
Lazy type inference for the strictness analysis 
of lists 

Chris Hankin 1 and Daniel Le M~tayer 2 

1 Department of Computing, Imperial College, LONDON SW7 2BZ, UK 
2 INRIA/IRISA, Campus de Beaulieu, 35042 RENNES CEDEX, FRANCE 

A b s t r a c t .  We present a type inference system for the strictness analy- 
sis of fists and we show that it can be used as the basis for an efficient 
algorithm. The algorithm is as accurate as the usual abstract interpre- 
tation technique. One distinctive advantage of this approach is that it is 
not necessary to impose an abstract domain of a particular depth prior 
to the analysis: the lazy type algorithm will instead explore the part of 
a potentially infinite domain required to prove the strictness property. 

1 I n t r o d u c t i o n  

Simple strictness analysis returns information about  the fact that  the result of 
a function application is undefined when some of the arguments  are undefined. 
This information can be used in a compiler for a lazy functional language because 
the argument  of a strict function, can be evaluated (up to weak head normal  form) 
and passed by value. However a more sophisticated property might  be useful in 
the presence of lists or other recursive data  structures which are pervasive in 
functional programs.  For example,  consider the following program: 

sum ni l  = 0 
sum cons(x ,  xs) = x + ( sum xs) 
append ni l  1 = l 
append cons(x ,  xs) l = cons(x ,  (append xs  l)) 
H 11 12 = sum(append l] l~) 

Rather  than suspending the evaluation of each recursive call to append and 
returning the weak head normal  form cons(x ,  (append xs l)), we may  want to 
compute  directly the normal  form of the argument  to s u m  in H because the 
whole list will be needed. There have been a number  of proposals to extend 
strictness analysis to recursively defined data  structures [4, 21, 25, 26]. These 
have led to sophisticated analyses but two aspects of the problem have received 
little at tention until recently: (1) the integration of the results of the analysis into 
a real compiler, (2) the efficiency of the algori thm implementing the analysis. 
The first issue has been tackled recently both from an experimental  point of 
view [11, 16] and from a theoretical point of view [5, 8]. We are concerned with 
the second issue in this paper.  The abstract  interpretation and the projections 
approaches have led to the construction of analyses based on rich domains which 
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make them intractable even for some simple examples. Techniques striving for a 
better representation of the domains do not really solve the problem [12, 17]. 

This observation has motivated some researchers, [2, 18, 19, 20], to develop 
non-standard type inference systems for strictness analysis. Kuo and Mishra, 
[20], proposed a type inference system for strictness information; they developed 
a sound and complete inference algorithm but did not show the correctness of 
the inference system (with respect to a standard semantics). In [21] it is shown 
how their type inference system can be extended to a form of full strictness for 
lists and to the 4-point domain of Wadler [25]. 

The other authors, [2, 18, 19], have developed sound and complete inference 
systems but  have not given much attention to algorithms. In [13] we demon- 
strated a technique for deriving efficient static analysis algorithms from type 
inference systems. The basis for this work was Jensen's conjunctive strictness 
logic [18]; we used techniques similar to [14, 15] to refine the logic into an algo- 
rithm. 

In this paper, we follow the approach taken in [13] to construct an efficient 
algorithm for the analysis of lists. The algorithm is both correct and complete 
with respect to the usual abstract interpretation approach. So it does not incur 
the loss of accuracy of previous type inference systems for the analysis of lists 
[21]. The core of the algorithm is the notion of lazy types (or lazily evaluated 
types) which allows us to compute only the information required to answer a 
particular question about the strictness of a function. One significant advantage 
of the approach is that it extends naturally to domains of any depth and domains 
are only explored at the particular depth required for the original question. In 
other words, we do not have to choose a particular domain before the analysis 
as is usually done for abstract interpretation (except when widening operators 
are used as in [7]). 

We first describe an extension of Jensen's strictness logic [18] to include an 
analogue of Wadler's 4-point domain [25] (Section 2). In Section 3, we introduce 
the notion of lazy types for lists and we present the corresponding system. We 
state the correctness and completeness properties with respect to the original 
system and we proceed in Section 4 to define the lazy type inference algorithm. 
The algorithm can in fact be derived in the same way as in [13] and the correct- 
ness proof follows for the same reasons. Section 5 is an example of the functioning 
of the algorithm. We show in Section 6 that  the type system and algorithm can 
be extended to domains of unbounded depth and we present an example show- 
ing that the algorithm naturally explores the depth of the domain required by 
a particular question. Related work is discussed in Section 7. 

