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Abs t rac t .  The process interpretation of constraint logic programming (clp) 
leads to a model which is similar for many aspects to (an unsynchronized 
version of) concurrent constraint programming (ccp). However, it differs from 
the latter because it supports the notion of consistency: an action can be 
performed only if it does not lead to an inconsistent store. We develop a 
denotational, fully abstract semantics for clp with respect to successful, failed 
and infinite observables. This semantics extends the standard model of clp 
in two ways: on one hand by capturing infinite computations; on the other 
hand by characterizing a more general notion of negation. Finally, our work 
can be regarded as a first step towards the development of a simple model 
for ccp with atomic tell. 

1 I n t r o d u c t i o n  

Constraint logic programming (clp, [10]) is an extension of logic programming ([28]) 
in which the concept of unification on the Herbrand universe is replaced by the more 
general notion of constraint over an arbitrary domain.  A program is a set of clauses 
possibly containing some constraints. A computat ion consists of a sequence of goals 
with constraints, where each goal is obtained from the previous one by replacing an 
a tom by the body of a defining clause, and by adding the corresponding constraint, 
provided that  consistency is preserved. 

Like pure logic programming, clp has a natural  computat ional  model based on the 
so-called process interpretation ([27, 25]): the conjunction of atoms in a goal can be 
regarded as parallelism, and the selection of alternative clauses as nondeterminism. 
Such a model presents many similarities with the paradigm of concurrent constraint 
programming (ccp, [23]). 

However there are some important  differences between clp and ccp. The latter 
cannot be regarded just as clp plus concurrency mechanisms. A central aspect of 
clp, in fact, is that  inconsistent computat ions  (i.e. computat ions which lead to an 
inconsistent result) are eliminated as soon as the inconsistency is detected. More pre- 
cisely, the mechanism of choice in clp embodies a consistency check: a branch, whose 
first action would add a constraint inconsistent with the store, is disregarded. Such 
a check is not supported in ccp. On the other hand, the choice of ccp is controlled 
by an entailment check, which allows to enforce synchronization among processes. 
Such synchronization mechanism is not present in clp. 
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The concern for consistency in ctp is reflected also by the notion of observables: 
usually a distinction is made between success (existence of a computation which 
leads to a consistent result) and failure (all fair computations lead to inconsistent 
results). This distinction is not made in cop: false, the inconsistent store, is regarded 
as a result having the same "status" as the other constraints. 

In this paper we present a logical model for clp which extends its standard 
semantics (hence it maintains the distinction between success and failure), and, on 
the other hand, it captures the notions related to processes, like the "results" of 
infinite computations. We first consider a structured operational semantics, based 
on a transition system, by means of which we define the notion of observables as 
the set of final constraints resulting from all possible derivations. Then we develop a 
compositional semantics, based on logical operators, and show its full correspondence 
with the observables. It turns out that it is more convenient to reason about a 
generalized language, which we call F_clp, structured as the free language generated 
by a BNF grammar. F_clp subsumes clp; the main extension is that it allows the 
presence of global variables in the clause bodies. 

Moreover, we use this model to treat the problem of negative goals. In logic 
programming the meaning of a negative goal -~G is based on the finite failure of 
G ([6]). This works only for ground goals and does not allow to define a notion of 
computed result. More refined approaches consider a constructive notion: the result 
of -~G is, roughly, the negation of the disjunctio n of all the possible results of G 
([5, 29, 26]), or it is obtained by finding "fail answers" ([17, 7]). Our approach has 
some points in Common with the latter, but it is based on a different philosophy: 
we treat negation operationally as any other construct of the language, by means of 
structural rules. Only in the observables we  use a different definition, which takes 
into account the non-monotonic nature of negative goals. 

Since our model characterizes also infinite computations, it allows us to define 
two notions of negation. One corresponds to the standard one, and considers only 
the finite results. The other considers also the results of infinite computations, and 
it captures the set of constraints which, when added by an hypothetical interactive 
process at some stage of the computation, will cause the computation to fail. 

Unfortunately, due to the non-monotonic nature of negation, it is not possible to 
introduce negative goals into the language, unless some restrictions are made. In fact 
this would cause the loss of the continuity of the semantic operator which is used 
in the fixpoint construction of the denotational semantics. In the literature of logic 
programming one can find various proposals to solve this problem. In particular we 
cite two approaches based on syntactical conditions: stratification ([2]) and strictness 
([13]). These ideas generalize smoothly to our case. 

1.1 R e l a t e d  work  

The problem of characterizing the infinite computations via a fixpoint (denotational, 
bottom-up, declarative . . . )  semantics has been extensively studied in (constraint) 
logic programming. The main challenge is to get such a characterization while main- 
taining a simple domain of denotations. 

