
Lazy type inference for the strictness analysis
of lists

Chris Hankin 1 and Daniel Le M~tayer 2

1 Department of Computing, Imperial College, LONDON SW7 2BZ, UK
2 INRIA/IRISA, Campus de Beaulieu, 35042 RENNES CEDEX, FRANCE

A b s t r a c t . We present a type inference system for the strictness analy-
sis of fists and we show that it can be used as the basis for an efficient
algorithm. The algorithm is as accurate as the usual abstract interpre-
tation technique. One distinctive advantage of this approach is that it is
not necessary to impose an abstract domain of a particular depth prior
to the analysis: the lazy type algorithm will instead explore the part of
a potentially infinite domain required to prove the strictness property.

1 I n t r o d u c t i o n

Simple strictness analysis returns information about the fact that the result of
a function application is undefined when some of the arguments are undefined.
This information can be used in a compiler for a lazy functional language because
the argument of a strict function, can be evaluated (up to weak head normal form)
and passed by value. However a more sophisticated property might be useful in
the presence of lists or other recursive data structures which are pervasive in
functional programs. For example, consider the following program:

sum ni l = 0
sum cons(x , xs) = x + (sum xs)
append ni l 1 = l
append cons(x , xs) l = cons(x , (append xs l))
H 11 12 = sum(append l] l~)

Rather than suspending the evaluation of each recursive call to append and
returning the weak head normal form cons(x , (append xs l)), we may want to
compute directly the normal form of the argument to s u m in H because the
whole list will be needed. There have been a number of proposals to extend
strictness analysis to recursively defined data structures [4, 21, 25, 26]. These
have led to sophisticated analyses but two aspects of the problem have received
little at tention until recently: (1) the integration of the results of the analysis into
a real compiler, (2) the efficiency of the algori thm implementing the analysis.
The first issue has been tackled recently both from an experimental point of
view [11, 16] and from a theoretical point of view [5, 8]. We are concerned with
the second issue in this paper. The abstract interpretation and the projections
approaches have led to the construction of analyses based on rich domains which

258

make them intractable even for some simple examples. Techniques striving for a
better representation of the domains do not really solve the problem [12, 17].

This observation has motivated some researchers, [2, 18, 19, 20], to develop
non-standard type inference systems for strictness analysis. Kuo and Mishra,
[20], proposed a type inference system for strictness information; they developed
a sound and complete inference algorithm but did not show the correctness of
the inference system (with respect to a standard semantics). In [21] it is shown
how their type inference system can be extended to a form of full strictness for
lists and to the 4-point domain of Wadler [25].

The other authors, [2, 18, 19], have developed sound and complete inference
systems but have not given much attention to algorithms. In [13] we demon-
strated a technique for deriving efficient static analysis algorithms from type
inference systems. The basis for this work was Jensen's conjunctive strictness
logic [18]; we used techniques similar to [14, 15] to refine the logic into an algo-
rithm.

In this paper, we follow the approach taken in [13] to construct an efficient
algorithm for the analysis of lists. The algorithm is both correct and complete
with respect to the usual abstract interpretation approach. So it does not incur
the loss of accuracy of previous type inference systems for the analysis of lists
[21]. The core of the algorithm is the notion of lazy types (or lazily evaluated
types) which allows us to compute only the information required to answer a
particular question about the strictness of a function. One significant advantage
of the approach is that it extends naturally to domains of any depth and domains
are only explored at the particular depth required for the original question. In
other words, we do not have to choose a particular domain before the analysis
as is usually done for abstract interpretation (except when widening operators
are used as in [7]).

We first describe an extension of Jensen's strictness logic [18] to include an
analogue of Wadler's 4-point domain [25] (Section 2). In Section 3, we introduce
the notion of lazy types for lists and we present the corresponding system. We
state the correctness and completeness properties with respect to the original
system and we proceed in Section 4 to define the lazy type inference algorithm.
The algorithm can in fact be derived in the same way as in [13] and the correct-
ness proof follows for the same reasons. Section 5 is an example of the functioning
of the algorithm. We show in Section 6 that the type system and algorithm can
be extended to domains of unbounded depth and we present an example show-
ing that the algorithm naturally explores the depth of the domain required by
a particular question. Related work is discussed in Section 7.

