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Abstract.  The problem of designing a modular system, using a set of prede- 
fined modules, with a given import and export interface has been reduced to 
the problem of generating a specification in an algebraic specification gram- 
mar. Here we tackle two important problems connected with the generation: 
the strategy to adopt in choosing the rewrite rules and the elimination of un- 
necessary searches. The first is investigated using a notion of similarity of spec- 
ifications and a definition of value to guide the search algorithm~ the second 
is solved using syntactical criteria (independent of the target specification) to 
determine that some derivation sequences are superfluous. The latter develop- 
ment has been influenced by similar work on graph grammars. 

1 I n t r o d u c t i o n  

The development of large correct software systems is very difficult without the appro- 
priate support of notions such as modularization and interconnection of components 
[16,11,10]. In our context, a module specification [10,1,7] consists of four parts: a 
parameter part PAR to model genericity and parametrization (as in Ada generics, 
for example); an import part IMP (containing PAR) describing what the module 
needs from other modules (modelling a "virtual" module to be specified at a later 
time); an export interface EXP (containing PAR) specifying what part of the im- 
plemented functions are visible from the outside; and a body part BOD (containing 
all the others) with the description of how the functionalities exported (EXP) are 
implemented using those imported. Interconnection mechanisms for the horizontal 
structuring of systems are crucial for the stepwise development of large software 
in a flexible manner [7]. Interpreting the interconnections as operations on module 
specifications [1] it is easy to give a semantics to the main ones: union performed 
componentwise by specifying the common subcomponent to be identified; composi- 
tion where the import of one module is matched with the export of another module; 
and actualization where the parameter part is replaced by an actual specification 

Module specifications designed and verified can be used via their interfaces, 
the only parts visible from the outside. A common problem is that  of designing 
an interconnection of a predefined set of module specifications (of a library, for 
example) which realizes a given overall export interface from another given im- 
port interface. In [13,14] this problem has been addressed by viewing the visi- 
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ble part  (PAR,IMP, EXP) of a module specification as a production of an alge- 
braic specification grammar (ASG) [8], an extension of the algebraic theory of 
graph grammars [4] to structures other than graphs. In this approach, the ap- 
plicability of a production ( I M P  ,-- P A R  ---* E X P )  to a specification S P E C  
to obtain a new specification S P E C '  indicates the existence of a module speci- 
fication, obtained from the one which realizes the production, which has S P E C  
and S P E C  ~ as import and export interface, respectively. A derivation sequence 
P R E  =~ S P E C 1  . . .  =~ SPEC,~ =~ G O A L  can be automatically translated into the 
appropriate interconnection of the modules realizing the interfaces used as produc- 
tions. 

In general, given a specification S P E C  and a set L I B  of productions, there may 
be several applicable productions, each with more than one occurrence of the left 
hand side in S P E C .  The combinatorial explosion of possible sequences of deriva- 
tions could be contained by analyzing beforehand the productions to remove from 
the search tree any path which will produce specifications already generated. This 
reduction is addressed in section 4, where syntactical criteria are given to predict 
the applicability of a rule after a derivation which uses another rule, and to avoid 
a derivation sequence which is equivalent to another derivation produced with a 
different order of the same productions. Many definitions and some results in this 
section are inspired by [12]. 

Having somewhat reduced the search tree, it is still necessary to have some crite- 
ria to choose (at least temporarily, trying to avoid' backtracking) which production 
to use and which occurrence to apply. This is the  topic of section 3, where we in- 
troduce the notion of similarity between two specifications and use it as a guide in 
selecting the appropriate occurrence. The search algorithm exploits the symmetry 
of the notion of direct derivation to develop a strategy based on the application 
of deductive (i.e., strict growth) rules in a forward fashion, and of deleting (i.e., 
strict reduction) rules in a backward fashion, interleaved with applications of the 
remaining productions. 

The discussion in this paper is based on a standard notion of algebraic speci- 
fication and a particular choice of specification morphism, needed to exploit some 
results in [5]. Some of the results can be extended to other situations, a few to a 
framework based on arbitrary institutions. All proofsl for lack of space, are omitted 
and can be found in [2]. 

2 Notat ion and Background 

In this section we briefly review some basic notions of algebraic specifications ([6]) 
and of algebraic specification grammars ([13,14]). 
Spec i f i ca t ions  
An algebraic specification (E, E) constists of a many sorted signature 2: --- (S, OP) ,  
and a set E of (positive conditional) equations. The three parts of a specification 
S P E C  = (S, OP, E)  are referred to by using a subsript S s p E v ,  OPsPEV and 
E s p ~ c .  If N E O P ,  dora(N) E S* denotes the domain sorts and cod(N) E S 

the codomain sort of N. For s E S, N E OP, e E E we use: 
- S O R T ( N )  as the union of dora(N) and cod(N); 
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- O P N S ( s )  as the subset of O P  containing the operations N with s E S O R T ( N ) ;  
- O P N S ( e )  as the operations in the terms of e; 
- E Q N S ( N )  as the subset of E that  contains equations e with N E O P N S ( e )  
The notion of specification morphism f : (,~1, Ea)--*(X2, E2) as a triple ( fs ,  f op ,  rE) 
based on the accepted definition of signature morphism f ~  : s 1 6 3  assumes that  
the equations of E are labelled, and different labels eqi may correspond to the same 
triple (X ,Q, t2 )  representing the equation eqi : t l  = t2; for (eqi : tl = t2) E E1 we 
have (fE(eqi) : f # ( t l )  -- f#( t2) )  E E2. We write Specif ication to denote the set of 
all specifications. 
Specification Grammars 
In the well known algebraic approach to Graph Grammars [4] it is possible to replace 
the category of graphs by the category of some other structure, giving rise to a new 
rewriting theory for high level structures [5]. 

