For f : (S, OP, E)--~SPEC2 6 M,

val(f) = E cs(fs(s)) + E c o p (f o p (N)) + E cE(fE(e))
s6S N60P e6E

is the comparison value of f. Among all the elements in M with the higher value, an

arbitrary choice can selects the one we are looking for. If we choose f*, it is called

main sharing morphism, and the value v(SPEC1, SPEC2, c) = val(f*) denotes a
measure of the similarity via some mapping c.

D e f i n i t i o n 5. Let SPEC2 be a Target specification with a weight mapping c.

a. the Total Weight of the Target is the value

pT(SPEC2) = E cs(s) + E cop(N) + E cE(e)
s6S2 N qO P2 eqE2

b. the function RatiosPEC2,c : Specifications[O, 1] is given by

v(SPEC1, SPEC2, c)
RatiosPEC2,c (SPEC1) = PT (SPEC2)

where SPEC1 denote a Comparison specification.
c. the specification SPEC. is the Optimal Comparison specification in I C Specification

w.r.t, the Target SPEC2, when:
Ratios P Ec2,c(S P EC*) = max{ Ratios P Ec2,~(S P EC) lS P EC 6 I}

F a c t 1. Let SPEC1 be a Comparison specification and let SPEC2 be a Target with

a weight mapping c = (cs, cop, CE). If M = { f ISPEC1 ~ SPEC2} then

RatiosPEc2,~(SPEC1) = 1 r 3 f 6 M : SPEC1 ~ SPEC2

The function Ratio could be the basis for an extension to a formal definition of a
'metr ic ' tha t allows to measures the distance between specifications.

Example 1 . . Let us suppose the following is a Target Specification in such a compar-
ison between specifications with a mapping tha t uniformly weighs all the elements.
It can be viewed as a specification of a system tha t represents a queue (FIFO), with
some length, of weighted elements.

QueueNat =

s o r t s queue, n a t , bool

opns NEW: --+ queue
QADD: queue nat -~ queue
REMOVE: queue -* queue
LENGTH: queue -~ nat
IS-EMPTY: queue --* bool
ZERO: '-* nat
SUCC: n a t :-* n a t
TRUE: -~ bool
FALSE: -~ bool

eqns For q 6 queue, n 6 nat,
el : REMOVE(NEW) = N E W
e2 : REMOVE(QADD(q,n)) = IF

IS-EMPTY(q) THEN N E W ELSE
QAD D(RE M OV E(q), n)

e~ : I S - E M P T Y (N E W) = TRUE
e4 : IS-EMPTY(QADD(q,n)) = FALSE
es : LENGTH(NEW) = ZERO
e6: LENGTH(QADD(q,n)) =

SUCC(LENGTH(q))

171

The following are SPEC-produc t ions defined by two module specifications. The first

is P M N "~- (MN-Imp ~- MN-Par ~h MN-Exp), where the three specificat ions are:

MN-Imp = MN-Par + MN-Par = MN-Exp = MN-Imp +
sorts 0 s0.rts nat sorts 0
.opns SUCC: nat --* na t opns ZERO: --* nat opns MUL: nat na t ---* na t
eqns 0 eqns O eqns O

while the second is P1s = (IS-Imp 2- IS-Par ~ IS-Exp), with the specifications:

IS-Imp = IS-Par+ IS-Par = IS-Exp = IS-Imp+

sorts s t r i n g sorts da t a sorts O
opns NIL: --~ s t r i n g opns 0 opns I N V E R T : s t r i n g --*

LADD: data s t r i n g --~ s t r i n g eqns 0 s t r i n g
eqns O eqns 0

Both the product ions have inclusions as specification morphisms. Apply ing the pro-
ductions PMN and P m to the specification S t a c k I n t we obta in the direct der ivat ions
PMN : S t a c k I n t ~ S t a c k I n t ' and P m : S t a c k I n t ~ I n v e r t i n g S t a c k respectively.