2 A str ictness  logic for the  analysis of lists 

We consider a strongly typed language, AL, with terms defined by the following 
syntax: 

= x J c I ~x-e I ele2 I fix(~g.e) I tonal(el ,e2,  e3) I 
ni l  I cons(e l ,  e2) [ hd(e)  [ tl(e) [ case(e l ,  e2, e3) 
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T h e  c a s e  ope ra to r  is used in the t rans la t ion  of pa t t e rn  match ing .  For exam-  
ple, the s u m  funct ion f rom the previous section is t r ans la ted  as: 

s u m ( 0  = ease (0 ,  f ,  0 where  f x x s  = x + ( s u m x s )  

T h e  loss a f  accuracy  t ha t  occurs  wi thou t  the e a s e  ope ra to r  is discussed in [25]. 
Abs t r ac t  in te rpre ta t ion  represents  the str ictness proper t ies  of a funct ion by 

an abs t rac t  funct ion defined on boolean  domains  [23]. For ins tance  gabs t f = f 
means  t h a t  g is undefined if its second a rgumen t  is undefined. In t e rms  of types,  
this  p rope r ty  is represented by g : t --+ f --+ f .  Notice t ha t  t and f are now (non- 
s t anda rd )  types�9 Conjunc t ive  types  are required to re ta in  the power of  abs t rac t  
in te rpre ta t ion :  a s tr ict  funct ion like + mus t  have type  ( f  ---, t ~ f )  A (t  
f --~ f ) .  Let us now turn  to the types  used for the represen ta t ion  of proper t ies  
of  lists�9 As a first stage,  we consider the extension of the boolean  doma in  to 
Wadle r ' s  4-point  doma in  [25]. We show tha t  this extension can be general ised 
to domains  of unbounded  depth  in Section 6. The  four e lements  of the domain  
are f < ec  < fe < t where or represents  infinite lists or lists ending with 
an undefined e lement  and f~ corresponds  to finite lists whose e lements  m a y  be 
undefined (plus the  lists represented by oc). 

T h e  ordering on types  is described in Fig. 1. We define = as the equivalence 
induced by the ordering on types:  ~r = v *V c~ _< T and r < c~. T h e  type  inference 
sys t em is shown in Fig. 2. F is an env i ronment  m a p p i n g  var iables  to fo rmulae  (i.e�9 
s t r ic tness  types)�9 In the rule C o n d - 1 ,  c~ represents  the s t anda rd  type  of e2 (or 
e3). Th is  sys t em is an extension of  [13, 18] and  the  soundness  and comple teness  
proofs  of  the logic (with respect  to t rad i t iona l  abs t rac t  in te rpre ta t ion)  follow 
s t ra igh t fo rward ly  f rom [19]. As an i l lustrat ion,  we show how the proper ty ,  s u m  : 
fe -+ f ,  can be derived in this logic: 

A B 
C o n j  [s : fe --* f, l : fe] t- Az.) ,xs .x  + (s xs) : t --+ fe -+ f A f --+ t --+ f C 
Case  - 3 Is:  fe -+ f,  l :  fe] F case(0,  ~x.)~xs.x + (s xs) ,  l ) :  f 

ADs .... F- (*s.M.ease(0, Xx.,kxs.x + (s xs) ,  l ) ) :  (re --~ f)  --* (fe ---+ f) 
F ix  F- fix()ts.)d.ease(0, Ax..kxs.x A- (s x s ) , / ) ) :  fe ---* f 

~- s u m  : f e  - +  f 

where A is: 

B is: 

[ s : f e - - + f , / : f e ,  z : t ,  x s : f e ] F x + ( s x s ) : f  

A b s  [s: fe ~ f , l :  fe] F ~ x . l x s . x  + (s xs)  : t --. fe  --* f 

[s : re  --+ f, 1 : fe ,  x : f, xs : t] I- x + ( s  x s ) : f  

A b s  [s : fe ---+ f, l :  fe] I- .kx.),xs.x + (s xs)  : f -+ t -~ f 
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and C is: 
Var [s : f e  --, f , l : fe] F l : f e 