In most concurrent languages, for instance the imperative languages and the 
languages with global nondeterminism, the denotational characterization of the op- 
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erators requires complex structures, like synchronization trees or reactive sequences. 
On such domains there are well established techniques which allow to treat infinite 
computations, and they can be fruitfully applied also in the case of concurrent logic 
programming and concurrent constraint programming, see for instance [3], which 
is based on metric spaces. Another interesting approach, using category theory, is 
developed in [18]. 

In (constraint) logic programming, however, the domain of denotations for finite 
computations is particularly simple: sets of constraints or set of substitutions. Such 
a simple domain presents in principle more difficulties for treating infinite computa- 
tions, because, for instance, it does not represent the occurrence of a computation 
step. 

Most approaches aimed at modeling infinite computations with sets of con- 
straints, are based on the greatest fixpoint of Tp, the immediate consequence opera- 
tor which is used in logic programming for the fixpoint construction of the minimal 
model. Differences among these approaches depend on the kind of completion tech- 
niques applied on the underlying data structure, mainly based on partial orderings 
or metrics. However all these works have not been able to reach a full correspondence 
with the operational semantics. In the partial ordering completion of [8] only mini- 
mal answers are characterized. Furthermore the construction only works for clauses 
which contain at least one global variable. In the metric completion, at least in the 
approach found in the literature ([1, 14]) there is a basic soundness problem, be- 
cause the objects which are considered are the solutions of the constraints rather 
than the constraint 3 themselves, and it might be the case that an infinite element is 
the solution of a constraint whereas its finite approximations aren't. Hence a limit 
element obtained in the fixpoint construction might be unobtainable operationally. 

A different approach, based on adding to the program some suitable clauses 
containing indefinite terms, and then applying a least fixpoint construction, has 
been developed in [15]. However, also in this case completeness is not achieved. 

In [11] infinite computations have been studied from a declarative point of view. 
However, the purpose of that  work is not to characterize the results, but rather to 
establish a distinction between infinite successes and infinite failures. An infinite 
computation is "successful" whenever all partial results of the computation allow 
the same solution (hence the limit result has a solution). Otherwise it is considered 
an infinite failure. Infinite successes are shown to correspond to the difference set be- 
tween the greatest and the least fixed points of Tp. The others are the difference set 
between Tp ~ w and the greatest fixpoint of Tp. In our model the second difference 
set disappears, because we work on completed domains which ensure the downward 
continuity of Tp 4. However also in our model a similar distinction between "success- 
ful" and "failed" infinite derivations can be made: infinite failures just correspond 
to the infinite computations delivering an inconsistent limit result. 

The techniques we use in this paper have been inspired by the works in [12] 

3 The language investigated in [1, 14] is pure logic ~programming, hence constraints are 
equalities over the Herbrand universe, and solutions are syntactical unifiers. 

4 Tp lw is the limit of the decreasing sequence B, Tp(B),T~(B), . . .  where B is the Her- 
brand base (the top element of the domain). It can be shown that Tp lw is the comple- 
ment of the set of finite failures. 
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and [16], which present a semantics for (angelic) ccp based on Scott-compact sets, 
capturing also infinite behavior. The ideas behind the denotational construction are 
quite similar; the difference is that  we deal with a language supporting a notion of 
consistency check. 

As far as we know, our approach to negation is quite original. 

1.2 P lan  o f  the  paper  

In next section we recall the definition of constraint system. Section 3 gives a brief 
description of clp and introduces the language F_clp. Section 4 illustrates the opera- 
tional semantics of F_clp and the notion of observables. In Section 5 we develop the 
denotational model of F_clp and show its full correspondence with the observables. 
Finally, in Section 6 we enrich the language with negative goals, and we study a 
generalized notion of negation. Due to lack of space, we omit the proofs; they can 
be found in the full paper. 

2 C o n s t r a i n t  S y s t e m  

The concept of constraints over arbitrary domain is central for the paradigm of clp 
and represents its major novelty with respect to logic programming. We follow here 
the approach of [22], which defines the notion of constraint system along the lines 
of Scott's information systems [24]. 

Roughly, an information system is based on a set of "propositions" with an 
entailment relation subject to a set of axioms. The elements of an information system 
are sets of propositions which are consistent and closed under entailment. 