Among those, a High Level Replacement (HLR) system was IMPq PAR ,EXF 
i e 

introduced in [13] in order to generate algebraic specifications I t  c I r l 
using productions and derivations. An algebraic specification 
production, shortly SPEC-produetion, is an ordered pair Pro = L.*--~--~ CON a ~ R 
( I M P  ~ P A R  --, E X P )  of injective specification morphisms 

i : P A R - - * I M P  and e : P A R ~ E X P .  A direct derivation consists of the two pushout 
diagrams of specifications. A production Pro is applicable to a specification L if 
there exist a morphism l : I M P E L  and a context specification C O N  such that  
L is the pushout of I M P  and C O N .  The result R of the derivation is pushout 
of E X P  and CON.  In this case we have the direct derivation Pro : L =~ R (or 

L ~ o  R), and we say that  R is derivable from L via Pro. Notice that  a direct 
derivation is symmetric and that  if Pro : L =~ R, then Pro -1 : R =~ L where 
Pro -1 = ( E X P  ~-- P A R  ~ I M P ) .  If P R O D  is a set of SPEC-productions then 
the set of all the symmetric productions is denoted by P R O D  -1. The specifica- 
tion morphisms that  guarantee the existence of the pushout complement C O N  in a 
direct derivation are called occurrence morphisms. A morphism l : I M P - ~ L  is an 
occurrence if the following Gluing Conditions hold: 
a. I D s  U D A N G s  C_ is(SpAn)  
b. I D o p  U D A N G o p  C i o p ( O P P A R ) ,  where 
- I D s  = {s E S I M  P ] 38 ! E S I M P ,  8 ~ 8 t, lS(8  ) = Is(s')}; 
- I D o p  = {N  E OPIMP [ ~N ! E OPIMP, N ~ N' ,  l op (N)  = lop(N')};  
- D A N G s  = {s E PIMP ] 3N E OPL \ lop(OPiMP) and ls(s) E S O R T S ( N ) } ;  
- D A N G o p  --- {N E OPIMp I Be E EL \ IE(EIMp) and lop(N)  E OPNS(e ) } .  
The occurrence morphism I : IMP--*L identifies in the direct derivation Pro : 
L =~ R the L-part DELt  = I ( I M P  \ i (PAR)) ,  removed from L by the produc- 
tion Pro, and the R-part INS l  = r ( E X P  \ e (PAR)) ,  glued by Pro to the context 
C O N  to realize the new specification R. Given a set P R O D  of SPEC-productions 
we write SPEC1 =~ SPEC~ to mean a sequence of n > 0 direct derivations 

PROD 

SPEC~ ~ SPEC2 ~ . . .  ~ SPEC,~+I with P~ E P R O D  for i = 1 , . . . ,  n. 
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3 S t r a t e g y  

The following notions are inspired by [12], where Graph Grammars  are considered 
as models for rule-based systems in which solving state-space problems essentially 
requires searching in an exploding number of generated states which cannot be man- 
aged. The usual answer to this problem in AI is to prune the search-tree, selecting 
only some of the possible expansions of derivations. Any HLR system can be used to 
specify in a formal way many other similar problems. Algebraic specification gram- 
mars can model problems in which a transformation of a specification P R E  by the 
rules in a library LIB to obtain a prefixed final specification GOAL, is required. 

Def in i t ion  1. a).  An (AST-)problem P = (Ax, R, F) consists of a specification Ax, 
called axiom, a family of production rules R, and a unary predicate function on 
specifications F called filter. A solution for P is any Ax-reachable specification 
SPEC, i.e. Ax =~ SPEC, for which F(SPEC) is true. 

P 

b) .  Given a class PC = (AX, R, F) of AST-problems, P = (Ax, R, F) with Ax 6 
.AX, an algorithm S is called a search algorithm (w.r.t. PC), if and only if, when 
supplied with Ax E AX, the algorithm terminates with either a specification or 
the message FAIL. The result of S is correct if it is indeed a solution of P or 
FAIL otherwise. 

c). A production-system (PC, S) for AST-problems, briefly an AST-PS, consists of 
a class of AST-problems PC and a search algorithm S. 

According to the basic execution model of production systems, derivations of a 
specification SPEC based on a production rule Pro consists of two steps: retrieving 
the informations of how to apply Pro to SPEC, which can then be used to derive the 
new specification SPEC' from SPEC. In terms of AST notions, this corresponds 
to two primitive functions: 

Recognize :Specification x Rule-~OccurrenceSet 
where Recognize(SPEC, I M P  ~-- PAR --~ E X P )  = {gl, g2 , . . . ,  gin} is 
the set of all occurrences g~ : I M P ~ S P E C .  