2 A str ictness logic for the analysis of lists

We consider a strongly typed language, AL, with terms defined by the following
syntax:

= x J c I ~x-e I ele2 I fix(~g.e) I tonal(el ,e2, e3) I
ni l I cons(e l , e2) [hd(e) [tl(e) [case(e l , e2, e3)

259

T h e c a s e ope ra to r is used in the t rans la t ion of pa t t e rn match ing . For exam-
ple, the s u m funct ion f rom the previous section is t r ans la ted as:

s u m (0 = ease (0 , f , 0 where f x x s = x + (s u m x s)

T h e loss a f accuracy t ha t occurs wi thou t the e a s e ope ra to r is discussed in [25].
Abs t r ac t in te rpre ta t ion represents the str ictness proper t ies of a funct ion by

an abs t rac t funct ion defined on boolean domains [23]. For ins tance gabs t f = f
means t h a t g is undefined if its second a rgumen t is undefined. In t e rms of types,
this p rope r ty is represented by g : t --+ f --+ f . Notice t ha t t and f are now (non-
s t anda rd) types�9 Conjunc t ive types are required to re ta in the power of abs t rac t
in te rpre ta t ion : a s tr ict funct ion like + mus t have type (f ---, t ~ f) A (t
f --~ f) . Let us now turn to the types used for the represen ta t ion of proper t ies
of lists�9 As a first stage, we consider the extension of the boolean doma in to
Wadle r ' s 4-point doma in [25]. We show tha t this extension can be general ised
to domains of unbounded depth in Section 6. The four e lements of the domain
are f < ec < fe < t where or represents infinite lists or lists ending with
an undefined e lement and f~ corresponds to finite lists whose e lements m a y be
undefined (plus the lists represented by oc).

T h e ordering on types is described in Fig. 1. We define = as the equivalence
induced by the ordering on types: ~r = v *V c~ _< T and r < c~. T h e type inference
sys t em is shown in Fig. 2. F is an env i ronment m a p p i n g var iables to fo rmulae (i.e�9
s t r ic tness types)�9 In the rule C o n d - 1 , c~ represents the s t anda rd type of e2 (or
e3). Th is sys t em is an extension of [13, 18] and the soundness and comple teness
proofs of the logic (with respect to t rad i t iona l abs t rac t in te rpre ta t ion) follow
s t ra igh t fo rward ly f rom [19]. As an i l lustrat ion, we show how the proper ty , s u m :
fe -+ f , can be derived in this logic:

A B
C o n j [s : fe --* f, l : fe] t- Az.) ,xs .x + (s xs) : t --+ fe -+ f A f --+ t --+ f C
Case - 3 Is: fe -+ f, l : fe] F case(0, ~x.)~xs.x + (s xs) , l) : f

ADs F- (*s.M.ease(0, Xx.,kxs.x + (s xs) , l)) : (re --~ f) --* (fe ---+ f)
F ix F- fix()ts.)d.ease(0, Ax..kxs.x A- (s x s) , /)) : fe ---* f

~- s u m : f e - + f

where A is:

B is:

[s : f e - - + f , / : f e , z : t , x s : f e] F x + (s x s) : f

A b s [s: fe ~ f , l : fe] F ~ x . l x s . x + (s xs) : t --. fe --* f

[s : re --+ f, 1 : fe , x : f, xs : t] I- x + (s x s) : f

A b s [s : fe ---+ f, l : fe] I- .kx.),xs.x + (s xs) : f -+ t -~ f

260

and C is:
Var [s : f e --, f , l : fe] F l : f e

Note that A and B make use of the implicit assumption about the type of +.
Any environment is supposed to contain all the types of primitive operators.

f_<r r 1 6 2 eo_<f e r t~_ , _< t~ --~ t~

r162162 r r162 r r 1 6 2 1 6 2 r 1 6 2 1 6 2
r 0 < r 1 6 2

r < 0, r _< r r ~ r A r --* r _< r --* (r A r r --. r < r ~ r

Fig. 1. The ordering on types

3 L a z y T y p e s

We introduce a slightly restricted language of strictness formulae Tx (Fig. 3); this
language is closely related to van Bakel's strict types [1]. Basically strict types
do not allow intersections on the right hand side of an arrow. This restriction is
convenient because it does not weaken the expressive power of the system and
it makes type manipulation easier.

We then define the notion of c o m p l e t e type. The restriction to complete types
allows us to avoid the use of weakening because a complete type contains (is the
conjunction of) all of the elements greater than (or equal to) it.

ct(t) = t

D e f i n i t i o n 1.

CT(r) : A{ct(~) I cr 6 Sup(v)}

c t (f) = f ct(oo) = oo c t (f e) = f e

ct(~ ^ ~) = e~(~) A ct(~)
c t (~ ~ ,-) = C T (, ,) - - c~(T)

S u p (e) can be defined by induction on ~r. Notice that CT can be extended
to contexts in the obvious way.