Note that A and B make use of the implicit assumption about the type of +. 
Any environment is supposed to contain all the types of primitive operators. 

f_<r  r 1 6 2  eo_<f e r  t~_ ,  _< t~ --~ t~ 

r162162 r r162 r r 1 6 2 1 6 2  r 1 6 2 1 6 2  
r  0 < r 1 6 2  

r < 0, r _< r r ~ r A r --* r _< r --* (r A r r --. r < r ~ r 

Fig. 1. The ordering on types 

3 L a z y  T y p e s  

We introduce a slightly restricted language of strictness formulae Tx (Fig. 3); this 
language is closely related to van Bakel's strict types [1]. Basically strict types 
do not allow intersections on the right hand side of an arrow. This restriction is 
convenient because it does not weaken the expressive power of the system and 
it makes type manipulation easier. 

We then define the notion of c o m p l e t e  type.  The restriction to complete types 
allows us to avoid the use of weakening because a complete type contains (is the 
conjunction of) all of the elements greater than (or equal to) it. 

ct(t) = t 

D e f i n i t i o n  1. 

CT(r) : A{ct(~) I cr 6 Sup(v)} 

c t ( f )  = f ct(oo)  = oo c t ( f e )  = f e  

ct(~ ^ ~) = e~(~) A ct(~) 
c t (~  ~ ,-) = C T ( , , )  - -  c~(T) 

S u p ( e )  can be defined by induction on ~r. Notice that  CT can be extended 
to contexts in the obvious way. 

Finally, we can define the notion of m o s t  g e n e r a l  type  of an expression (with 
respect to some context): it is the conjunction of all of the types possessed by 
the expression in the given environment. 

D e f i n i t l o n 2  ( M o s t  G e n e r a l  T y p e s ) .  
MGT(F, e) = CT(A{~i ~ Ts ] P ~T e: cr{}) 
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Conj  F ~ - T e : r  F F - T e : r  Weak  F < A  A f - T e : r  r 1 6 2  
F ~ T  e : r  /\r F F-T e : r  

F [ x ~ r 1 6 2  Taut  F } - T c : t  
Var F [ x  ~-+ r FT  X : r Abs F ~-T Ax .e  : ( r  --+ r  

FFT e l  : (r162 F F T e 2  :r Fix Ft-r($g.e):r162 
A p p  F I-T ele2 : r F }-T fix(~g.e) : r 

F ~-T el : f F VT e2 : r F VT e3 : r 
Cond-1  F VT cond(el ,  e2, e3): f~ Cond-2  F ~-T cond(el ,  e2, e , ) :  r 

Hd FFT e : f  TI-1 F F T e : f  T1-2 FF-T e : c r  
F FT ha (e ) :  f F ~-T t l (e) :  f F FT tl(e) : cx~ 

-F t -T  e2 : ( ~  
Cons-1 

F FT cons(el,  e2) : oo 

F FT e2 : fe F ~-T el : f 
Cons-2 Cons-3 

F ~-T cons(el ,  e2) : fe F FT cons(el,  e2) : fe 

T a u t - h d  

Case-3 

F I - T  e3 : f  
Case-1 

F I-T case(el,  e2, e3) : f 

F I-T e2 : t --+ ~ --+ r F I-T e3 : oo 
Case-2 

F ~-T case(el,  e2, e3) : r 

F I-T e2 : t --+ fE --+ ~ A f - + t - - + r  f f  t-T e3 : fE 

F ~-T case(el,  e2, e3) : r 

F~-T el : r  F I - T e 2 : t - ~ t - - + r  
Case-4 

F ~-T case(el,  e2, e3) : r  

F FT hd(e) : t Tau t - t l  F ~T tl(e) : t 

Tau t -cons  F F T c o n s ( e l , e 2 ) : t  

Fig. 2. The Strictness logic 

We show in [13] that  the most  general type of an expression is precisely 
the information returned by the s tandard abstract  interpretat ion-based analysis. 
This explains why abstract  interpretation is sometimes inefficient because it may 
provide much more information than really required. 

We take a different approach in this paper: rather than returning all possible 
information about  the strictness of a function we compute only the information 
required to answer a particular question. This new philosophy natural ly leads to 
a notion of lazy evaluation of types. The language of lazy types T a  is defined in 
Fig. 4. The ordering on types _~a and the logic F-a are shown in Fig. 5. 