In [22] a constraint systems is defined as an information system, but for the re- 
quirement of the consistency, which is removed. This is necessary in ccp in order 
to capture the possibility that a program gives rise to an inconsistent state during 
its execution. In our case this would not be necessary. However, we maintain this 
extension because this approach leads to constraint systems which are complete al- 
gebraic lattices. Constraint systems having this property are very desirable domains 
since their powerdomains can be algebraically characterized in terms of some family 
of sets instead of a family of sets of sets ([20]). In Section 5 we will use this property 
to define a simple denotational semantics for the language F_clp. 

In this paper we regard a constraint system as a complete algebraic lattice in 
which the ordering E is the reverse of the the entailment relation I-, the top element 
false represents the inconsistent constraint, the bot tom element true the empty 
constraint, and the lub operation U the join of constraint, corresponding to the logical 
and. We refer to [22] for more details about the construction of such a structure. 

D e f i n l t i o n l .  A constraint system is a complete algebraic lattice (C, _E, U, true, false) 
where II is the lub operation, and ~rue, false are the least and greatest elements of 
C, respectively. 

An element c E C is compact, or finite, ifffor any directed subset D of C, c E_ [.] D 
implies c E d for some d E D. The lub of two finite elements is also finite. 

Following the standard approach, we will sometimes use F instead of _E. Formally 
c t - d  r dE_c. 
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2.1 Cy l ind r i c  C o n s t r a i n t  Sys t ems  

In order to model local variables in F_clp, a sort of hiding operator is needed. 
This can be formalized by introducing a kind of constraint system Which supports 
cylindrification operators, a notion borrowed from the theory of cylindric algebras, 
due to Henkin, Monk and Tarski ([9]). 

Assume given a (dennmerable) set of variables Vat with typical elements x, y, z , . . .  
and consider a family of operators {3= [ x E Vat}. Starting from a constraint system 
C, construct a cylindric constraint system C' by taking C' = C U {3~c I x E Vat, c E 
C~} modulo the identities and with the additional relations derived by the following 
axioms: 

(i) 3=c E_ c, 
(ii) if c E d  then 3=cE3=d,  

(iii) 3=(c U 3=d) = 3=c U 3 j ,  
(iv) 3=3yc = 3~3=c, 
(v) if {c/}i is an increasing chain, then 3= Ui ci -- Ui 3=ci. 

Note that these laws force 3.  to behave as a first-order existential operator, as the 
notation suggests. 

2.2 Diagona l  cons t r a in t  sys t ems  

In order to model parameter passing, it will be useful to enrich the constraint system 
with the so-called diagonal constraints, also from Henkin, Monk and Tarski ([9]). 

Given a cylindric constraint system Ci, define a diagonal constraint system C" 
by taking C" = C~U {d~y [ x, y E Vat} modulo the identities and with the additional 
relations derived by the following axioms: 

(i) d== = Irue, 
(ii) if z C x ,  y then d=y=3~(d=~Ud~y), 

(iii) if x r y then c E d~y U 3=(c U d=y). 

Intuitively, a constraint dxy expresses the equality between x and y. Used together 
with the existential quantification these constraints allows us to model the variable 
renaming of a formula r In fact, thanks to the above axioms, the formula 3= (d=y U r 
has precisely the meaning of r with all the free occurrences of x replaced by y, i.e. 

3 T h e  l a n g u a g e  

The syntax and the computational mechanism of clp ([10]) are very simple, but 
they do not provide a suitable basis to define a denotational semantics for clp. We 
need to reformulate the syntax of clauses and goals by means of a free grammar. 
The resulting language will be called F_clp. This will also allow us to describe the 
operational semantics in a structured way. 

Constraints and atoms are basic constructs also in our language, but we restrict to 
atoms of the form p(x). Furthermore we need to represent the conjunction of atoms, 
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the alternative choice among clauses, and locality. Correspondingly we introduce 
the operators A, V and 3~. The choice of these symbols is because we have in mind 
a denotational semantics which assigns to goals a logical meaning, and the idea is 
that  A, V and 3~ will correspond to the and, the or and the existential operator 
respectively. The Bz symbol here must not be confused with the analogous operator 
of the constraint system, but, of course, there is a close correspondence among them. 

The grammar  is described in Table 1. The language is parametric with respect 
to g, and so is the semantic construction developed in this paper. We will assume 
in the following that  there is at most one declaration for each predicate. 

Programs P ::= r I D.P 

Declarations D ::= p(x) :- G 

Goals G : = c l p ( ~ ) I G A G i  G v G  I ~ G  

Table t.: The language F_clp. The symbol p ranges over predicate names, and c 
ranges over the finite elements of a diagonal (and cylindric) constraint system g. 

Note that F_clp subsumes clp. For instance a declaration for p consisting of two 
clauses 

p(z,  a) :- c(x), q(z, y) 

p(b, x) :- 

can be rewritten in F_clp as 

v 
3~(~ = (b, ~)). 