StackInt =
sorts stack, int

opns ZERO: --* int
SUCC: int -4 int
PRED: int -~ int

EMPTY: -~ stack

PUSH: stack int -~

stack

eqns 0

InvertingStack = StackInt+ StackInt ' = S tackInt +
sorts 0 sorts 0
opns I N V E R T : s t ack --~ opns MUL: • i n t --~

stack int

eqns 0 eqns 0

Since v (S t a c k I n t ' , Q u e u e N a t , 1) = 6/18 and v (I n v e r t i n g S t a c k , Q u e u e N a t , 1) =
7/18, the product ion P I s modifies S t a c k I n t making i t more similar to the target
than the resul t of the appl ica t ion PMN : S t a c k I n t ~ S t a c k I n t ' .

3.2 S e a r c h a l g o r i t h m

In the context of similarity, the solution for P coincides with the Op t ima l Com-
parison specification in the set of all the specifications genera ted by the g r a m m a r

(P R E , L I B , L~B) w.r.t, the t a rge t G O A L , when it is G O A L exactly. But the Opt i -

mal Compar ison specification S P E C * could be different from G O A L , ei ther because
of the search algori thm or because of a small library. In any case S P E C * may be
used in adap t ing the design of a par t i a l ly designed modular system: ins tead of con-
s t ruct ing a module with P R E and C O A L as interfaces, we need to implement only
the elements t ha t G O A L does not share with S P E C * . We could also use the t a rge t
weight mapp ing to increase the probabi l i ty t ha t a par t i cu la ry element could be in
S P E C * . We now give another AST-problem tha t is a formalizat ion for our original
problem.

172

D e f i n i t i o n 6 . Define P ' as the AST-problem P ' = (PRE, LIB, F'), where PRE,
L IB and GC are the same of P , whereas F' is defined as:

F'(SPEC1) = true iff 3h : S P E C 2 ~ S P E C I A SPECs e (GOAL, L IB -1, LI=~B_I)
The symmetric AST-problem..of P ' is P " = (GOAL, LIB -1, F"), where

F"(SPEC2) = true iff 3h : S P E C 2 ~ S P E C t A SPEC1 E (PRE, LIB, L~B).

This new problem is impor tant because it can be solved even if GOAL cannot be de-
s

rived from PRE. In fact, if F'(SPEC1) = true for some SPEC1 e (PRE, LIB, L~IS),

the situation can be represented as in the following picture:

P R E

G O A L

with the search tree for the problem P~ (the specification generated by the

grammar (PRE, LIB, Lr=~B)) , the tree tha t represents the specifications (including

SPEC2) generated by the grammar (GOAL, LIB ,LIB=~_I) and the linking mor-

phism h between the trees. By theorem 4.7 in [14], the derivation P R E :~ SPEC1
L I B

defines a module MOD1, whereas the derivation GOAL ~ SPEC2, considered in
L I B - 1

a symmetric way, defines a module MOD2. The linking morphism h makes MOD2
a client of MOD1, and allows their composition to obtain a module MOD tha t is a
solution of the original problem.
The properties of p t are now studied to define a strategy on which a search algo-
r i thm for p t can be based. An initial measure of the difficulty to t ransform P R E
into GOAL can be given in a way independent of the knowledge contained in the
library. The value d(PRE, GOAL) -- 1 - RatioCOALj represents the percentage of
the lacking resources of P R E with respect to the ones in GOAL. There exist some
ordinary productions tha t allow ' to deduct ' both the existence of further implicit
resources in P R E and a surplus of elements in GOAL.

D e f i n i t i o n 7". Let Pro = (I M P +- PAR ~ E X P) be a rule in LIB and let S P E C
be a specification.

i. App(SPEC) = {Pro E LIB I l~ecogn• Pro) # O}
ii. Ded(SPEC) = {Pro E App(SPEC) I PAR = I M P # E X P }

The deductive productions in the set Ded(SPEC), when applied to S P E C via an
occurrence l, yield DELl = 0 in forward mode and INSt = 0 in backward mode. So