The key idea is that  an expression from the te rm language (with its envi- 
ronment)  may  appear  as part  of a type; this plays the r61e of a closure. More 
formally, a closure (F, e) stands for M G T ( F ,  e), the conjunction of all of the 
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t , f , ~ ,  fe E Ts o-ETI CETs r ETs.. .r  
r  ETI 

Fig. 3. The language Tz 

possible types of the term. This correspondence explains the new rules in the 
definition of _<a. Not surprisingly, the lazy evaluation of types is made explicit 
in the App rule: rather than deriving all possible types for e2, we insert e2 itself 
(with the current environment) into the type of el. The following definition es- 
tablishes a correspondence between lazy types and ordinary types, the extension 
to environments is straightforward: 

Def in i t ion  3. 

Expand : TG -~ TI 

Expand(t) = t Expand(f) = f 

E x p a n d ( a )  = o0 ~ x p a n d ( f ~ )  = f~ 

Expand(aa A ~2) = Expand(a1)/) Expand(r 

Expand(aa --* ~r2) = Expand(~l ) -+ Expand(~2) 

Expand((F, e)) = MGT(Expand(F),  e) 

We can now state the correctness and completeness of the lazy type system and 
the subsequent equivalence with the original system. 

T h e o r e m  4 (Correctness) .  

P F-a e: r ~ Expand(E)  ~-T e: Expand(C) 

T h e o r e m  5 (Comple teness) .  

r 

Expand(E)  F- T e: Expand(C) ~ F F-G e: r 

T h e o r e m  6 (Equivalence).  

CeT  

F F - T e : r 1 6 2  F E V a r - ~ T I ,  e : r  

First notice that we do not lose completeness by considering Tx types: it can 
be shown quite easily that any type is equivalent to a type in TI. The following 
theorems are used in the proofs of theorems 4 and 5. 

T h e o r e m  7. q _~a v ~=~ Expand(~)  <_ Expand(v)  

T h e o r e m  8. 

F}-a e : ( r  4:~(Ft-a e :r and  . . .  and  (F}-a e : r  

FF-T e : ( r  ~ ( F t - T  e :r and  . . .  and  (FFT e : r  
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Theorem 7 can be proved by induction on the proof of the left hand side. 
Theorem 8 is shown by deriving a proof of the right hand side from a proof of 
the left hand side (it is quite straightforward). Theorem 8 allows us to prove 
theorem 4 by induction on e. The proof of completeness is carried out in two 
stages. First we show that  the weakening rule can be removed from FT without 
changing the set of derivable types provided we add a form of weakening in the 
Var  and F i x  rules. A similar property has been proved for other type systems 
including a form of weakening [1, 22]. Then we use theorems 7 and 8 and proceed 
by induction on e to prove completeness. 

1 ~ E e n v  crET~ s E e n v  eE exp 
nil E env 

Fix ~ ~] E env (r ,e)  E T~ 

t, f, oo, fe E ~r ~ a E T ~  CET~  r T~. . . r  E 7~ 
cr ---+ r E T~ 01A.. .Ar E TG 

Fig. 4. The language TG 

4 The lazy types algorithm 

In [13], we show how to derive an abstract machine from the basic lazy types 
system. A similar derivation from the system defined in Section 3 leads to the 
machine shown in Fig 6. The state of the machine is a triple specifying the current 
contents of the stack, environment and code. I n f ( r  r computes r <_a r as 
defined in Fig. 5 (Theorem 10). Notice that  a stack element Si is either a boolean 
value or a disjunction of types. True  (resp. False) is installed at the top of the 
stack if and only if the original property (of the form (e, r in the code is (resp. 
is not) provable in FG. Values which are neither True  nor False in the stack are 
disjunctions of TG types ( r  r The occurrence of such a value at the top 
of the stack means that  the original property is true if (and only if) the recursive 
function currently being analysed possesses one of the r types (in order to make 
the presentation simpler we do not consider embedded occurrences of fix here; 
the extension is straightforward). In order to prove that  fix(/\g.e) has type r 
we add the assumption (g :~ r in the environment and try to prove e : r If 
the result is True  or False then the case is settled. Otherwise a disjunction of 
conditions r is returned and the algorithm iterates to try to show that  one of 
them is satisfied (rule for Iter).  Instruction /~ec is used to remember that  we 
were trying to prove a property on a recursively defined variable (denoted by 
~-+~ in the environment); so if it fails we just return this property in the stack 
rather than False. 