Derive  :Specification x Occurrence--~ Speci f ication 
where Derive(SPEC, g) = SPEC'  with S P E C  =~ SPEC',  assuming that  
an 'occurrence' carries the information about  the corresponding rule. 

Difficult problems arise in executing each of the two operations above, as well as in 
evaluating the filter F on specifications. The cost of the latter depends on the specific 
problem; the cost of the operations other than Recognize and Der ive  is ignored. 
The following notion of cost covers both, the problem of a search-space-reduction, 
and the efforts to determine the applicability of rules. 

De f in i t i on2 .  Given an AST-PS=(PC,  S), the cost of the search algorithm S is 
based on the primitive function Recognize and Derive;  it is defined to be (N1, N2) 
with N1 and N2 being the number of calls for those functions. The cost (N1, N2) is 
said to be no greater than (N1, N2) iff N~ < N~ for i -= 1, 2. 
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Since we do not want to adopt a specific search algorithm, we aim for a notion of 
optimization which guarantees that  every search algorithm can be improved. 

Def in i t ion  3. Given an AST-PS=(PC, S), and a search algoritm O w.r.t. PC, we 
call O an optimization w.r.t. S iff O yields the correct solution whenever S does and 
the cost of O is not greater than the cost of S. 

The formalization can be given by the AST-problem P = (PRE, LIB, F), where 
PRE is the predefined data type, LIB is the library of reusable modules defining 
the transformation rules, F the filter defined by: 
- F (SPEC)  = true iff S P E C  -- GOAL 
An analysis of P could produce a search algorithm for PC (def. 1) independent 
of the initial axioms PRE. From the definition of P we observe that  there is only 
one PRE-reachable specification that  is a solution for P itself: a potential search 
algorithm for P should select in the search-tree a path from PRE to GOAL. If LIB 
has reasonable dimensions, it is impossible to think of selecting such a path visiting 
the tree in an exaustive way; it is enough to observe that  not only there exist several 
ways to transform each specification, but each rule in its own can generate many 
different results using all the occurrences selected by the Recognize primitive. For 
this reason it is difficult to work with search algorithms that  exploit a backtracking 
going back for more than one level. Then, for each step the algorithm should check 
all the transformations, and then go down toward the specification that  promises 
a 'better result'. I t  is necessary to find some criteria to assign a value showing the 
capability of each specification to lead to the final GOAL specification. To this end 
we can assign a value to a specification according to the number of elements shared 
by GOAL. 

3 .1  S i m i l a r i t y  

Def in i t ion  4. a) Let SPEC1 = ($1, OP1, El) and SPEC2 = ($2, OP2, E2) be al- 
gebraic specifications and let (S, OP, E) be a subspecification of SPEC1 such 
that  S C $1, ~ ~: OP C OP1, E C_ El.  A specification morphism f : 
(S, OP, E)---*SPEC2 having injective components f s  : S-~$2, fOP : OP~ OP2  
and fE : E~E2,  is called sharing mo~hism of SPEC1 into SPEC2. 

b) In this case we call SPEC1 Partially Similar to SPEC2 and denote it by 
f 

SPEC1 ~_ SPEC2. 
c) If the components of f are also surjective, we call SPEC1 Totally Similar to 

SPEC2 and denote it by SPEC1 ~ SPEC2. 
d) The specification SPEC1 is called Comparison Specification and SPEC2 is 

called Target Specification. The subspecification (S, OP, E) and the elements 
in SPEC1 \ (S, OP, E) are denoted by Core(SPEC1) and Remainder(SPEC1) 
respectively, via the sharing morphism f : (S, OP, E)~SPEC2.  

The set M = {fISPEC1 ~. f SPEC2} containing the sharing morphisms of SPEC1 
into SPEC2 may have more than one element. To chose one we associate to the 
Target Specification SPEC2 = ($2, OP2, E2), a mapping c = (cs, cop, c~) that  
weighs sorts, operations and equations with cs : S2---~N, cop : OP2--~N, CE : E2--*N 
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and define a function val : M - ~ N  tha t  evaluates the resources tha t  the Comparison 
and the Target specifications share. For f : (S, OP, E)--~SPEC2 6 M, 

val( f )  = E cs( fs(s))  + E c o p ( f o p ( N ) )  + E cE(fE(e)) 
s6S N60P e6E 

is the comparison value of f. Among all the elements in M with the higher value, an 

arbitrary choice can selects the one we are looking for. If we choose f*, it is called 

main sharing morphism, and the value v(SPEC1, SPEC2, c) = val(f*) denotes a 
measure of the similarity via some mapping c. 