173

it is possible to use a search algorithm starting with a canonical phase that tries to re-
duce the difficulty of transforming PRE into GOAL by means of the deductive rules
of LIB. In fact, by these rules, a forward derivation from P R E leads to an enriched
specification PRE', and a backward derivation from GOAL to a final specification
GOAL' with a minimum number of elements to be implemented. An appropriate
use of deductive rules assures d(PRE', GOAL') < d(PRE, GOAL). Using the con-
cepts of similarity we can now define the strategy for a first phase in a search algo-
rithm for P'. During the enrichment of P R E (growing phase), if we apply the rules
Pro E Ded(SPECk) to SPECk via the occurrence l E Recognize(SPECk, Pro),
giving rise to the direct derivation SPECi =~ SPECk+l, we can consider the differ-
ence

Info(Pro, l, SPECk) = v(SPECk+I, Target, c) - v(SPEC~, Target, c)

This value represents the increase of the information that SPECk shares with tar-
get, carried by the deductive Pro. As target, we can assume the final specification
GOAL or some other, as we will see later. For each step we choose the deductive one
that carries the greatest increase; if no one can bring a positive increase, the grow-
ing phase stops.Analogously, during the shrinking phase from the final specification
GOAL, at each step we can apply the deductive one that cuts the greatest num-
ber of elements in the remainder of GOAL via some sharing morphism w.r.t. P R E
(or w.r.t, the result PRE' of the growing phase). Since both growing and shrink-
ing phases require calls to primitive Recognize and Derive in a proportional way
to d(PRE, GOAL), choosing GOAL' as target for the comparisons in the forward
derivation and also choosing PRE' as target for the ones in backward derivation,
reduces the cost of the algorithm. Hence we prefer to adopt an interaction between
forward and backward derivations.

P R E = PREo ~ PRE1 ~ PRE2 ~ PRE3 ...

fo,~ fl,2 f2,a
G O A L = ~GOAJLof~GO~AL~ ~ G O ~ A (f ~ GOAL3 ...

In the above diagram the main sharing morphisms between the 'current' and target
derivation for each derivation step are represented:

- fk : PREi-~GOALk, identifying the resources that PREi shares with the target
GOALk before deriving PREk+I.

- fk-l,k : GOALi_I-*PREi, identifying the resources that GOALk_I shares with
the target PRE~ before deriving GOALk.

The choice of starting the interactive derivation from PREo is due to an immediate
decrease of calls to primitive functions, rather than from GOALo, that produces
benefits only on the length of forward derivation P R E =~ PRE'. However, for each
step, the existence of a linking morphism can be tested, requiring the valuation of
the filter of problem P' .
The following fact takes into consideration the cost of the filter valuation, allowing
to focus on the current specifications.

174

P r o p o s i t i o n 8. If PREi is the current derived specification in the canonical phase
of a forward derivation, then:

flh : GOALi_I---*PRE~ =~ i~h' : G O A L k ~ P R E j Vk < i - 1, Vj < i
If GOALi is the current derived specification in the canonical phase of a backward
derivation, then:

;~h : GOALi---~PRE~ =~ flh' : GOALk-~PREj Vk < i, Vj < i

Any search algorithm for the problem P ' (see def. 6) should have a Canonical Phase
to construct its first part. At this point it is also necessary to take into consideration
all the productions in LIB to define the strategy for deriving GOAL' from PRE'.
This post-canonization phase can be based on an interactive derivation again, but
we need to modify the way to choose the rule to apply. A procedure can select among
all the rules in App(PRE'), but not in Ded(PRE'), the production that causes the
largest increase of shared resources with respect to the current target, in spite of the
removed part DELl ~ 0. If DELt contains some 'useful' elements, a new series of
applications of deductive rules takes place, while another procedurecan select among
all the rules in App(GOAL'), but not in Dcd(GOAL'), the symmetric production
that causes the largest decrease of the elements not shared (those in the Remainder)
with respect to the current target, in spite of the removed part INSl ~ 0. If INSI
contains some 'useless' elements, a new series of applications of deductive rules takes
place.