The language/ '_clp is more general than clp for three reasons. First, it is not nec- 
essary to assume that  g contains the equality theory. Second, goals can contain 
disjunction and quantification. We like to have this feature because we think it 
provides the goals with a nice algebraic structure, which could be very useful, for 
instance, for developing a theory of equivalence. Third, in clp global variables can 
occur only in the goal, whereas in F_clp they can occur also in the clauses. 
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4 O p e r a t i o n a l  s e m a n t i c s  

In this section we present the operational semantics of our language from a "process 
interpretation" point of view. Namely, we regard an a tom in the goal as an agent, and 
a goal as a set of parallel agents which communicate  with each other by establishing 
constraints on the global variables. In this view, a computat ion corresponds to the 
evolution of a dynamic network of parallel agents. 

We define the operational semantics in the style of SOS ([19]), i.e. by means 
of  a transition system which describes the evolution of the network in a structural 
way. The configurations are goals, and the transition relation, ----~, represents the 
computat ion step. 

4.1 T h e  p r o b l e m  o f  t h e  c o n s i s t e n c y  c h e c k  

In order to avoid the generation of goals with inconsistent constraints, we have to 
perform an appropriate consistency check. In F_clp it is more complicated than in 
clp, because of the generalized goals containing the V construct. We have to define 
what is the constraint associated to such goals, and how does it combine with the 
constraint of a parallel agent 5. Intuitively, a goal of the form G1 V G2 will offer 
both the possibilities of G1 and Gg_. If we put in parallel G1 V G2 with a goal 
G3 we can avoid failure if and only if either G1 or G2 establish constraints which 
combine consistently with the ones of G3. In other words, we need a sort of logical 
or. A first idea would be to define the constraint associated to a disjunction as 
the greatest  lower bound n of the two constraints of the disjuncts in the underlying 
constraint system. Unfortunately this choice does not work. Consider for example 
the constraint system illustrated in Figure 1. If we have the goal z = 0 V z = 1, then 
z = 0 n z = 1 = true,  which is consistent with the constraint z = 2. On the other 
hand, (x = 0 V z  = 1 )Az  = 2 should fail. The problem is that  in order to correspond 
to the logical and and or, U and ~ should satisfy the distributive laws: 

a U ( b n c )  = ( a U b )  n ( a U c )  

a n (b u c) = ( a n  b) u (a lq c). 

This is not  the case in this example: the lattice in Figure 1 is not  distributive. 
A possible solution is to embed the constraint system into a distributive one, 

where the lub and glb model conjunction and disjunction s. A simple way to do this 
is to lift to sets of constraints, following the idea presented in [4]. In fact the set 
union and the set intersection, which are the glb and the lub on sets, enjoy the 
distributive property. It turns out that  we actually need to consider only sets which 

An alternative would be to define the syntax and the operational semantics in such a way 
that disjunctions never occur in the goals. However this would complicate the transition 
system considerably. 
Actually we do not need to have a complete lattice for dealing with the consistency check 
on the constraints generated during a computation. Since they are always finite, a lattice 
would be sufficient. However, we will need a complete lattice for the notion of observables 
(of infinite computations) and the denotational semantics. 
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false 

x 2 

true 

Fig. 1.: A non-distributive constraint system. 

are upward-closed and Scott-compact. We recall that the upward closure of a set 
D C C is the set {c E C I there exists d E D. d E c}, which we denote by T D. A 
set D C C is upward-closed iff D =T D. Given a set D C C, a cover for D is a set 
of compact elements C such that D C T C. Finally, a set D C g is Scott-compact iff 
every cover for D contains a finite subset which is also a cover. We will denote by 
Pen(C) the set of Scott-compact upward-closed subsets of C. 

Given a cylindric, diagonal constraint system (C, E, IJ, true,false, Vat, 3, d), con- 
sider the structure C = (Pcu(C), D, N, True, False, Vat, 3,  ~), where True is T true, 
which coincides with C, and False is 1" false, which coincides with {false}. For 
C E 7~cu(g), :~zC is defined as T 3~C, where 3~C stands for the pointwise ap- 
plication of 3~ to the elements of C. Finally, dixu is defined as T d~:y. We have the 
following property: 

P r o p o s i t i o n 2 .  C is a cylindric, diagonal constraint system with finite tub and glb 
coinciding with set intersection and set union respectively. Furthermore, if {Ci}i is 
an increasing chain (w.r.t. D_) then lubiCi = Ai Ci. 

From the second part of this proposition it follows that 

C o r o l l a r y  3. The support lattice of C is distributive. 