D e f i n i t i o n  5. Let  SPEC2 be a Target specification with a weight mapping c. 

a.  the Total Weight of the Target is the value 

pT(SPEC2) = E cs(s) + E cop(N)  + E cE(e) 
s6S2 N qO P2 eqE2 

b.  the function RatiosPEC2,c : Specifications[O, 1] is given by 

v(SPEC1,  SPEC2,  c) 
RatiosPEC2,c (SPEC1) = PT (SPEC2) 

where SPEC1 denote a Comparison specification. 
c. the specification SPEC.  is the Optimal Comparison specification in I C Specification 

w.r.t, the Target SPEC2, when: 
Ratios P Ec2,c( S P EC* ) = max{ Ratios P Ec2,~( S P EC) lS P EC 6 I} 

F a c t  1. Let SPEC1 be a Comparison specification and let SPEC2 be a Target with 

a weight mapping c = (cs, cop, CE). If  M = { f ISPEC1 ~ SPEC2}  then 

RatiosPEc2,~(SPEC1) = 1 r 3 f 6 M : SPEC1 ~ SPEC2 

The function Ratio could be the basis for an extension to a formal definition of a 
'metr ic '  tha t  allows to measures the distance between specifications. 

Example 1 . .  Let us suppose the following is a Target Specification in such a compar- 
ison between specifications with a mapping tha t  uniformly weighs all the elements. 
It  can be viewed as a specification of a system tha t  represents a queue (FIFO),  with 
some length, of weighted elements. 

QueueNat = 

s o r t s  queue, n a t ,  bool 

opns NEW: --+ queue 
QADD: queue nat -~ queue 
REMOVE: queue -* queue 
LENGTH: queue -~ nat 
IS-EMPTY: queue --* bool 
ZERO: '-* nat 
SUCC: n a t  :-* n a t  
TRUE: -~ bool 
FALSE: -~ bool 

eqns For q 6 queue, n 6 nat,  
el : REMOVE(NEW)  = N E W  
e2 : REMOVE(QADD(q,n)) = IF 

IS-EMPTY(q) THEN N E W  ELSE 
QAD D( RE M OV E(q), n) 

e~ : I S - E M P T Y ( N E W )  = TRUE 
e4 : IS-EMPTY(QADD(q,n)) = FALSE 
es : LENGTH(NEW) = ZERO 
e6: LENGTH(QADD(q,n)) = 

SUCC(LENGTH(q)) 
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The following are SPEC-produc t ions  defined by two module specifications. The  first 

is P M N  "~- (MN-Imp ~- MN-Par  ~h MN-Exp),  where the  three  specificat ions are: 

MN-Imp = MN-Par + MN-Par = MN-Exp = MN-Imp + 
sorts 0 s0.rts nat  sorts 0 
.opns SUCC: nat  --* na t  opns ZERO: --* nat  opns MUL: nat  na t  ---* na t  
eqns 0 eqns O eqns O 

while the  second is P1s = (IS-Imp 2-  IS-Par  ~ IS-Exp),  with the  specifications:  

IS-Imp = IS-Par+ IS-Par = IS-Exp = IS-Imp+ 

sorts s t r i n g  sorts da t a  sorts O 
opns NIL: --~ s t r i n g  opns 0 opns I N V E R T :  s t r i n g  --* 

LADD: data  s t r i n g  --~ s t r i n g  eqns 0 s t r i n g  
eqns O eqns 0 

Both the product ions  have inclusions as specification morphisms.  Apply ing  the  pro- 
ductions PMN and P m  to  the  specification S t a c k I n t  we obta in  the  direct  der ivat ions  
PMN : S t a c k I n t  ~ S t a c k I n t '  and P m :  S t a c k I n t  ~ I n v e r t i n g S t a c k  respectively.  

StackInt  = 
sorts stack, int 

opns ZERO: --* int 
SUCC: int -4 int 
PRED: int -~ int 

EMPTY: -~ stack 

PUSH: stack int -~ 

stack 

eqns 0 

InvertingStack = StackInt+ StackInt '  = S tackInt  + 
sorts 0 sorts 0 
opns I N V E R T :  s t ack  --~ opns MUL: • i n t  --~ 

stack int 

eqns 0 eqns 0 

Since v ( S t a c k I n t ' , Q u e u e N a t ,  1) = 6/18 and v ( I n v e r t i n g S t a c k ,  Q u e u e N a t ,  1) = 
7/18, the  product ion  P I s  modifies S t a c k I n t  making i t  more similar to  the  target 
than  the resul t  of the  appl ica t ion  PMN : S t a c k I n t  ~ S t a c k I n t ' .  

3.2 S e a r c h  a l g o r i t h m  

In the  context  of  similarity,  the  solution for P coincides with the  Op t ima l  Com- 
parison specification in the  set of all the  specifications genera ted  by the  g r a m m a r  

( P R E ,  L I B ,  L~B) w.r.t,  the  t a rge t  G O A L ,  when it  is G O A L  exactly. But  the  Opt i -  

mal Compar ison specification S P E C *  could be different from G O A L ,  ei ther  because 
of the search algori thm or because of a small  library. In any case S P E C *  may  be 
used in adap t ing  the  design of a par t i a l ly  designed modular  system: ins tead  of con- 
s t ruct ing a module  with P R E  and C O A L  as interfaces, we need to  implement  only 
the elements t ha t  G O A L  does not  share with S P E C * .  We could also use the  t a rge t  
weight mapp ing  to increase the  probabi l i ty  t ha t  a par t i cu la ry  element could be  in 
S P E C * .  We now give another  AST-problem tha t  is a formalizat ion for our  original  
problem. 
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D e f i n i t i o n 6 .  Define P '  as the AST-problem P '  = (PRE, LIB,  F'), where PRE,  
L IB  and GC are the same of P ,  whereas F' is defined as: 

F'(SPEC1) = true iff 3h : S P E C 2 ~ S P E C I  A SPECs e (GOAL, L IB  -1, LI=~B_I) 
The symmetric  AST-problem..of P '  is P " =  (GOAL, LIB -1, F"), where 

F"(SPEC2) = true iff 3h  : S P E C 2 ~ S P E C t  A SPEC1 E (PRE, LIB,  L~B). 