Primitives And  and Or are extended in the obvious way to apply on types: 
their result is always supposed to be a disjunction of TG types. 
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f _ < a r  r162  c~ _<a fe r  

r . . . . .  r -* r _<G r . . . . .  r  -~ t 

v j e  [1, m],3i ~ [1, ~]r < c  Cj v r  ~c ~ : r ~ r <~ r 
r A . . . A r  <G r A . . . A r  r < c  (F,~) 

4' r  r ~ ~ : r (r # ( r ' ,  ~')) <G r r < a  
(r, ~) _<c r r -~ r <G 4' -~ r  

C o n j  F ~ - G e : r  F [ - c e : r  Var  r _<c r 
r ~-a e : r A r r [ z  ~ r e a  z : r 

A b s  F [ x ~ r  r Tau t  F ~ - c c : t  
r ~-a ~x.e : (r -+ 0)  

~c ~1 : ((r, ~ )  -~ r 
A p p  

F~-ae l e2  : r  
n r~ 

F i x  i=1 i=1 
r ~ fi~(:~g.~) : r (k e [1, n]) 

F ~-a el : f F [-c e2 : r 
C o n d - 1  C o n d - 2  

F ~-a cond(e l ,  e2, e3) : r 
F ~-G e3 : r  

F [-c cond(e l ,  e2, e3) : r 

f l'-T e : f  -P ~T e : f P I-T e : OO 
H d  TI-1 T1-2 

F [-T hd(e) : r F ~-T t l (e ) :  f F bT tl(e) : oo 

F ~ - T  e :  OO F [ - T  e2 : oo 
T1-3 Cons-1  

r ~T t l (e ) :  fe r ~T cons(e i , e~) :  

F bT e2 : re F [-T e l  : f 
Cons -2  Cons-3  

; e r  cons(el ,  e2) : fe F e r  c o n s ( e l ,  e2) : fe 

F ~ - T  ez : f  
Case-1  

F ~-e case(el ,  e2, e3) : r 

F i-T e2 : t --+ oo --+ r F [-m e3 : oc 
Case-2  

F [-T case(el ,  e2, c3) : r 

] '~-T e2 : t - -+ f6 - -+  r A f - ~ t - - * r  F[-T e3 : r e  
Case-3  

F [-T case(el ,  e2, e3) : r 

F b T e l : r  F [-T e2 : t--+ t--+ r 
Case-4  

P t-T case(el ,  e~, e3) : r 

T a u t - h d  F bT hd(e)  : t T a u t - t l  F [-T tl(e) : t 

T a u t - c o n s  F [-T c o n s ( e l , C 2 )  : t  

Fig.  5. The Lazy Types system 
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(S,E,(c,t) : C) t>e (True: S,E,C> 
IS, E,(c,f) : C> De (False: S,E,C> 

(S ,E, (e ,r  A r : C) Da iS, E , (e , r  : (e,r : And : C) 

iS, E , ( ~ . e , ~  -* ~): C> >~ iS,(~ : - ) :  E,(e, ~): D(~): C> 

(S,E,(e~e2,r : C) >G IS, E , (e l , (E ,  e2) ~ r  C) 

iS, E[* ~ r162 c> Do is, E[~ ~ r162 c> 

IS, E,(cond(e~,e2,ez),r : C) E>e iS, E, (e~,f) : (e2 , r  (e3,r : And: Or: C) 

iS, (z: er): E,(D(x)): C> t>c /S,E,C) 

is, E, (nx(Ag.e), r C> 
iS, E[g ~ r (g, r  C> 

(True : S, E, (t~ec, g, r : C) 
/s~ : s, E, (.~ee, g, r  c> 

Da iS, (g :~ r  E , ( e , r  Iter(g,e) : C) 
De is,  z[9 ~ r162 r : (Ree, g,r : c)  
DG /T ru r  S, E ,C)  
Da ir : S , E , C )  