The correspondence between the original constraint system and C is obtained 
by mapping each element c into T c. It can be shown that this mapping preserves 
the ordering, the lub, and the existential operator. Of course, it does not preserve 
the glb. 

The entailment relation on C, i.e. the operational counterpart of the inverse of 
5 ,  which we will denote by IF, can be computed by extending the original entail- 
ment relation with the standard logical rules for conjunction and disjunction, plus 
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the axioms for the existential operators and the diagonal elements (~z and ~zy) 
corresponding to the laws of Sections 2.1 and 2.2. 

However, our main concern is proving the consistency of constraint C, i.e. that 
C # False, or, equivalently, that C I) z False at least for those constraints C which 
belong to the set/2 C_ 7)cu(C) generated by the following grammar: 

c::=lclCnCl%ClCuC. 
To this purpose, having a complete deduction system for Ik is not sufficient, because 
it does not imply the computability of Iy. Fortunately, in the case of the consistency 
check, we have a relatively complete system 7 which is described in Table 2. 

The idea behind this system is to reduce the expressions to disjunctions of elemen- 
tary expressions of the form T c, whose consistency we are able to test directly on the 
underlying constraint system. Note that to make this reduction we use the distribu- 
tivity of N wrt U and the properties 3= Ui Tci = Ui T 3=ci and T c ~ T d =T (c U d). 

c l -d  
Tc Ik ~fd 

Ui Tc~ Ik C 
u~ [ B=cl IF :~=C 

U i T c i t l - C  , u j l ~ d j l I - D  
uq ~f(c~ud.7)lk. C n D  

u i T c i l I - C  , u j l d j l I - D  
ui Tc~ uu. /Td3 It- C u  D 

Table 2.: Deduction system for the consistency check, sat stands for "satisfiable", 
i.e. consistent. 

P r o p o s i t l o n 4 .  (Re la t ive  comple t eness  o f  sat) The relation sat inductively de- 
fined by the system in Table 2 completely describes consistency in s  i.e. for each 
element C 6 f,, we derive sat(C) iff C ~ False. 

Now we have the necessary machinery to define the operational semantics. Let's 
first define a function con : Goals --* f ,  which gives the constraint established by a 
goal. 

Def in i t ion  5. con (c) = T c 
con(p(=)) = T m,e 
con(G1 ^ G~) = con(G1) n con(G~) 
co . (Cl  V G~) = con(a1) u con(a~) 
con(3~C) = %con(G).  

Namely our system is complete provided that c ~ .false is semidecidable (hence decid- 
able). This assumption is customary for the constraint systems used in clp. 
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The consistency check on a goal G consists in verifying sa~( con( G) ). 

4.2 T h e  trans i t ion  s y s t e m  

The operational semantics of .r'_clp is given by the transition relation ~ defined 
by the rules in Table 3. The program P -___ D1.D2. . . . .Dq is assumed to be fixed. 

Recursion p(y) ~ 3~(d~,~ A 3~(d,~.~ A G)) 

G ----+ G' 
Hiding 9~G ----* 9~G' 

Disjunction G1 ~ G~ 
G1 v G~ ----* G~ 

G2 V G1 ~ G~ 

Parallelism G1 ~ G~ 
G1 A G2 ---* G~ A G2 

G2AG~ ~ G 2 A G ~  

p(x) :- G E P and sat(con(G)) 

sat(co.(a~ ^ c~)) 

Table 3.: The transition system for F_clp. 

The execution of a predicate call p(y) is modeled by the recursion rule which 
replaces p(y) by the body of its definition in the program P,  after the link between the 
actual parameter y and the formal parameter x has been established. Following the 
method introduced in [23], we express this link by the context 3~(dwAB~(d,~A. . . ) ) ,  
where ~ is a variable which does not occur in P. Note that  through the whole 
computation only one variable c~ is needed. This mechanism for treating procedure 
calls is much simpler and more elegant than the machinery of standardization apart 
used in logic programming. 

Disjunction is modeled by the arbitrary choice of one of the alternatives which do 
not bring to inconsistency. There is no need to write explicitly the consistency check, 
because the fact that G~ can be derived already guarantees its consistency. The same 
applies to the rule of hiding, in fact con(G) ~s False implies con(3~G) # False. 

Parallel composition is modeled as interleaving. 
Note that disjunction is the only rule which introduces a logical asymmetry 

between the antecedent and the subsequent of a computation step, in the sense that 
the "potential constraint" of one of the two disjuncts is discarded. This means that 
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the observables of a goal will have to be defined in terms of the collection of the 
results of all computations. 