This new problem is impor tant  because it can be solved even if GOAL cannot  be de- 
s 

rived from PRE. In fact, if F'(SPEC1) = true for some SPEC1 e (PRE, LIB,  L~IS), 

the  situation can be represented as in the following picture: 

P R E  

G O A L  

with the search tree for the problem P~ (the specification generated by the 

grammar  (PRE, LIB, Lr=~B)) , the tree tha t  represents the specifications (including 

SPEC2) generated by the grammar  (GOAL, LIB  ,LIB=~_I) and the linking mor- 

phism h between the trees. By theorem 4.7 in [14], the derivation P R E  :~ SPEC1 
L I B  

defines a module MOD1, whereas the derivation GOAL ~ SPEC2, considered in 
L I B -  1 

a symmetric  way, defines a module MOD2. The linking morphism h makes MOD2 
a client of MOD1, and allows their composition to obtain a module MOD tha t  is a 
solution of the original problem. 
The properties of p t  are now studied to define a strategy on which a search algo- 
r i thm for p t  can be based. An initial measure of  the difficulty to t ransform P R E  
into GOAL can be given in a way independent of the knowledge contained in the 
library. The value d(PRE, GOAL) -- 1 - RatioCOALj represents the percentage of 
the lacking resources of P R E  with respect to the ones in GOAL. There exist some 
ordinary productions tha t  allow ' to deduct '  both the existence of  further implicit 
resources in P R E  and a surplus of elements in GOAL. 

D e f i n i t i o n  7". Let  Pro = ( I M P  +- PAR  ~ E X P )  be a rule in LIB  and let S P E C  
be a specification. 

i. App(SPEC) = {Pro E LIB  I l~ecogn• Pro) # O} 
ii. Ded(SPEC) = {Pro E App(SPEC) I PAR = I M P  # E X P }  

The deductive productions in the set Ded(SPEC), when applied to S P E C  via an 
occurrence l, yield DELl = 0 in forward mode and INSt = 0 in backward mode. So 
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it is possible to use a search algorithm starting with a canonical phase that  tries to re- 
duce the difficulty of transforming PRE into GOAL by means of the deductive rules 
of LIB.  In fact, by these rules, a forward derivation from P R E  leads to an enriched 
specification PRE',  and a backward derivation from GOAL to a final specification 
GOAL' with a minimum number of elements to be implemented. An appropriate 
use of deductive rules assures d(PRE', GOAL') < d(PRE, GOAL). Using the con- 
cepts of similarity we can now define the strategy for a first phase in a search algo- 
rithm for P'. During the enrichment of P R E  (growing phase), if we apply the rules 
Pro E Ded(SPECk) to SPECk via the occurrence l E Recognize(SPECk, Pro), 
giving rise to the direct derivation SPECi =~ SPECk+l, we can consider the differ- 
ence 

Info(Pro,  l, SPECk) = v(SPECk+I, Target, c) - v(SPEC~, Target, c) 

This value represents the increase of the information that SPECk shares with tar- 
get, carried by the deductive Pro. As target, we can assume the final specification 
GOAL or some other, as we will see later. For each step we choose the deductive one 
that carries the greatest increase; if no one can bring a positive increase, the grow- 
ing phase stops.Analogously, during the shrinking phase from the final specification 
GOAL, at each step we can apply the deductive one that cuts the greatest num- 
ber of elements in the remainder of GOAL via some sharing morphism w.r.t. P R E  
(or w.r.t, the result PRE'  of the growing phase). Since both growing and shrink- 
ing phases require calls to primitive Recognize and Derive in a proportional way 
to d(PRE, GOAL), choosing GOAL' as target for the comparisons in the forward 
derivation and also choosing PRE'  as target for the ones in backward derivation, 
reduces the cost of the algorithm. Hence we prefer to adopt an interaction between 
forward and backward derivations. 

P R E  = PREo ~ PRE1 ~ PRE2 ~ PRE3 ... 

fo,~ fl,2 f2,a 
G O A L =  ~GOAJLof~GO~AL~ ~ G O ~ A ( f ~  GOAL3 ... 

In the above diagram the main sharing morphisms between the 'current' and target 
derivation for each derivation step are represented: 

- fk : PREi-~GOALk, identifying the resources that PREi shares with the target 
GOALk before deriving PREk+I. 

- fk-l,k : GOALi_I-*PREi,  identifying the resources that GOALk_I shares with 
the target PRE~ before deriving GOALk. 