4 O p t i m i z a t i o n

In this section we consider again the results of [12] in the theory of Graph Gram-
mars, and present criteria that allow to optimize any search algorithm in the context
of algebraic specification transformations. Our approach to optimization is based on
properties of rules which must safely avoid calls to the corresponding primitive func-
tions, thus reducing the cost of the algorithm.
The derivation bag Pj(S) of a specification bag S with respect to a family of rules

(P j) jeJ is Pj(S) = {SPEC' [3SPEC 6 S, j 6 g such that S P E C ~ SPEC'} .
We also use the notation Pj(SPEC) for J = {j} and S.= {SPEC}.

Def in i t ion 9. A rule P1 is k-monotonic with respect to a rule P2 if and only if

VSPEC : I P2(SPEC) I= k ~ , ~ s (V SPEC1 E PI(SPEC) I P2(SPEC1) I<_ k)

A rule P1 is called monotonic w.r.t, a rule P2 if and only if

VSPEC : P2(SPEC) = 0 i , ~ s P2PI(SPEC) = 0

This definition gives rise to a simple improvement whenever we find those rules
where the non-applicability of the second to the result of the first can be predicted,
provided the second has been non-applicable before. Thus monotonicity allows to
eventually skip some Recognize2calls.

175

F a c t 2. Given rules {P1,P2, . . . , P,~}, each k-monotonic w.r.t, a rule Pq, for every
SP EC s , 6 P s , ' " P s l (S P E C) , with i >_ 1, sj 6 { 1 , 2 , . . . , n } , j = 1 , . . . , i :

] Pq(SPEC) I= k '~=~] Pq(SPECs,) I<_ k

In order to let a search-algoritm take advantage of a precomputation pass which dis-
tinguishes rules which are monotonic, effectively computable criteria must be found.
A s y n t a c t i c a l m o n o t o n i c i t y c r i t e r ion is an effectively computable binary predi-
cate on rules telling whether these rules are monotonic.
Given two syntactical monotonicity criteria S C and SCb, the latter is said to be
b e t t e r if and only if SC C SCb. A syntactical monotonicity criterion is said to be
o p t i m a l if and only if there is no better syntactical monotonicity criterion.
Asking how an interaction of rules can effectively be characterized, we start by look-
ing at the ways in which two rules may overlap in a derivation. To be more precise,
we ask how the part in specification SPEC2, defined by the intersection of the im-
ages of the occurrence morphisms rl : E X P I ~ S P E C 2 , 12 : I M P 2 ~ S P E C 2 , can be

characterized when SPEC1 ~ SPEC2 ~z SPEC3.

Def in i t i on 10. (Gluing Relation Set)
Given two specification morphisms el : P A R I - ~ E X P 1 , i2 : PAR2-~IMP2, the

g lu ing r e l a t i o n set is the set G R S (cl, i2) of relations

~r= (~rsC_ SEXP~ X SrMp,, gropC_ OPExP, x O P r f p , , grEC_ EEXP~ x EIMP,)

on sorts, operations and equations, such that each g'rE GRS(el , i2) also satisfies the
following axioms.

For a, a' 6 EXP1, b, b' 6 IMP2, -6 6 EXP1 \ e l (PAR1), -b 6 IMP2 \ i2(PAR2):

(A x l) . a grop b ~ (cod(a) gr s cod(b)) and "every x 6 dora(a) bijectively corre-

sponds to a y e dora(b) such that x g'rs Y"
(Ax2) . a gr E b =~ M A T C H (a , b) = T R U E

(Ax3) . a gr s b ~ V N 6 0 P N S (a) 3 N' 6 0 P N S (b) and g grop N'
(Ax4) . -6 gr s b ~ V N' 6 0 P N S (b) ~ Y 6 0 P N S (- 6) and g grop g '

(Ax5) . (a gr s b) and (a gr s b') ~ -b = b'

(Ax6) . (-6 gr s b) and (a' gr s b) =~ -~ = a'

(Ax7) . (a grop -b) and (a grop b') ~ b = b'
(Ax8) . (-6 grop b) and (a' grop b) ~ -6 = a'
(Ax9) . a grop b =~ V el 6 EQNS(a) 3 c2 6 EQNS(-b) and el grop e2
(A x l 0) . -6 grop b ~ V e2 6 EQNS(b) 3 el 6 EQNS(-6) and el grop e2

The function MATCH verifies that the two equations can be translated into each
other via the identifications of the relation grop.