We will use the notations ---~* to denote the reflexive and transitive closure of 
the transition relation ---% and ~ to indicate the absence of any further transition. 

In the following, the class of "terminal" goals, namely those goals of the form 
cl A . . .  A c~ (i.e. consisting of constraints only) will be denoted by TGoals. 

A computation is and-fair iff every goal which occurs in a A-context either disap- 
pears sooner or later (because of an application of the disjunction rule) or it occurs 
as the premise in an application of the parallel rule. 

4.3 T h e  O b s e r v a b l e s  

Following the standard definition, what we observe about a goal G in a program P is 
the set of constraints produced by its computations. The final constraints in case of 
terminating computations, the limits of intermediate constraints in case of infinite 
fair computations and false when all fair computations fail, namely they get stuck 
because the consistency check does not allow any further transition. 

Def in i t ion  6. Given a program P,  for every goal G we define 

OR(G) = U{con(G') [ G ~* G' for some G' E TGoals} 

U U{Tfalse I for every fair computation starting from G, 
G -----~* G' / ,, for some G' f[ TGoals } 

u U{N,  con(C~) I there exists an infinite fair computation 
G o = G  ,G1 , . . . - - - -*G,~ . . . .  ). 

Note that we consider a concept of universal failure according to the so-called 
notion of don't know nondeterminism: a failed computation branch is disregarded if 
there are successful computations. 

5 D e n o t a t i o n a l  s e m a n t i c s  

Our aim here is to give a denotational characterization of the constraints computed 
by a goal. 

As explained in the previous section, the constraint associated to a goal cannot 
be interpreted in g: we need to consider a distributive structure. Hence the semantic 
function will map goals into Pcu(g). The elements of this domain will be called 
processes.  

In order to treat predicate definitions and recursion, we need to introduce the 
notion of (semantic) environment, namely a function mapping predicate names into 
processes. 

Def in i t ion  7. Let Pred be a set of predicate symbols. Define 

Env = {e I e :  Pred --~ Vcu(g)}, 

with the ordering el _ e2 iffVp, el(p) _.3 e2(p). 



206 

Since the ordering on Env is the pointwise extension of the ordering on a complete 
lattice, we have: 

P r o p o s i t l o n 8 .  (Env,-~) is a complete lattice. 

The equations defining the semantic interpretation functions for the denotational 
semantics are defined in Table 4. 

Programs 

Goals 

z)[d~ =, 

D[D.P~e = 1)[P](V[D]e) 

910a V a~]e = ~[Cl]e U Q[a2]e 

G[p(y)]~ = ~o(~ n ~(p)) . 

Table 4.: The interpretation functions 79 and ~. 

P r o p o s i t i o n 9 .  For every program P and goal G the functions 79[P] : Env ---* Env 
and GIG] : Env ~ Pcu(C) defined in Table 4 are continuous. 

We define the meaning ~p of a goal w.r.t, a program P, as 

Gp[G] = G[G~fix(DiP~), 

where fix(79[P]) is the least fixpoint of 79. 
The observables Op and the semantic model ~p for the F_elp language given 

above are strictly related. In fact, they coincide. 

T h e o r e m  10. For every program P and goal G, ~p[G] = O p ( G )  holds. 

6 A m o d e l  f o r  N e g a t i o n  

We consider now the possibility of introducing a construct for negation. We aim for 
the moment to have the possibility of computing negative goals, without using them 
in the bodies of the clause. Namely, in this work we restrict to positive programs. 
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Also we don't  consider neither nested negation nor negation inside a V context. So, 
our goals are conjunctions of positive and negative goals. In the following, G stands 
for a positive goal as defined in previous sections. 

First of all we have to define what is the constraint associated to a negated goal. 
More in general, we have to extend the structure C with a notion of negation. The 
first idea would be to define -~C as C \ C, but for doing this we should extend C 
with sets which are not upward closed. Another possibility is to define 

~C= {dl VeEC. cUd=false}. 

This set is still upward closed, but might be not compact. It can be shown that 
the first notion of negation corresponds to classical negation, and the second one to 
intuitionistic negation. In this work we choose for the second, because it seems to 
combine better with the semantical construction developed so far. So, let's consider 
a structure C ~ which extends C in the sense that its support contains all the upward 
closed subsets of C, not only the Scott-compact ones. In this structure, the set union 
and set intersection are the glb and the lub operators also with respect to infinite 
sets (of sets). Furthermore, also the infinitary distributive laws hold. 