The choice of starting the interactive derivation from PREo is due to an immediate 
decrease of calls to primitive functions, rather than from GOALo, that  produces 
benefits only on the length of forward derivation P R E  =~ PRE'.  However, for each 
step, the existence of a linking morphism can be tested, requiring the valuation of 
the filter of problem P' .  
The following fact takes into consideration the cost of the filter valuation, allowing 
to focus on the current specifications. 
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P r o p o s i t i o n  8. If PREi is the current derived specification in the canonical phase 
of a forward derivation, then: 

flh : GOALi_I---*PRE~ =~ i~h' : G O A L k ~ P R E j  Vk < i - 1, Vj < i 
If  GOALi is the current derived specification in the canonical phase of a backward 
derivation, then: 

;~h : GOALi---~PRE~ =~ flh' : GOALk-~PREj Vk < i, Vj < i 

Any search algorithm for the problem P '  (see def. 6) should have a Canonical Phase 
to construct its first part. At this point it is also necessary to take into consideration 
all the productions in LIB  to define the strategy for deriving GOAL' from PRE'.  
This post-canonization phase can be based on an interactive derivation again, but 
we need to modify the way to choose the rule to apply. A procedure can select among 
all the rules in App(PRE'), but not in Ded(PRE'), the production that  causes the 
largest increase of shared resources with respect to the current target, in spite of the 
removed part  DELl ~ 0. If DELt contains some 'useful' elements, a new series of 
applications of deductive rules takes place, while another procedurecan select among 
all the rules in App(GOAL'), but not in Dcd(GOAL'), the symmetric production 
that  causes the largest decrease of the elements not shared (those in the Remainder) 
with respect to the current target, in spite of the removed part  INSl ~ 0. If INSI 
contains some 'useless' elements, a new series of applications of deductive rules takes 
place. 

4 O p t i m i z a t i o n  

In this section we consider again the results of [12] in the theory of Graph Gram- 
mars, and present criteria that  allow to optimize any search algorithm in the context 
of algebraic specification transformations. Our approach to optimization is based on 
properties of rules which must safely avoid calls to the corresponding primitive func- 
tions, thus reducing the cost of the algorithm. 
The derivation bag Pj(S)  of a specification bag S with respect to a family of rules 

(P j ) jeJ  is Pj(S)  = {SPEC'  [ 3SPEC 6 S, j 6 g such that S P E C  ~ SPEC'} .  
We also use the notation Pj(SPEC) for J = {j} and S.= {SPEC}.  

Def in i t ion  9. A rule P1 is k-monotonic with respect to a rule P2 if and only if 

VSPEC : I P2(SPEC) I= k ~ , ~ s  (V SPEC1 E PI(SPEC) I P2(SPEC1) I<_ k) 

A rule P1 is called monotonic w.r.t, a rule P2 if and only if 

VSPEC : P2(SPEC) = 0 i , ~ s  P2PI(SPEC) = 0 

This definition gives rise to a simple improvement whenever we find those rules 
where the non-applicability of the second to the result of the first can be predicted, 
provided the second has been non-applicable before. Thus monotonicity allows to 
eventually skip some Recognize2calls. 
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F a c t  2. Given rules {P1,P2, . . . ,  P,~}, each k-monotonic w.r.t, a rule Pq, for every 
SP EC s ,  6 P s , ' " P s l ( S P E C )  , with i >_ 1, sj 6 { 1 , 2 , . . . , n } ,  j = 1 , . . . , i :  

] Pq(SPEC) I= k '~=~]  Pq(SPECs,)  I<_ k 

In order to let a search-algoritm take advantage of a precomputation pass which dis- 
tinguishes rules which are monotonic, effectively computable criteria must be found. 
A s y n t a c t i c a l  m o n o t o n i c i t y  c r i t e r ion  is an effectively computable binary predi- 
cate on rules telling whether these rules are monotonic. 
Given two syntactical monotonicity criteria S C  and SCb, the latter is said to be 
b e t t e r  if and only if SC C SCb. A syntactical monotonicity criterion is said to be 
o p t i m a l  if and only if there is no better  syntactical monotonicity criterion. 
Asking how an interaction of rules can effectively be characterized, we start  by look- 
ing at the ways in which two rules may overlap in a derivation. To be more precise, 
we ask how the part  in specification SPEC2,  defined by the intersection of the im- 
ages of the occurrence morphisms rl  : E X P I ~ S P E C 2 ,  12 : I M P 2 ~ S P E C 2 ,  can be 

characterized when SPEC1 ~ SPEC2 ~z SPEC3.  

Def in i t i on  10. (Gluing Relation Set) 
Given two specification morphisms el : P A R I - ~ E X P 1 ,  i2 : PAR2-~IMP2,  the 

g lu ing  r e l a t i o n  set  is the set G R S  (cl, i2) of relations 

~r= (~rsC_ SEXP~ X SrMp,, gropC_ OPExP, x O P r f p , ,  grEC_ EEXP~ x EIMP,) 

on sorts, operations and equations, such that  each g'rE GRS(el ,  i2) also satisfies the 
following axioms. 