A relation grEGRS, with ~ C el(PAR1) x i2(PAR2) is called an Interface relation.

Propos i t ion 11. Given two specification morphisms e : PAR1--~EXP, i : PAR2---*IMP,

each element greG RS (e, i) identifies an algebraic specification S P EC~ 6 S P EC ~ .
9 r GRS

176

There are two 'projection' morphisms Irl : S P E C ~ ---*EXP and zr2 : S P E C ~ ---*IMP
9r 9r

defined by:
- V (x,y) e S P E C ~ : zcl((x,y)) = x , ~r2((x,y)) =y .

9r
If we replace the elements S P E C ~ in S P E C ~ by the element (S P E C ~ , zq, 1r2),

G R S
we obtain a new set, denoted by P B ~ .

G R S

P r o p o s i t i o n 12. Given two rules

I)1 = (IMP1 ~- PAR1 ~ EXP1) and P2 -- (IMP2:2. PAR2 2_~ EXP2)

the set P B ~ contains exactly the pullbacks of all EXP1 ~ SPEC1 ~ IMP2,
G R S

with rl and 12 occurrence morphisms.

The following Match Theorem is a special case of the Concurrency Theorem for HLR-
Systems, which holds for the particular choice of specification morphisms reviewed
in section 2 ([9]).

T h e o r e m 13. Given the sequence of derivations

($1) SPEC1 h SPEC2 h SPEC3
there exists a SPEC-derivation with the match-production P1 *M 1)2
($2) P1 *M P2 : SPEC1 ~ SPEC3
called matched derivation of the sequence ($1).
Viceversa each direct SPEC-derivation ($2), using P1 *M P2 leads to a derivation
sequence ($1) using P1 and P2.

Now we can use the set of all gluing relations to characterize the way in which rules
may overlap.

L e m m a 14. Given P1 = (IMP~ ~ PAR1 2s EXP1) and]92 = (IMP2 ~ PAR2
E X P2) and subspecifications SE C EXP1, SI C_ IMP2, then the proposition

V SPEC1 h SPEC2 ~ SPEC3, rl(SE) N 12(Sx) = 0

with rt : EXP1--~SPEC2 and 12 : IMP2---*SPEC2, is equivalent to

Using this lemma, potential overlapping of occurrences, defined as universally quan-
tified propositions over an infinite number of specifications, are effectively decid-
able. In fact, since each of the specifications E X P t = (S1, OP1, El) and IMP2 =
($2, OP2, E2) is finite and so are the sets S = $1 x $2, OP = OP1 x OP2, E = E1 x E2
and the powersets 7)(S), "P(OP) and P(E), all g~-axioms can be checked in a finite
number of steps. The classical notion of parallel iterdependency leads to a syntactical
monotonici ty criterion.

D e f i n i t i o n 15. A rule P1 is said to be S - i n d e p e n d e n t of a rule P2 if and only if

V EXP1 5h S P E C ~ IMPz : rl(EXP1)NI2(IMP2) C_ rl(el(PAR1))NI2(i2(PAR2))

where r l and I2 satisfy the gluing conditions.

177

Fac t 3. S - i n d i p e n d e n c e is a syntactical k-monotonicity criterion.

Unfortunately, s-indipendence is only a weak monotonicity criterion, since it is only a
sufficient criterion: there could be a pair of rules P1 and P2 such that P1 is monotonic
w.r.t. P2, altough P1 is not s-indipendent of P2.

L e m m a 16. Given rules P1, P2 and P3,

V grEGRS "and P. = P1 *M P2 = IMP. ,~- PAR. Y-~ EXP.)]
with M = (SPEC~, ~1, 7r2) E PB ~

GRS (SintR'
there is an occurrence morphism g+3 : IMP3---*IMP.
such that (g+s(gGl3s) C_ gGl . s A g+30p(NGl30p) C NGl.op) } (UCC)

is equivalent to

VSPEC (3SPEC ~ SPEC~ ~ SPEC2 " ~ 3 S P E C ~ SPEC3) } (SemR)

Remark. - In a production P = (IMP ~ PAR --% EXP), the elements of the set
Gl = i(PAR) are called Gluing Elements, while NGI = I M P \ i(PAR) contains
the Non-Gluing Elements.

