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Abstract An action calculus which closely corresponds to the r-calculus is presen- 
ted in graphical form, as so-called 7r-nets. First an elementary form of r-net, with 
no sequential control, is presented. Then, using a construction by Honda and 
Tokoro, it is shown informally that by adding a single control construction box to 
elementary 7r-nets, the sequential control present in the 7r-calculus can be recovered. 
(Another construction, rep, provides replication.) The graphical presentation sug- 
gests a few interesting variants of this control regime, which are studied briefly. 
The main purpose of the paper is to explore informally the power and utility of 
graphical forms of the r-calculus, in the context of action calculi. It also suggests 
that graphical forms of other action calculi should be explored. 

1 Introduction 

Action structures [4] were defined as a framework for studying various notions of  
concurrent interactive behaviour, in the hope of yielding some taxonomy for these 
notions, and some uniformity in their presentation. The prime ingredients of  an action 
structure are its actions. Each action a has a source arity m and a target arity n, and we 
write a : m ~ n. These arities m, n are elements of a monoid, which for this paper may 
be taken to be the natural numbers under addition. Roughly, a : m ~ n is a (perhaps 
complex) process into which m data are fed and from which n data may be extracted. 
We say more later about the algebraic properties of action structures. 

In a later paper [6] 2 an action structure called PIC was defined in the spirit of 
the r-calculus [8]. Roughly, PIC is what remains of the 7r-calculus when we remove 
replication (i.e. the power of infinite computation) and also guarding - represented by 
the dot in the process x (y ) .P  for example. An action a : m ~ n of  PlC is essentially 
a collection of 7r-calculus particles, each being either an input particle x(y), an output 
particle ~(z) or a restriction particle ux; it also imports ra names and exports n names. 
PIC has a simple and illuminating graphical presentation; we call the graph which 

represents an action a 7r-net. 
PIC is not the whole 7r-calculus, since it cannot simulate the power of guarding 

or replication; but it was later shown [7] that PlC can be freely extended within the 
framework of action calculi (a subclass of action structures) by the addition of two so- 
called control contructions: box for guarding, and rep for replication. (Henceforth we 

1 This work was done with the support of  a Senior Fellowship from the Science and Engineering Research 

Council, UK. 
2A revised version of the two cited papers [4, 6] will appear as Parts I and II of Action structuresand the 

7r-calculus, in the Proceedings of the NATO Advanced Study Institute on Proof  and Computation held at 

Marktoberdorf in 1993. 
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shall use the term "boxing" to mean some variant or other of guarding.) The resulting 
action calculus PlC(box, rep) has expressive power which is -informally speaking- 
comparable with that of the original ~r -calculus, and also has the extra structure conferred 
by the algebraic theory of action calculi. 

The purpose of  this paper is to explore and develop the graphical presentation of 
PlC(box, rep). We shall see that these extended r-nets throw light on the structure of 
interaction. In particular, the graphical presentation suggests several altemative ways 
in which boxing may constrain reaction. 

The paper can be read on its own, though the reader may find that the papers [4, 
6] provide helpful background. There are similarities between r-nets and Parrow's 
interaction diagrams [9], though the work was done independently. The differences 
mainly arise from the fact that the r-nets form an action structure. 

Outline: In Section 2 we define the r-nets of PlC informally, by means of an 
example, and explain how they react (their dynamics). In Section 3 we review the 
notion of action structure, and define the algebraic operations upon r-nets which make 
PlC an action structure. In Section 4 we enrich r-nets by adding boxing and replication; 
this yields a version of PlC(box, rep) whose control regime does not permit reaction 
within a box. This regime is quite close to that of the original r-calculus. In Section 5 
we illustrate it by performing the elegant construction by Honda and Tokoro [3], which 
shows that a monadic r-calculus with only input (not output) guards has the full power 
of polyadic r-calculus [5]. In Section 6 we relax the regime toal low reaction within 
a box; this is in the spirit of the solutions in the Chemical Abstract Machine [2], and 
still supports the Honda-Tokoro construction. Somewhat surprisingly, we find several 
variants of this relaxed regime. This is taken to be justification of the use of graphical 
representation; some variants are suggested by using 7r-nets which are not otherwise 
obvious. We end in Section 7 with brief reflections and suggestions for further work. 