For a, a' 6 EXP1,  b, b' 6 IMP2, -6 6 EXP1 \ e l (PAR1),  -b 6 IMP2 \ i2(PAR2): 

( A x l ) .  a grop b ~ (cod(a) gr s cod(b)) and "every x 6 dora(a) bijectively corre- 

sponds to a y e dora(b) such that  x g'rs Y" 
(Ax2) .  a gr E b =~ M A T C H ( a ,  b) = T R U E  

(Ax3) .  a gr s b ~ V N 6 0 P N S ( a )  3 N'  6 0 P N S ( b )  and g grop N'  
(Ax4) .  -6 gr s b ~ V N'  6 0 P N S ( b )  ~ Y 6 0 P N S ( - 6 )  and g grop g '  

(Ax5) .  (a gr s b) and (a gr s b') ~ -b = b' 

(Ax6) .  (-6 gr s b) and (a' gr s b) =~ -~ = a' 

(Ax7) .  (a grop -b) and (a grop b') ~ b = b' 
(Ax8) .  (-6 grop b) and (a' grop b) ~ -6 = a' 
(Ax9) .  a grop b =~ V el 6 EQNS(a)  3 c2 6 EQNS(-b) and el grop e2 
( A x l 0 ) .  -6 grop b ~ V e2 6 EQNS(b)  3 el 6 EQNS(-6) and el grop e2 

The function MATCH verifies that  the two equations can be translated into each 
other via the identifications of the relation grop.  

A relation grEGRS, with ~ C  el(PAR1)  x i2(PAR2) is called an Interface relation. 

Propos i t ion  11. Given two specification morphisms e : PAR1--~EXP, i : PAR2---*IMP, 

each element greG RS (e, i) identifies an algebraic specification S P EC~ 6 S P EC ~ . 
9 r GRS 
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There are two 'projection'  morphisms Irl : S P E C ~  ---*EXP and zr2 : S P E C ~  ---*IMP 
9r  9r  

defined by: 
- V (x,y) e S P E C ~  : zcl((x,y)) = x ,  ~r2((x,y)) =y .  

9r  
If  we replace the elements S P E C ~  in S P E C  ~ by the element ( S P E C ~ ,  zq, 1r2), 

G R S  
we obtain a new set, denoted by P B  ~ . 

G R S  

P r o p o s i t i o n  12. Given two rules 

I)1 = (IMP1 ~- PAR1 ~ EXP1) and P2 -- (IMP2:2. PAR2 2_~ EXP2) 

the set P B  ~ contains exactly the pullbacks of all EXP1 ~ SPEC1 ~ IMP2, 
G R S  

with rl and 12 occurrence morphisms. 

The following Match Theorem is a special case of the Concurrency Theorem for HLR- 
Systems, which holds for the particular choice of specification morphisms reviewed 
in section 2 ([9]). 

T h e o r e m  13. Given the sequence of derivations 

($1) SPEC1 h SPEC2 h SPEC3 
there exists a SPEC-derivation with the match-production P1 *M 1)2 
($2) P1 *M P2 : SPEC1 ~ SPEC3 
called matched derivation of the sequence ($1). 
Viceversa each direct SPEC-derivation ($2), using P1 *M P2 leads to a derivation 
sequence ($1) using P1 and P2. 

Now we can use the set of all gluing relations to characterize the way in which rules 
may overlap. 

L e m m a  14. Given P1 = (IMP~ ~ PAR1 2s EXP1) and ]92 = (IMP2 ~ PAR2 
E X  P2) and subspecifications SE C EXP1, SI C_ IMP2, then the proposition 

V SPEC1 h SPEC2 ~ SPEC3, rl(SE) N 12(Sx) = 0 

with rt : EXP1--~SPEC2 and 12 : IMP2---*SPEC2, is equivalent to 

Using this lemma, potential overlapping of occurrences, defined as universally quan- 
tified propositions over an infinite number of specifications, are effectively decid- 
able. In fact, since each of the specifications E X P t  = (S1, OP1, El)  and IMP2 = 
($2, OP2, E2) is finite and so are the sets S = $1 x $2, OP = OP1 x OP2, E = E1 x E2 
and the powersets 7)(S), "P(OP) and P(E),  all g~-axioms can be checked in a finite 
number  of steps. The classical notion of parallel iterdependency leads to a syntactical 
monotonici ty criterion. 

D e f i n i t i o n  15. A rule P1 is said to be S - i n d e p e n d e n t  of a rule P2 if and only if 

V EXP1 5h S P E C  ~ IMPz : rl(EXP1)NI2(IMP2) C_ rl(el(PAR1))NI2(i2(PAR2)) 

where r l  and I2 satisfy the gluing conditions. 
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Fac t  3. S - i n d i p e n d e n c e  is a syntactical k-monotonicity criterion. 

Unfortunately, s-indipendence is only a weak monotonicity criterion, since it is only a 
sufficient criterion: there could be a pair of rules P1 and P2 such that  P1 is monotonic 
w.r.t. P2, altough P1 is not s-indipendent of P2. 