Finally, we can define the notion of m o s t g e n e r a l type of an expression (with
respect to some context): it is the conjunction of all of the types possessed by
the expression in the given environment.

D e f i n i t l o n 2 (M o s t G e n e r a l T y p e s) .
MGT(F, e) = CT(A{~i ~ Ts] P ~T e: cr{})

261

Conj F ~ - T e : r F F - T e : r Weak F < A A f - T e : r r 1 6 2
F ~ T e : r /\r F F-T e : r

F [x ~ r 1 6 2 Taut F } - T c : t
Var F [x ~-+ r FT X : r Abs F ~-T Ax .e : (r --+ r

FFT e l : (r162 F F T e 2 :r Fix Ft-r($g.e):r162
A p p F I-T ele2 : r F }-T fix(~g.e) : r

F ~-T el : f F VT e2 : r F VT e3 : r
Cond-1 F VT cond(el , e2, e3): f~ Cond-2 F ~-T cond(el , e2, e ,) : r

Hd FFT e : f TI-1 F F T e : f T1-2 FF-T e : c r
F FT ha (e) : f F ~-T t l (e) : f F FT tl(e) : cx~

-F t -T e2 : (~
Cons-1

F FT cons(el, e2) : oo

F FT e2 : fe F ~-T el : f
Cons-2 Cons-3

F ~-T cons(el , e2) : fe F FT cons(el, e2) : fe

T a u t - h d

Case-3

F I - T e3 : f
Case-1

F I-T case(el, e2, e3) : f

F I-T e2 : t --+ ~ --+ r F I-T e3 : oo
Case-2

F ~-T case(el, e2, e3) : r

F I-T e2 : t --+ fE --+ ~ A f - + t - - + r f f t-T e3 : fE

F ~-T case(el, e2, e3) : r

F~-T el : r F I - T e 2 : t - ~ t - - + r
Case-4

F ~-T case(el, e2, e3) : r

F FT hd(e) : t Tau t - t l F ~T tl(e) : t

Tau t -cons F F T c o n s (e l , e 2) : t

Fig. 2. The Strictness logic

We show in [13] that the most general type of an expression is precisely
the information returned by the s tandard abstract interpretat ion-based analysis.
This explains why abstract interpretation is sometimes inefficient because it may
provide much more information than really required.

We take a different approach in this paper: rather than returning all possible
information about the strictness of a function we compute only the information
required to answer a particular question. This new philosophy natural ly leads to
a notion of lazy evaluation of types. The language of lazy types T a is defined in
Fig. 4. The ordering on types _~a and the logic F-a are shown in Fig. 5.

The key idea is that an expression from the te rm language (with its envi-
ronment) may appear as part of a type; this plays the r61e of a closure. More
formally, a closure (F, e) stands for M G T (F , e), the conjunction of all of the

262

t , f , ~ , fe E Ts o-ETI CETs r ETs.. .r
r ETI

Fig. 3. The language Tz

possible types of the term. This correspondence explains the new rules in the
definition of _<a. Not surprisingly, the lazy evaluation of types is made explicit
in the App rule: rather than deriving all possible types for e2, we insert e2 itself
(with the current environment) into the type of el. The following definition es-
tablishes a correspondence between lazy types and ordinary types, the extension
to environments is straightforward:

Def in i t ion 3.

Expand : TG -~ TI

Expand(t) = t Expand(f) = f

E x p a n d (a) = o0 ~ x p a n d (f ~) = f~

Expand(aa A ~2) = Expand(a1)/) Expand(r

Expand(aa --* ~r2) = Expand(~l) -+ Expand(~2)

Expand((F, e)) = MGT(Expand(F), e)

We can now state the correctness and completeness of the lazy type system and
the subsequent equivalence with the original system.

T h e o r e m 4 (Correctness) .

P F-a e: r ~ Expand(E) ~-T e: Expand(C)

T h e o r e m 5 (Comple teness) .

r

Expand(E) F- T e: Expand(C) ~ F F-G e: r

T h e o r e m 6 (Equivalence).

CeT

F F - T e : r 1 6 2 F E V a r - ~ T I , e : r

First notice that we do not lose completeness by considering Tx types: it can
be shown quite easily that any type is equivalent to a type in TI. The following
theorems are used in the proofs of theorems 4 and 5.

T h e o r e m 7. q _~a v ~=~ Expand(~) <_ Expand(v)

T h e o r e m 8.