From the point of view of the structural operational semantics, the evolution of 
-~G should be determined by the evolution of G. Hence we want to have a rule of 
the form 

G -----+ G' con(~G') # False N e g a t i o n  -~G -----+ -~G' 

However this rule, if combined with the notion of observables given before, is 
unsound. This is due to the asymmetry introduced by the disjunction rule: in general 
after an application of the disjunction rule we have con(G') C con(G), therefore after 
the application of the negation rule we have that con(~G ~) contains more constraints 
than the "original possibilities" of -~G. Collecting the results like we did before would 
assign to negation a wrong meaning, as the following example shows. 

Example 1. Consider the program 

p ( z )  :- z = O v x  = 1, 

in a system where true, x = O, z = 1 and false are the only constraints. The goal 
p(z) has two possible derivations: 

p ( x )  ,* �9 = 0 a n d  p ( x )  x = 1. 

By the negation rule, -~p(x) has the derivations: 

-~p(z) ,* -~(z = 0) and -,p(z) -----+" --,(z = 1). 

Since -~(x = 0) corresponds to T {z = 1} and -~(z = 1) corresponds to T {z = 0}, we 
would conclude that p(x) and ",p(z) have the same observables! 

However, the negation rule in itself is not unsound. It only makes necessary to adopt 
a suitable notion of observables. 
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6.1 O b s e r v i n g  n e g a t i o n  

As explained above, the negation rule reverts the asymmetry  introduced by the 
disjunction rule. As a consequence, also the way we collect the observables must be 
dual: instead of the union, we have to take the intersection. We extend therefore the 
function OR on negative goals as follows: 

D e f i n i t i o n  11. 

Op(-~G) = f3{con(~G') I-~G ---+* -~G' for s o m e  G' E TGoals} 

n N{t true I for every fair computation starting from --G, 
~G ~* -~G' 7 L-~, for some G' ~ TGoals} 

N N{U~con(-~Gn) l there exists an infinite fair computation 
- ~ G 0 = ~ G ~ G 1  , . . .  ,-~Gn , . . . } .  

This definition of observables does not correspond to the s tandard  notion of 
negation as finite failure in (constraint) logic programming. To obtain such ~ kind of 
negation we should include in Op(-~G) only the first two sets, corresponding to the 
information that we can derive from finite computations. 

6.2 D e n o t a t i o n  o f  n e g a t i v e  goals 

The denotational semantics ~p extends to negative goals as follows: 

The correspondence with the observables is maintained: 

P r o p o s i t i o n  12. 6p [-~G~ = Op('~G). 

Note that  this definition of negation has a close correspondence with the set of 
the finite failures of G as defined in [21]: 

O p , f a i l ( a )  = {C I C A a . ~ - *  false}. 

The difference is that in our case we have 

o~,(-~a) = { c  I o~(~ ^ a) = {false}}, 
which includes the possibility that G has an infinite computation giving false as the 
limit result. 

7 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

We have presented a generalized constraint logic programming with operators and, 
or, existential and (in a restricted form) negation. We have developed a struc- 
tured operational semantics, embodying a mechanism for the appropriate consis- 
tency check. Then we have developed a natural model in which all the operators 
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of the language have a logical meaning. This model is actually a complete Heyting 
algebra, and therefore it should allow to define a notion of intuitionistic implication. 
A future objective is to investigate this feature to see whether its counterpart  in the 
language would have significance. 

Another topic which seems to be interesting is the development of a more so- 
phisticated transition system for negation which would allow to achieve a sort of 
constructive negation. This could be done by manipulating negative goals so to sim- 
plify them: For instance, --(G1 V G2) should be transformed into -~G1 A --G2, and 
-~(G1 A G2) should be transformed into -~G1 V -~G2. This would also make more 
efficient the system, because it allows to drag disjunctions out of negation and apply 
the disjunction rule. Another advantage is that  in this way we don ' t  need anymore to 
define a different notion of observables: the negative goals will in fact be completely 
reduced, at the end of a computat ion,  to conjunctions of constraints. Therefore, we 
would have a structural semantics even when negation is a free constructor in the 
goals, thus generating nested negations, conjunctions of negations etc. 

Another problem to investigate is how to allow negations in the bodies of the 
clauses. As explained in the introduction, this would compromise the monotonici ty 
and the continuity of the semantic operator ~P, which therefore would not be guar- 
anteed to have a least fixpoint. So, either we put some restrictions on the clauses 
with negation, like stratification ([2]) or and strictness ([13]), or we find another way 
(some appropriate fixpoint) to characterize the intended meaning of a program. 

R e f e r e n c e s  

1. M.A. Nait Abdallah. On the intepretation of infinite computations in logic program- 
ming. In J. Paredaens, editor, Proc. of Automata, Languages and Programming, volume 
172, pages 374-381. Springer Verlag, 1984. 