L e m m a  16. Given rules P1, P2 and P3, 

V grEGRS "and P. = P1 *M P2 = IMP.  ,~- PAR.  Y-~ EXP. )  ] 
with M = (SPEC~, ~1, 7r2) E PB ~ 

GRS (SintR' 
there is an occurrence morphism g+3 : IMP3---*IMP. 
such that (g+s(gGl3s) C_ gGl . s  A g+30p(NGl30p) C NGl.op) } (UCC) 

is equivalent to 

VSPEC (3SPEC ~ SPEC~ ~ SPEC2 " ~  3 S P E C  ~ SPEC3) } (SemR) 

Remark. - In a production P = ( IMP ~ PAR --% EXP),  the elements of the set 
Gl = i(PAR) are called Gluing Elements, while NGI = I M P  \ i(PAR) contains 
the Non-Gluing Elements. 

- (SyntR) is a shorthand for Syntactical Relation, whereas (UCC) stands for Un- 
Criticalness Condition. The Semantical Relation (SemR) can be read as: 
'if P1 and P2 can sequentially be applied to SPEC, then P3 must be applicable 

to SPEC'  and is equivalent to P3(SPEC) = ~ im~es P2PI(SPEC) = 0 

Def in i t ion  17. Given two rules /)1 and /)2, P2 is M - i n d e p e n d e n t  of P2, if and 

only if for each non-Interface relation gr~GRS there is an occurrence morphism 

g~ : IMP2-*IMP. with P. = P2 *M P1 = IMP.  ~ PAR.  ~ E X P .  and M = 
( S P EC~, ~rl, ~2) E P Bc~s, such that  the Uncriticalness Condition (g~s( N Gl2s ) C 
NGI.s A g~op(NGl20P) C_ NGl.op) holds. 

T h e o r e m  18. M-independence is an optimal syntactical monotonicity criterion. 

Any addition of correct software in any library should modify the information about 
the M-indipendence among all induced rules. In this way, each search algorithm 
could exploit search-space reduction, as well as a reduction of efforts to determine the 
applicability of rules. Along the lines of [12], there is a notion of semi-commutativity 
of/>1 w.r.t. P2 which allows to interchange their applications. It  can be shown that  
S-independence is a syntactical semi-commutativity criterion and that  there is an 
optimal semi-commutativity criterion, called SC-independence. For lack of space, 
we refer to [2] for formal definition and proofs. 

Example 2 . .  Given the specification morphism el and i2, we illustrate the elements 

of the set GRS (el, i2)--  {~0, grl},  with: 

- g r 0 =  ( 0 ,  0, 0) 
- grl= ({(nat, data)}, O, 0). 
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The ~ relation g~2= ({(nat, string) }, O, O) is not contained in GRS (el, J2) be- 
cause it does not verify (Ax.3).  Some g'r with drop ~ 0 should include the pair 
(ZERO, NIL), but this requires the validity of nat gr S string. Both g~o and ~ 1  
are Interface relations. 

t i t 

The set GRS (e2, il) is {g~0, g~l, g~2}, in which 

i 

- g~0 = (0, ~, 0) 

- dr1,= ({(data, nat)}, O, O) 

- g'~2 = ({(string, nat)}, {(NIL, ZERO), ( INVERT,  SUCC)}, O) 

and ~'0 and g'~: are Interface relations. 
The production PMN is M-independent of the production P1s, because of all the 

relations in GRS (ei, i2) are Interface relations. Then, by the previous theorem: 

VSPEC : PIs(SPEC) = 0 i . ~  P I s P M N ( S P E C )  = 0 

Viceversa, Pls is not M-independent of PMN; in fact for the only not Interface re- 

lation g'r2 not exist such an occurrence morphism from MN-Imp to IMP. when 
Prs *M PMN = (IMP. *-- PAR. --* EXP.)  and M = (SPEC~,,vl,lr2) E 

d r 2  

P B ~  CRS(el,~2)" 

5 C o n c l u d i n g  R e m a r k s  

In this paper we have addressed the problem of deriving a given specification in an 
algebraic specifications grammar. Elsewhere [13,14], it has been shown that  if the 
productions of the specification grammar are the interfaces of module specifications, 
then a derivation sequence from the initial specification of the grammar to the ob- 
jective specification can be automatically translated into an interconnection of the 
corresponding module specifications. Even for small libraries of modules, the search 
space for the problem of deriving a specification can be intractably large., We have 
found syntactical criteria to prune the search tree by analyzing only the interaction 
of the different productions, independently of the specification to be generated. So, 
if two productions P1 and P2 are, say, commutative, then only one of the two se- 
quences P1P2 and P2P1 is considered. To guide the search in the pruned tree, we 
have used the notion" of similarity, to measure the distance between two specifica- 
tions. In choosing the appropriate occurrence of a production, the total weight of a 
morphism is used, defined in terms of an arbitrary importance map defined on the 
goal specification. 

One of the objectives of this work is to produce an "automatic helper" to assist in 
the design of a modular system from a library (typically a prototype to investigate 
the feasibility and to validate the adequacy of the goal specification). What  has 
been developed does not depend on the notion of module specification chosen, but 
can be used in any context where productions of algebraic specifications are used 
[15]. While most of section 4 depends on syntactical criteria based on the intrinsic 
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structure of the algebraic specifications, the development in section 3 is based on 
the notion of similarity and of weight of an occurrence, bo th  defined essentially in 
terms of morphisms and therefore directly extendable to institutions other than the 
one used (essentially to simplify the presentation). 
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