F}-a e : (r 4:~(Ft-a e :r and . . . and (F}-a e : r

FF-T e : (r ~ (F t - T e :r and . . . and (FFT e : r

263

Theorem 7 can be proved by induction on the proof of the left hand side.
Theorem 8 is shown by deriving a proof of the right hand side from a proof of
the left hand side (it is quite straightforward). Theorem 8 allows us to prove
theorem 4 by induction on e. The proof of completeness is carried out in two
stages. First we show that the weakening rule can be removed from FT without
changing the set of derivable types provided we add a form of weakening in the
Var and F i x rules. A similar property has been proved for other type systems
including a form of weakening [1, 22]. Then we use theorems 7 and 8 and proceed
by induction on e to prove completeness.

1 ~ E e n v crET~ s E e n v eE exp
nil E env

Fix ~ ~] E env (r ,e) E T~

t, f, oo, fe E ~r ~ a E T ~ CET~ r T~. . . r E 7~
cr ---+ r E T~ 01A.. .Ar E TG

Fig. 4. The language TG

4 The lazy types algorithm

In [13], we show how to derive an abstract machine from the basic lazy types
system. A similar derivation from the system defined in Section 3 leads to the
machine shown in Fig 6. The state of the machine is a triple specifying the current
contents of the stack, environment and code. I n f (r r computes r <_a r as
defined in Fig. 5 (Theorem 10). Notice that a stack element Si is either a boolean
value or a disjunction of types. True (resp. False) is installed at the top of the
stack if and only if the original property (of the form (e, r in the code is (resp.
is not) provable in FG. Values which are neither True nor False in the stack are
disjunctions of TG types (r r The occurrence of such a value at the top
of the stack means that the original property is true if (and only if) the recursive
function currently being analysed possesses one of the r types (in order to make
the presentation simpler we do not consider embedded occurrences of fix here;
the extension is straightforward). In order to prove that fix(/\g.e) has type r
we add the assumption (g :~ r in the environment and try to prove e : r If
the result is True or False then the case is settled. Otherwise a disjunction of
conditions r is returned and the algorithm iterates to try to show that one of
them is satisfied (rule for Iter). Instruction /~ec is used to remember that we
were trying to prove a property on a recursively defined variable (denoted by
~-+~ in the environment); so if it fails we just return this property in the stack
rather than False.

Primitives And and Or are extended in the obvious way to apply on types:
their result is always supposed to be a disjunction of TG types.

264

f _ < a r r162 c~ _<a fe r

r r -* r _<G r r -~ t

v j e [1, m],3i ~ [1, ~]r < c Cj v r ~c ~ : r ~ r <~ r
r A . . . A r <G r A . . . A r r < c (F,~)

4' r r ~ ~ : r (r # (r ' , ~')) <G r r < a
(r, ~) _<c r r -~ r <G 4' -~ r

C o n j F ~ - G e : r F [- c e : r Var r _<c r
r ~-a e : r A r r [z ~ r e a z : r

A b s F [x ~ r r Tau t F ~ - c c : t
r ~-a ~x.e : (r -+ 0)

~c ~1 : ((r, ~) -~ r
A p p

F~-ae l e2 : r
n r~

F i x i=1 i=1
r ~ fi~(:~g.~) : r (k e [1, n])

F ~-a el : f F [-c e2 : r
C o n d - 1 C o n d - 2

F ~-a cond(e l , e2, e3) : r
F ~-G e3 : r

F [-c cond(e l , e2, e3) : r

f l'-T e : f -P ~T e : f P I-T e : OO
H d TI-1 T1-2

F [-T hd(e) : r F ~-T t l (e) : f F bT tl(e) : oo

F ~ - T e : OO F [- T e2 : oo
T1-3 Cons-1

r ~T t l (e) : fe r ~T cons(e i , e~) :

F bT e2 : re F [-T e l : f
Cons -2 Cons-3

; e r cons(el , e2) : fe F e r c o n s (e l , e2) : fe

F ~ - T ez : f
Case-1

F ~-e case(el , e2, e3) : r

F i-T e2 : t --+ oo --+ r F [-m e3 : oc
Case-2

F [-T case(el , e2, c3) : r

] '~-T e2 : t - -+ f6 - -+ r A f - ~ t - - * r F[-T e3 : r e
Case-3

F [-T case(el , e2, e3) : r

F b T e l : r F [-T e2 : t--+ t--+ r
Case-4

P t-T case(el , e~, e3) : r

T a u t - h d F bT hd(e) : t T a u t - t l F [-T tl(e) : t

T a u t - c o n s F [-T c o n s (e l , C 2) : t

Fig. 5. The Lazy Types system

265

(S,E,(c,t) : C) t>e (True: S,E,C>
IS, E,(c,f) : C> De (False: S,E,C>

(S ,E, (e ,r A r : C) Da iS, E , (e , r : (e,r : And : C)