- (SyntR) is a shorthand for Syntactical Relation, whereas (UCC) stands for Un-
Criticalness Condition. The Semantical Relation (SemR) can be read as:
'if P1 and P2 can sequentially be applied to SPEC, then P3 must be applicable

to SPEC' and is equivalent to P3(SPEC) = ~ im~es P2PI(SPEC) = 0

Def in i t ion 17. Given two rules /)1 and /)2, P2 is M - i n d e p e n d e n t of P2, if and

only if for each non-Interface relation gr~GRS there is an occurrence morphism

g~ : IMP2-*IMP. with P. = P2 *M P1 = IMP. ~ PAR. ~ E X P . and M =
(S P EC~, ~rl, ~2) E P Bc~s, such that the Uncriticalness Condition (g~s(N Gl2s) C
NGI.s A g~op(NGl20P) C_ NGl.op) holds.

T h e o r e m 18. M-independence is an optimal syntactical monotonicity criterion.

Any addition of correct software in any library should modify the information about
the M-indipendence among all induced rules. In this way, each search algorithm
could exploit search-space reduction, as well as a reduction of efforts to determine the
applicability of rules. Along the lines of [12], there is a notion of semi-commutativity
of/>1 w.r.t. P2 which allows to interchange their applications. It can be shown that
S-independence is a syntactical semi-commutativity criterion and that there is an
optimal semi-commutativity criterion, called SC-independence. For lack of space,
we refer to [2] for formal definition and proofs.

Example 2 . . Given the specification morphism el and i2, we illustrate the elements

of the set GRS (el, i2)-- {~0, grl}, with:

- g r 0 = (0 , 0, 0)
- grl= ({(nat, data)}, O, 0).

178

The ~ relation g~2= ({(nat, string) }, O, O) is not contained in GRS (el, J2) be-
cause it does not verify (Ax.3). Some g'r with drop ~ 0 should include the pair
(ZERO, NIL), but this requires the validity of nat gr S string. Both g~o and ~ 1
are Interface relations.

t i t

The set GRS (e2, il) is {g~0, g~l, g~2}, in which

i

- g~0 = (0, ~, 0)

- dr1,= ({(data, nat)}, O, O)

- g'~2 = ({(string, nat)}, {(NIL, ZERO), (INVERT, SUCC)}, O)

and ~'0 and g'~: are Interface relations.
The production PMN is M-independent of the production P1s, because of all the

relations in GRS (ei, i2) are Interface relations. Then, by the previous theorem:

VSPEC : PIs(SPEC) = 0 i . ~ P I s P M N (S P E C) = 0

Viceversa, Pls is not M-independent of PMN; in fact for the only not Interface re-

lation g'r2 not exist such an occurrence morphism from MN-Imp to IMP. when
Prs *M PMN = (IMP. *-- PAR. --* EXP.) and M = (SPEC~,,vl,lr2) E

d r 2

P B ~ CRS(el,~2)"

5 C o n c l u d i n g R e m a r k s

In this paper we have addressed the problem of deriving a given specification in an
algebraic specifications grammar. Elsewhere [13,14], it has been shown that if the
productions of the specification grammar are the interfaces of module specifications,
then a derivation sequence from the initial specification of the grammar to the ob-
jective specification can be automatically translated into an interconnection of the
corresponding module specifications. Even for small libraries of modules, the search
space for the problem of deriving a specification can be intractably large., We have
found syntactical criteria to prune the search tree by analyzing only the interaction
of the different productions, independently of the specification to be generated. So,
if two productions P1 and P2 are, say, commutative, then only one of the two se-
quences P1P2 and P2P1 is considered. To guide the search in the pruned tree, we
have used the notion" of similarity, to measure the distance between two specifica-
tions. In choosing the appropriate occurrence of a production, the total weight of a
morphism is used, defined in terms of an arbitrary importance map defined on the
goal specification.