$t # True 

<sl : s,(g :~ r E, Zter(g,e) : c> >~ is, : S,E,C> 
$1 = T r u e  or $1 =False  

((r v . . . v  en): S,(g :~ r E,t*er(g,e): C> >o 
iS, Z, (a*(~g.e), r (n• r O r : . . . :  Or: C> 

iS, E, (hd (e ) , t ) :  C> Da (True:  S, E,C> 
<S,E,(hd(e),r : C> Da IS, E , ( e , f )  : C> 

iS, Z,(tl(e),t) : C) Da /True : S,E,C)  
<S, E, (tl(e), f): C> >~ iS, E, (e, f):  C> 

(s, E, (tl(e), o0): C) >~ iS, E, (e, 00): C> 
( S , E , ( t l ( e ) , f e )  : C) t>G IS, E , (e ,  oo) : C> 

is, E, (cons(e~, e2), t) : C> 
iS, E, (cons(el, e2), oo) : C) 
(s, E, (cons(e~, e~), f~) : C) 

i S, E, (cons(el,  e2), f) : C) 

~>a (True : S, E, C) 
>~ is, Z,(e~, oo): c) 
>e  is, E, (et , f ) :  (e~,f~): Or: C> 
>a (False : S, E, C) 

iS, E, (case(el, e2, e3), r C> ~>a 
iS, E, (ea, f) : (e2,t --* oo ---* r  (e3,0o): And: (e2,t ---* fe -'* e A f  --* t ---* r  (e3,fe) : 
And : (el,r : ( e 2 , t ~ t - - * r  

<s: : s= : s, E, Op : c> >G I(Op S, S~): S, E, C> 
Op = And or Op = Or 

Fig .  6. The Lazy Types algorithm 
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The following theorem states the correctness of the lazy types algorithm. 

T h e o r e m  9. 

1. (s, r ,  (e, r : C) ~ ( T r u e - S , r , C ) ~ z r F G e : r  
Z. ( S , F , ( e , r  D* g (False : S , r , C )  ~ ( I ' [ - g  e : (b) 

i f  F and r do not contain any ~-~r assumption 

The proof of this theorem is made hand in hand with the proof of the following 
result: 

T h e o r e m  10. 

1. (S,F,  I n f ( r  r  : C) ~> *a (True : S , F , C )  c=~ r ~_G r 
2. (S, iF, I n f ( r  r  : C) E>* G (False:  S, F, C) ~ --1(r _~e r 

i f  F, r and r do not contain any ~-+r assumption 

The most difficult part of the proof concerns the implementation of fix. We 
have two main facts to prove: (1) the iteration terminates and (2) the result 
is accurate. Termination is proved by showing that  each type r A r satisfies 
r A r <G r It is easy to show that  the result is accurate when the iteration 
terminates with the True  answer. In order to show that  the initial property 
cannot be satisfied if the answer is False, we prove that  at least one of the r 
types returned by the iteration step is a necessary condition to prove the original 
property (in other words, we do not "bypass" the least fixed point). 

The algorithm described in this section can be optimised in several ways: 

- The implementation of the conditional can avoid processing the second and 
third term when the first term has type f.  

- In the same way, the implementation of the case operation can be consid- 
erably optimised if the first term has type f .  More generally, And  and Or 
can be modified in order to avoid the computation of their second argument 
when their first argument reduces respectively to False and True.  

- In the rule for application, when expression e2 is a constant or a variable 
then its type (t for a constant, its type in the environment for a variable) 
can be inserted into the type of el rather than passing the whole environ- 
ment. Notice that  this optimisation is common in the implementation of lazy 
languages. 

These optimisations are easy to justify formally and improve the derivation con- 
siderably. 

5 Example 

We consider the following functions: 

f oldr b g nil  = b 
fo ldr  b g cons(x,  xs) = g x ( fo ldr  b g xs) 

eat 1 = f oldr nil  append l 
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which were in t roduced in [17] to demons t ra te  the inefficiency of t radi t ional  ab- 
s tract  in terpreta t ion.  Notice tha t  we have used pa t t e rn  match ing  in the definition 
of foldr; this is for clarity - more  proper ly  it should have been defined as: 

fo ldr  = fix(Af.Ab.Ag.Al.case(b, AxAxs.g x ( f  b g xs), l)) 

Similarly cat should also be defined as a A-abstraction. 
Fig. 7 describes some of the derivat ion steps of the lazy type  a lgor i thm to prove 
tha t  cat has type  f --~ f .  