iS, E , (~ . e , ~ -* ~): C> >~ iS,(~ : -) : E,(e, ~): D(~): C>

(S,E,(e~e2,r : C) >G IS, E , (e l , (E , e2) ~ r C)

iS, E[* ~ r162 c> Do is, E[~ ~ r162 c>

IS, E,(cond(e~,e2,ez),r : C) E>e iS, E, (e~,f) : (e2 , r (e3,r : And: Or: C)

iS, (z: er): E,(D(x)): C> t>c /S,E,C)

is, E, (nx(Ag.e), r C>
iS, E[g ~ r (g, r C>

(True : S, E, (t~ec, g, r : C)
/s~ : s, E, (.~ee, g, r c>

Da iS, (g :~ r E , (e , r Iter(g,e) : C)
De is, z[9 ~ r162 r : (Ree, g,r : c)
DG /T ru r S, E ,C)
Da ir : S , E , C)

$t # True

<sl : s,(g :~ r E, Zter(g,e) : c> >~ is, : S,E,C>
$1 = T r u e or $1 =False

((r v . . . v en): S,(g :~ r E,t*er(g,e): C> >o
iS, Z, (a*(~g.e), r (n• r O r : . . . : Or: C>

iS, E, (hd (e) , t) : C> Da (True: S, E,C>
<S,E,(hd(e),r : C> Da IS, E , (e , f) : C>

iS, Z,(tl(e),t) : C) Da /True : S,E,C)
<S, E, (tl(e), f): C> >~ iS, E, (e, f): C>

(s, E, (tl(e), o0): C) >~ iS, E, (e, 00): C>
(S , E , (t l (e) , f e) : C) t>G IS, E , (e , oo) : C>

is, E, (cons(e~, e2), t) : C>
iS, E, (cons(el, e2), oo) : C)
(s, E, (cons(e~, e~), f~) : C)

i S, E, (cons(el, e2), f) : C)

~>a (True : S, E, C)
>~ is, Z,(e~, oo): c)
>e is, E, (et , f) : (e~,f~): Or: C>
>a (False : S, E, C)

iS, E, (case(el, e2, e3), r C> ~>a
iS, E, (ea, f) : (e2,t --* oo ---* r (e3,0o): And: (e2,t ---* fe -'* e A f --* t ---* r (e3,fe) :
And : (el,r : (e 2 , t ~ t - - * r

<s: : s= : s, E, Op : c> >G I(Op S, S~): S, E, C>
Op = And or Op = Or

Fig . 6. The Lazy Types algorithm

266

The following theorem states the correctness of the lazy types algorithm.

T h e o r e m 9.

1. (s, r , (e, r : C) ~ (T r u e - S , r , C) ~ z r F G e : r
Z. (S , F , (e , r D* g (False : S , r , C) ~ (I ' [- g e : (b)

i f F and r do not contain any ~-~r assumption

The proof of this theorem is made hand in hand with the proof of the following
result:

T h e o r e m 10.

1. (S,F, I n f (r r : C) ~> *a (True : S , F , C) c=~ r ~_G r
2. (S, iF, I n f (r r : C) E>* G (False: S, F, C) ~ --1(r _~e r

i f F, r and r do not contain any ~-+r assumption

The most difficult part of the proof concerns the implementation of fix. We
have two main facts to prove: (1) the iteration terminates and (2) the result
is accurate. Termination is proved by showing that each type r A r satisfies
r A r <G r It is easy to show that the result is accurate when the iteration
terminates with the True answer. In order to show that the initial property
cannot be satisfied if the answer is False, we prove that at least one of the r
types returned by the iteration step is a necessary condition to prove the original
property (in other words, we do not "bypass" the least fixed point).

The algorithm described in this section can be optimised in several ways:

- The implementation of the conditional can avoid processing the second and
third term when the first term has type f.

- In the same way, the implementation of the case operation can be consid-
erably optimised if the first term has type f . More generally, And and Or
can be modified in order to avoid the computation of their second argument
when their first argument reduces respectively to False and True.

- In the rule for application, when expression e2 is a constant or a variable
then its type (t for a constant, its type in the environment for a variable)
can be inserted into the type of el rather than passing the whole environ-
ment. Notice that this optimisation is common in the implementation of lazy
languages.