2. K. R. Apt, H. Blair, and A. Walker. Towards a Theory of Declarative Knowledge. In 
J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 
89-148. Morgan Kaufmann, Los Altos, Ca., 1988. 

3. F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. Semantic models for 
Concurrent Logic Languages. Theoretical Computer Science, 86(1), 3-33, 1991. 

4. F.S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving Concurrent 
Constraint Programs Correct. In Proc. Eighteenth Annual ACM Syrup. on Principles 
of Programming Languages, 1993. 

5. D. Chan. Constructive Negation Based on the Completed Database. In R. A. Kowalski 
and K. A. Bowen, editors, Proc. Filffh Int'l Conf. on Logic Programming, pages 111- 
125. The MIT Press, 1988. 

6. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data 
Bases, pages 293-322. Plenum Press, 1978. 

7. W. Drabent. Constructive Negation by Fail Answers. In Proc. of the Workshop on 
Logic Programming and Non-monotonic reasoning, 1993. To appear. 

8. W.G. Golson. Toward a declarative semantics for infinite objects in logic programming. 
Journal of Logic Programming, 5:151-164, 1988. 

9. L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras (Part I). North-Holland, 
1971. 

10. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. Fourteenth Annual 
ACM Syrup. on Principles of Programming Languages, pages 111-119, 1987. 



210 

11. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. Technical report, Depart- 
ment of Computer Science, Monash University, June 1986. 

12. R. Jagadeesan, V.A. Saraswat, and V. Shanbhogue. Angelic non-determinism in con- 
current constraint programming. Technical report, Xerox Park, 1991. 

13. K. Kunen. Signed Data Dependencies in Logic Programs. Journal of Logic Program- 
ming, 7(3):231-245, 1989. 

14. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987. Second edi- 
tion. 

15. G. Levi and C. Palamidessi. Contributions to the semantics of logic perpetual pro- 
cesses. Acta Informatica, 25(6):691-711, 1988. 

16. M. Z. Kwiatkowska. Infinite Behaviour and Fairness in Concurrent Constraint Pro- 
gramming. In J. W. de Bakker, W. P.de Roever, and G. Rozenberg, editors, Semantics: 
Foundations and Applications, volume 666 of Lecture Notes in Computer Science, pages 
348-383, Beekbergen The Nederland, June 1992. REX Workshop, Springer-Verlag, 
Berlin. 

17. J. Maluszyfiski and T. NLslund. Fail Substitutions for Negation as Failure. In E. Lusk 
and R. Overbeck, editors, Proc. North American Conf. on Logic Programming'89, pages 
461-476. The MIT Press, 1989. 

18. S. Nystrom and B. Jonsson. In D. Miller, editor, Proc. International Symposium on 
Logic Programming'93, pages 335-352. The MIT Press, 1993. 

19. G. Plotkin. A structured approach to operational semantics. Technical Report DAIMI 
FN-19, Computer Science Department, Aarhus University, 1981. 

20. G. Plotkin. Domains. Department of Computer Science, University of Edimburgh, 
1992. Post-graduate lecture notes in advanced domain theory (incorporating the 'Pisa 
notes' 1981). 

21. J. C. Shepherdson. A sound and complete semantics for a version of negation as failure. 
Theoretical Computer Science, 65:343-371, 1989. 

22. V.A. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. Seven- 
teenth Annual ACM Syrup. on Principles of Programming Languages, pages 232-245, 
New York, 1990. 

23. V.A. Saraswat, M. Rinard, and P. Panangaden. Semantics foundations of concurrent 
constraint programming. In Proc. Eighteenth Annual AGM Symp. on Principles of 
Programming Languages, New York, 1991. 

24. D. Scott. Domains for denotational semantics. In Proc. of ICALP, 1982. 
25. E.Y. Shapiro. A subset of Concurrent Prolog and its interpreter. Technical Report 

TR-003, Institute for New Generation Computer Technology, Tokyo, 1983. 
26. P. Stuckey. Constructive negation for constraint logic programming. In Proc. sixth 

Annual Symposium on Logic in Computer Science, 1991. 
27. M. H. van Emden and G. J. de Lucena. Predicate logic as language for parallel pro- 

gramming. In K. L. Clark and S. A. TK rnluttd, editors, Logic Programming, pages 
189-198. Academic Press, London, 1982. 

28. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a program- 
ming language. Journal of ACM, 23(4):733-742, 1976. 

29. M. G. Wallace. Negation by Constraints: a Sound and Efficient Implementation of 
Negation in Deductive Databases. In IEEE Int'l Syrup. on Logic Programming, pages 
253-263. IEEE, 1987. 