(Nil, Nil, (eat, f --+ f ) )  
(Nil, (l:  f),  (foldr nil  append l, f ) :  D(1)) 

where r is t 

Fig.  7. cat has type f --~ f 

~ G  
E>C 

(Nil, (/:  f),  (foldr nil  append, f ---+ f ) :  D(l)) E>Q 
(Nil, (/:  f),  (foldr nil, ((/:  f),append) ---+ f ---* f ) :  D(l)) ~>G 
(Nil, (/:  f),  (foldr, t --+ ((/ :  f),  append) -~ f -* f ) :  D(I)) ~>c 

(Nil, (l: f ) :  (g, ((l :  f),  append)): (b: t ) :  ( f  :~ r  (l:  f),  
(case . , f ) : D ( / ) : D ( g ) : D ( b ) : I t e r ( f  . . . .  ) :D(1) )  E>G 

(N i l , . . . , ( / , f ) :  . : O r : n ( / ) : D ( g ) : D ( b ) : . . . )  ~>G 

(True , . . . ,D( l )  D ( g ) : D ( b ) : . . . )  >G 

(True, ( f  :T r  (l :  f ) :  . . . .  I t e r ( f , . . . ) :  D(l)) E>G 
(True, (l: f), D(0) ~G 
(True, Nil, Nil) 

--+ ((l:  f),  append) ~ f ~ f. 

6 General isat ion to domains of any depth 

The  4-point  domain  expresses in format ion  about  lists with a tomic elements.  
For example,  it is not  adequate  for describing a p roper ty  such as "this is a list 
containing lists whose one element is undefined".  Following Wadler  [25], we can 
in fact generalise the definition of 4-point  domain  from the 2-point domain  to 
domains  of any depth.  Let 

D0 = {t, f}  

with f _<0 t.  Then  

Di+l ---- {f, oo} U {x e I x e Di} 
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with: 

f ~i+1 

Vx E E Di+l .  (ix:) ~ i + 1  x 6  

Vx~,  y~ 6 Di+l .  x ~_i Y r xe  <_i+1 Y~ 

The following property shows that  we can omit the subscript and write _< 
for _<i: 

Vx,  y E Di N Di+l .  x ~_i Y r x ~_i+1 Y 

An interesting property of our type inference system (and algorithm) is that  
it can be generalised without further complication to domains of unbounded 
depth. The rules Cons-2 ,  Cons -3  and Case-3  are generalised in the following 
way: 

F ~-T e2 : (re F ~-T e l  : (7 
C o n s - 2  C o n s - 3  

F I-T cons(el, e2) : (re F FT cons(e~, e2) : (re 

Case-3 
F ~-T e 2 : t --* (r e --* r A ( r ~ t ~ r  

F t-T ease(el ,e2,ez):  r 

and the ordering on types is extended with the rules: 

jr- ~-T e3 : (rE 

oe _<(re 
( r < 7 -  

(re _< re 

The extensions to the algorithm are not described here for the sake of briefness. 
The implementation of Cons -2  and Cons -3  is straightforward because all the 
free variables Occurring in the premises appear in the conclusion. This is not 
the case for Case-3  which requires an iteration very much like the rule for 
abstraction in Fig. 6. The iteration explores the domain starting with Do until 
the property is proven or the maximal depth corresponding to the type of the 
expression is reached. Several trivial optimisations can dramatically improve the 
algorithm at this stage. For instance e3 will often be a variable whose type is 
defined in the environment (see example below) and can be used to make the 
appropriate choice of ~, thus avoiding the iteration mentioned above. 

We continue the f o l d r  example to show that  our system (and algorithm) 
does not need a domain of fixed depth but rather explores the potentially infinite 
domain up to the depth required to answer a particular question. We first restate 
the definition of a p p e n d  as a term of AL: 

a p p e n d  = f i x ( )~app .~x l . /~x2 . ease (x2 ,  )~x..~xs.cons(x, (app x s  x2)), xl))  

Assume that  we want to prove f o l d r  : t -~  append  -~ oo e --~ oo, where 
a p p e n d  is used as a shorthand notation for (0 ,  append) .  We do not give all of 
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the detai ls  of  the  der ivat ion but  ra ther  focus on the  m a i n  s teps of  the proof:  

A B 
Conj  F ~- (~z . ;~zs .g  x ( f  b g xs)) :  (t --* oo~ ~ oo) A (co ~ t ~ co) 
Case - 3 s ~- case(b, ~x)~xs.g x ( f  b g xs ) ,  l) : co 