These optimisations are easy to justify formally and improve the derivation con-
siderably.

5 Example

We consider the following functions:

f oldr b g nil = b
fo ldr b g cons(x, xs) = g x (fo ldr b g xs)

eat 1 = f oldr nil append l

267

which were in t roduced in [17] to demons t ra te the inefficiency of t radi t ional ab-
s tract in terpreta t ion. Notice tha t we have used pa t t e rn match ing in the definition
of foldr; this is for clarity - more proper ly it should have been defined as:

fo ldr = fix(Af.Ab.Ag.Al.case(b, AxAxs.g x (f b g xs), l))

Similarly cat should also be defined as a A-abstraction.
Fig. 7 describes some of the derivat ion steps of the lazy type a lgor i thm to prove
tha t cat has type f --~ f .

(Nil, Nil, (eat, f --+ f))
(Nil, (l: f), (foldr nil append l, f) : D(1))

where r is t

Fig. 7. cat has type f --~ f

~ G
E>C

(Nil, (/: f), (foldr nil append, f ---+ f) : D(l)) E>Q
(Nil, (/: f), (foldr nil, ((/: f),append) ---+ f ---* f) : D(l)) ~>G
(Nil, (/: f), (foldr, t --+ ((/ : f), append) -~ f -* f) : D(I)) ~>c

(Nil, (l: f) : (g, ((l : f), append)): (b: t) : (f :~ r (l: f),
(case . , f) : D (/) : D (g) : D (b) : I t e r (f ) :D(1)) E>G

(N i l , . . . , (/ , f) : . : O r : n (/) : D (g) : D (b) : . . .) ~>G

(True , . . . ,D(l) D (g) : D (b) : . . .) >G

(True, (f :T r (l : f) : I t e r (f , . . .) : D(l)) E>G
(True, (l: f), D(0) ~G
(True, Nil, Nil)

--+ ((l: f), append) ~ f ~ f.

6 General isat ion to domains of any depth

The 4-point domain expresses in format ion about lists with a tomic elements.
For example, it is not adequate for describing a p roper ty such as "this is a list
containing lists whose one element is undefined". Following Wadler [25], we can
in fact generalise the definition of 4-point domain from the 2-point domain to
domains of any depth. Let

D0 = {t, f}

with f _<0 t. Then

Di+l ---- {f, oo} U {x e I x e Di}

268

with:

f ~i+1

Vx E E Di+l . (ix:) ~ i + 1 x 6

Vx~, y~ 6 Di+l . x ~_i Y r xe <_i+1 Y~

The following property shows that we can omit the subscript and write _<
for _<i:

Vx, y E Di N Di+l . x ~_i Y r x ~_i+1 Y

An interesting property of our type inference system (and algorithm) is that
it can be generalised without further complication to domains of unbounded
depth. The rules Cons-2 , Cons -3 and Case-3 are generalised in the following
way:

F ~-T e2 : (re F ~-T e l : (7
C o n s - 2 C o n s - 3

F I-T cons(el, e2) : (re F FT cons(e~, e2) : (re

Case-3
F ~-T e 2 : t --* (r e --* r A (r ~ t ~ r

F t-T ease(el ,e2,ez): r

and the ordering on types is extended with the rules:

jr- ~-T e3 : (rE

oe _<(re
(r < 7 -

(re _< re

The extensions to the algorithm are not described here for the sake of briefness.
The implementation of Cons -2 and Cons -3 is straightforward because all the
free variables Occurring in the premises appear in the conclusion. This is not
the case for Case-3 which requires an iteration very much like the rule for
abstraction in Fig. 6. The iteration explores the domain starting with Do until
the property is proven or the maximal depth corresponding to the type of the
expression is reached. Several trivial optimisations can dramatically improve the
algorithm at this stage. For instance e3 will often be a variable whose type is
defined in the environment (see example below) and can be used to make the
appropriate choice of ~, thus avoiding the iteration mentioned above.