One of the objectives of this work is to produce an "automatic helper" to assist in
the design of a modular system from a library (typically a prototype to investigate
the feasibility and to validate the adequacy of the goal specification). What has
been developed does not depend on the notion of module specification chosen, but
can be used in any context where productions of algebraic specifications are used
[15]. While most of section 4 depends on syntactical criteria based on the intrinsic

179

structure of the algebraic specifications, the development in section 3 is based on
the notion of similarity and of weight of an occurrence, bo th defined essentially in
terms of morphisms and therefore directly extendable to institutions other than the
one used (essentially to simplify the presentation).

R e f e r e n c e s

1. E. K. Blum, H. Ehrig, F. Parisi-Presicce, Algebraic Specification of Module and their
Intereonnections, J. Comp. System Sci. 34, 2/3, 1987,239-339.

2. S. Cicerone, F.Parisi-Presicce:Strategies in Modular System Design by Interface Rewriting,
Technical Report N. 39/93, Dip. Matematica Pura ed Applicata, Univ. L'Aquila, 1993.

3. S. Cicerone, F.Parisi-Presicce:On the Complexity of Specification Morphism, Technical
Report N.32/93, Dip. Matematica Pura ed Applicata, Univ. L'Aquila, 1993.

4. H.Ehrig: Introduction to the Algebraic Theory of Graph Grammars, LNCS 73, 1-69, 1979.
5. H.Ehrig, A.Habel, H.-J.Kreowski, F.Parisi-Presicce: From Graph Grammars to High-Level

Replacement System, Proc. 4 Int. Workshop on Graph Grammars and Application to
Comp. Sci., LNCS 532, 1991, 269-291.

6. H.Ehrig, B.Mahr: Fundamentals of Algebraic Specification 1: Equation and Initial Seman-
tics, EATCS Monographs on Theoret. Comp. Sci., vol. 6, Springer-Verlag, 1985.

7. H.Ehrig, B.Mahr: Fundamentals of Algebraic Specification ~: Module Specifications and
Constraints, EATCS Monographs on Thcoret. Comp. Sci., vol. 21, Springer-Verlag, 1990.

8. H.Ehrig, F.Par~si-Presicce: Algebraic Specification Grammars: A Junction Between Mod-
ule Specification and Graph Grammars, Proc. 4 Int. Workshop on Graph Grammars and
Application to Comp. Sci., LNCS 532, 1991, 292-310.

9. H.Ehrig, F.Parisi-Presicce: High-Level Replacement System for Equational A lgebraic Spec-
ification, Proc. 3rd Int. Conf. Algebraic and Logic Programming, LNCS 632, 1992, 3-20.

10. H. Ehrig, H. Weber: Algebraic Specification of Modules, in 'Formal Models in Program-
ruing' (E.J.Neuhold,G.Chronist,eds.), North-Holland, 1985.

11. J. A. Goguen, J. Meseguer: Universal Realization, Persistent lnterconnection an Implen-
tation of Abstract Modules, LNCS 140, 1982, 265-281.

12. M.Korff: Application of Graph Grammars to Rule-Based System, Proc. 4 Int. Workshop
on Graph Grammars and Application to Comp. Sci., LNCS 532, 1991, 505-519.

13. F.Parisi-Presicce:A Rule-Based Approach to Modular System Design, Proc. 12 Int. Conf.
Soft. Eng., Nice(France), 1990, 202-211.

14. F.Parisi-Presicce:Foundation of Rule-Based Design of Modular System, Theoretical
Comp. Science 83, 1991, 131-155.

15. F.Parisi-Presicce:Reusability of Specifications and Implementations, Proc. 2nd Int. Conf.
on Alg. Method and Soft. Techn., AMAST '91, (M.Nivat, T.Rus, G.Scollo, C. Rattray
eds.), Springer-Verlag 1992, 43-56.

16. D. L. Parnas: A Technique for Module Specification with examples, Comm. ACM 15, 5,
1972, 330-336.