C 

A b s  ~- ; ~ f . X b . ~ g . M . c a s e ( b ,  A x A x s . g  x ( f  b g x s ) , / )  : 
(t --~ a p p e n d  --+ oc e --* oc)  -~  ( t  --+ a p p e n d  -~  oo e --+ ~ )  

Fix  F f i x ( ~ f . ~ b . ~ g . M . c a s e ( b ,  ~ x ~ x s . g  x ( f  b g x s ) ,  l)) : t --+ a p p e n d  --* ~ e  --* oc 

~- f o ldr  : t --+ a p p e n d  --* ~ e  -~  c~ 

where F is: I f  : t ---* a p p e n d  ---+ ~ e  ---+ oo, b : t ,  g : a p p e n d ,  I : expel. A is: 

F " l - f  b g x s : c ~  

: ( F " , f b g x s ) _ < c ~  
r '  ~ ~ . ~ . s . c o n s ( ~ ,  (app ~s  ~2 ) ) :  t -~ t ~ ~ r '  ~ ~ :  

Case  - 4 F '  ~- case(x2, A x . ; k x s . c o n s ( x ,  (app x s  x~)), xl)  

A p p  F "  F g : t --~ ( f  b g x s )  --+ oo 

A p p  F "  ~- g x : ( f  b g x s )  --+ oo 
A p p  F "  F g x ( f  b g x s )  : 

A b s  F F ( A x . A x s . g  x ( f  b g xs ) ) :  (t --* oo e ---, ~ )  

where 

F '  = [app : ( t - ~  ( s  b g x s ) ) - ~  ~ ) , x l  : t ,  x2 : ( F " , ( f  b g xs))] : _F" 
/ ' " = [ z : t ,  x s : o o e ]  : F 

the p roof  tree for B is s imi lar ly  const ructed and  C is F i- 1 : cx) e . So the doma in  
is explored up to depth  2 (D2).  I f  we now ask the question f o t d r  : t - ~  a p p e n d  --+ 

fe ~ cx), the doma in  is not  explored fur ther  t han  depth  1, as the reader  can 
easily verify ( the s t ruc ture  of  the p roof  is very s imilar  to the previous  one). 

7 C o n c l u s i o n s  

T h e  p rob l em of designing efficient a lgor i thms  for s t r ic tness  analysis  has re- 
ceived much  a t t en t ion  recently and one current  t rend seems to revert  f rom 
the usual  "extensional"  a p p r o a c h  to more  " i n t e n s i o n a l "  or syntac t ic  techniques 
[20, 21, 18, 6, 10, 24]. The  key observa t ion  under ly ing  these works is t ha t  the 
choice of  represent ing abs t rac t  funct ions  by funct ions  can be disastrous in t e rms  
of efficiency and is not  a lways just if ied in t e rms  of accuracy.  Some of these pro- 
posals  t rade  a cheaper  i m p l e m e n t a t i o n  agains t  a loss of  accuracy  [20, 21]. In 
contras t ,  [10, 24] use extensional  representa t ions  of  funct ions  to build very effi- 
cient a lgor i thms  wi thou t  sacrificing accuracy.  T h e  analysis  of  [10] uses concrete 
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data  structures; these are special kinds of Scott domains whose elements can be 
seen as syntax trees. In [24] the analysis is expressed as a form of reduction of 
abstract  graphs. An interesting avenue for further research would be to reex- 
press these analyses in terms of type inference as suggested here to prove their 
correctness and to be able to relate the techniques on a formal basis. 

Wadler 's  domain construction does not readily generalise to other reeursive 
data  types. Recently Benton [3] has shown how to construct an abstract  domain 
f rom any algebraic da ta  type. It should be straightforward to extend our system 
(and algori thm) to incorporate such domains. Benton's construction leads to 
quite large domains; the size of the domains would make conventional abstract  
interpretat ion intractable and highlights the benefit of our approach which lazily 
explores the domain. 

In his thesis Jensen, [19], has developed a more general logical t rea tment  of 
recursive types. His approach involves two extensions to the logic; the first is to 
add disjunctions and the second extension involves adding modal  operators  for 
describing uniform properties of elements of recursive types. The extension of 
our techniques to these richer logics is an open research problem which we are 
currently investigating. 
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