We continue the f o l d r example to show that our system (and algorithm)
does not need a domain of fixed depth but rather explores the potentially infinite
domain up to the depth required to answer a particular question. We first restate
the definition of a p p e n d as a term of AL:

a p p e n d = f i x ()~app .~x l . /~x2 . ease (x2 ,)~x..~xs.cons(x, (app x s x2)), xl))

Assume that we want to prove f o l d r : t -~ append -~ oo e --~ oo, where
a p p e n d is used as a shorthand notation for (0 , append) . We do not give all of

269

the detai ls of the der ivat ion but ra ther focus on the m a i n s teps of the proof:

A B
Conj F ~- (~z . ;~zs .g x (f b g xs)) : (t --* oo~ ~ oo) A (co ~ t ~ co)
Case - 3 s ~- case(b, ~x)~xs.g x (f b g xs) , l) : co

C

A b s ~- ; ~ f . X b . ~ g . M . c a s e (b , A x A x s . g x (f b g x s) , /) :
(t --~ a p p e n d --+ oc e --* oc) -~ (t --+ a p p e n d -~ oo e --+ ~)

Fix F f i x (~ f . ~ b . ~ g . M . c a s e (b , ~ x ~ x s . g x (f b g x s) , l)) : t --+ a p p e n d --* ~ e --* oc

~- f o ldr : t --+ a p p e n d --* ~ e -~ c~

where F is: I f : t ---* a p p e n d ---+ ~ e ---+ oo, b : t , g : a p p e n d , I : expel. A is:

F " l - f b g x s : c ~

: (F " , f b g x s) _ < c ~
r ' ~ ~ . ~ . s . c o n s (~ , (app ~s ~2)) : t -~ t ~ ~ r ' ~ ~ :

Case - 4 F ' ~- case(x2, A x . ; k x s . c o n s (x , (app x s x~)), xl)

A p p F " F g : t --~ (f b g x s) --+ oo

A p p F " ~- g x : (f b g x s) --+ oo
A p p F " F g x (f b g x s) :

A b s F F (A x . A x s . g x (f b g xs)) : (t --* oo e ---, ~)

where

F ' = [app : (t - ~ (s b g x s)) - ~ ~) , x l : t , x2 : (F " , (f b g xs))] : _F"
/ ' " = [z : t , x s : o o e] : F

the p roof tree for B is s imi lar ly const ructed and C is F i- 1 : cx) e . So the doma in
is explored up to depth 2 (D2). I f we now ask the question f o t d r : t - ~ a p p e n d --+

fe ~ cx), the doma in is not explored fur ther t han depth 1, as the reader can
easily verify (the s t ruc ture of the p roof is very s imilar to the previous one).

7 C o n c l u s i o n s

T h e p rob l em of designing efficient a lgor i thms for s t r ic tness analysis has re-
ceived much a t t en t ion recently and one current t rend seems to revert f rom
the usual "extensional" a p p r o a c h to more " i n t e n s i o n a l " or syntac t ic techniques
[20, 21, 18, 6, 10, 24]. The key observa t ion under ly ing these works is t ha t the
choice of represent ing abs t rac t funct ions by funct ions can be disastrous in t e rms
of efficiency and is not a lways just if ied in t e rms of accuracy. Some of these pro-
posals t rade a cheaper i m p l e m e n t a t i o n agains t a loss of accuracy [20, 21]. In
contras t , [10, 24] use extensional representa t ions of funct ions to build very effi-
cient a lgor i thms wi thou t sacrificing accuracy. T h e analysis of [10] uses concrete

270

data structures; these are special kinds of Scott domains whose elements can be
seen as syntax trees. In [24] the analysis is expressed as a form of reduction of
abstract graphs. An interesting avenue for further research would be to reex-
press these analyses in terms of type inference as suggested here to prove their
correctness and to be able to relate the techniques on a formal basis.

Wadler 's domain construction does not readily generalise to other reeursive
data types. Recently Benton [3] has shown how to construct an abstract domain
f rom any algebraic da ta type. It should be straightforward to extend our system
(and algori thm) to incorporate such domains. Benton's construction leads to
quite large domains; the size of the domains would make conventional abstract
interpretat ion intractable and highlights the benefit of our approach which lazily
explores the domain.

In his thesis Jensen, [19], has developed a more general logical t rea tment of
recursive types. His approach involves two extensions to the logic; the first is to
add disjunctions and the second extension involves adding modal operators for
describing uniform properties of elements of recursive types. The extension of
our techniques to these richer logics is an open research problem which we are
currently investigating.

References

1. S. van Bake], Complete restrictions of the intersection type discipline,- Theoretical
Computer Science, 102(1):135-163, 1992.

2. P. N. Benton, Strictness logic and polymorphic invariance, in Proceedings of the
2nd Int. Symposium on Logical Foundations of Computer Science, LNCS 620,
Springer Verlag, 1992.

3. P. N. Benton, Strictness Properties of Lazy Algebraic Datatypes, in Proceedings
WSA'93, LNCS 724, Springer Verlag, 1993.

4. G. L. Burn, Evaluation Transformers - a model for the parallel evaluation of
functional languages (extended abstract), in Proceedings of the 1987 Conference
on Functional Programming Languages and Computer Architecture, LNCS 274,
Springer Verlag, 1987.

5. G. Burn and D. Le M6tayer, Proving the correctness of compiler optimisations
based on strictness analysis, in Proceedings 5th int. Symp. on Programming Lan-
guage Implementation and Logic Programming, LNCS 714, Springer Verlag, 1993.

6. T.-R. Chuang and B. Goldberg, A syntactic approach to fixed point computa-
tion on finite domains, in Proceedings of the 1992 ACM Conference on Lisp and
Functional Programming, ACM Press, 1992.

7. P. Cousot and R. Cousot, Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation, in M. Bruynooghe and M.
Wirsing (eds), PLILP'92, LNCS 631, Springer Verlag, 1992.

8. O. Danvy and J. Hatcliff, CPS transformation after strictness analysis, Technical
Report, Kansas State University, to appear in ACM LOPLAS.

9. M. van Eekelen, E. Goubault, C. Hankin and E. Neker, Abstract reduction: a
theory via abstract interpretation, in R. Sleep et al (eds), Term graph rewriting:
theory and practice, John Wiley &; Sons Ltd, 1992.

10. A. Ferguson and R. J. M. Hughes, Fast abstract interpretation using sequential
algorithms, in Proceedings WSA '93, LNCS 724, Springer Verlag, 1993.

271

11. S. Finne and G. Burn, Assessing the evaluation transformer model of reduction on
the spineless G-machine, in Proceedings of the 6th A CM Conference on Functional
Programming Languages and Computer Architecture, ACM Press, 1993, pp. 331-
341.

12. C. L. HIankin and L. S. Hunt, Approximate fixed points in abstract interpreta-
tion, in B. Krieg-Briickner (ed), Proceedings of the 4th European Symposium on
Programming, LNCS 582, Springer Verlag, 1992.

13. C. L. I-Iankin and D. Le M~tayer, Deriving algorithms from type inference systems:
Application to strictness analysis, to appear in Proceedings of POPL'94, ACM
Press, 1994.

14. J. J. I-Iannan, Investigating a proof-theoretic meta-language, PhD thesis, Univer-
sity of Pennsylvania, DIKU Technical Report Nr 91/1, 1991.

15. J. Hannan and D. Miller, From Operational Semantics to Abstract Machines,
Mathematical Structures in Computer Science, 2(4), 1992.

16. P. H. Hartel and K. G. Langendoen, Benchmarking implementations of lazyfunc-
tional languages, in Proceedings of the 6th ACM Conference on Functional Pro-
gramming Languages and Computer Architecture, ACM Press, 1993, pp. 341-350.

17. L. S. Hunt and C. L. Hankin, Fixed Points and Frontiers: A New Perspective,
Journal of Functional Programming, 1(1), 1991.

18. T. P. Jensen, Strictness Analysis in Logical Form, in 3. Hughes (ed), Proceedings
of the 5th A CM Conference on Functional Programming Languages and Computer
Architecture, LNCS 523, Springer Verlag, 1991.

19. T. P. Jensen, Abstract Interpretation in Logical Form, PhD thesis, University of
London, 1992. Also available as DIKU Technical Report 93/11.

20. T.-M. Kuo and P. Mishra, Strictness analysis: a new perspective based on type
inference, in Proceedings of the 4th A CM Conference on Functional Programming
Languages and Computer Architecture, ACM Press, 1989.

21. A. Leung and P. Mishra, Reasoning about simple and exhaustive demand in higher-
order lazy languages, in Proceedings of the 5th A CM Conference on Functional
Programming Languages and Computer Architecture, LNCS 523, Springer Verlag,
1991.

22. J. C. Mitchell, Type inference with simple subtypes, Journal of Functional Pro-
gramming, 1(3), 1991.

23. A. Mycroft, Abstract Interpretation and Optimising Transformations for Applica-
tire Programs, PhD thesis, University of Edinburgh, December 1981.

24. E. N6cker, Strictness analysis using abstract reduction, in Proceedings of the 6th
ACM Conference on Functional Programming Languages and Computer Archi-
tecture, ACM Press, 1993.

25. P. Wadler, Strictness Analysis on Non-fiat Domains, in S. Abramsky and C. L.
Hankin (eds), Abstract Interpretation of Declarative Languages, Ellis Horwood,
1987.

26. P. Wadler and J. Hughes, Projections for Strictness Analysis, in Proceedings of
the 1987 Conference on Functional Programming Languages and Computer At-
chitecture, LNCS 274, Springer Verlag, 1987.