2 7r-nets def ined  by  example  

The 7r-nets of P I C are simple graphical objects. In this section we define them informally 
by means of an example; we also show how reaction works in ~r-nets. 

Below is an action a : 1 -* 2 in PIC, together with its formal expression: 

<i) 

a = (z) [ x(y)-~<x) y(v) ~(z) ] (yz) 
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Each name (free or  bound) in the expression for a corresponds to a node (a torpedo) in 
the r-net,  so there are four nodes. But the only free name in a is x, so z is the only name 
which occurs properly in the r-net;  it appears as a name tag at the tail (the sharp end) 
of  its node. The labels v and y are present just to aid the eye; an arc or arrow leading 
to the tail of  a node indicates that it corresponds to a bound name. An imported name 
such as z here is indicated by an import tag, e.g. (1); an exported name such as y or z 
here is indicated by an export tag, e.g. (1>. Thus the number of  such tags is determined 

by the source and target arities respectively. 
Each arc in the 7r-net corresponds to an i/o particle of  a. For an input particle like 

y(v) the arc goes from the waist of a node to the tail o f  a node, while for an output 
particle like y(x) it goes from the head (the blunt end) of  a node to a waist. A pair o f  
arcs such as these which have the same port node (the one whose waist they impinge 
upon) form a redex; the redex is shown by underlining in the expression and by thicker 

lines in the net. 
To reduce a redex, we simple remove the two arcs and coalesce the source and target 

nodes (x and v in this case). This forms a single node which carries all the items (arcs, 
tags) of  both. We write a " ,~d for such a single reduction, or reaction. The net d which 
results in this case is shown in the next picture; it too has a redex, so we have another 

single reaction a t " ,~a ' .  We show a" too. 

s -~i) 

d = (z) [ x(y)-2(z) ] (yz) d '  = (z) (zz} 

Note that the named node x in a" is still present. Such named nodes, bearing no arcs or 
other tags, make no difference and can be present or absent. 

We have almost fully defined ~r-nets, by giving the above example. A m o r e  formal 
definition appears in [5], and we shall not need it here; we merely emphasize the 

following points: 

- Arcs always join a waist to a head or tail of  a node. 

- A node tail bears at most  one  o f  an arc, a name tag or an import tag. I f  it bears 
none of  these it corresponds to a restriction particle ux  in a PIC expression. 

- In a 7r-net o f  arity m ~ n, each import tag i (1 _ i _< m) or export tag j 
(1 < j _< n) occurs exactly once. 
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The following basic axioms hold: 

a . i d = a = i d . a  

a |  = a = i d ~ |  
id  | id  = id 

abfid = id  

a .  (b .c )  = (a .  b). c 
a | 1 7 4  = ( a | 1 7 4  
( a . b ) | 1 7 4 1 7 4  
ab~(a,  b) = (ab~a).  (ab~b). 

The first six axioms make A a strict monoidal category, and the last two assert that the 
abstractors ab= are endofunctors. 

For the dynamics there is a preorder "~ called the reaction relation which is 
preserved by product, composition and abstraction and such that if a ~ a'  then a and 
a' have the same source and target arities, and if id ~ a then a = id.  

We have already described the dynamics of PIE. It is straightforward to show that 
PlC becomes an action structure, when we define the algebraic operations as follows: 

- The identity idr, : m --~ m consists of just m nodes, the i th of which bears input 
tag (i) and export tag (i). 

- To form a | b, where a : k ~ g, increment b's import tags by k and export tags by 
g, and coalesce nodes with equal name tags. 

- To form a �9 b, where a : k ~ g and b : ~ ~ m, coalesce a 's  node having export 
tag i with b's node having import tag i (for 1 < i < 3 ,  remove those tags, and 
coalesce nodes with equal name tags. 

- To form abxa, increment a 's  import and export tags by 1, give the tags (1) and (1) 
to the node of a which has name tag x, and remove that name tag. 

Here is an example of composition, showing both kinds of  coalescence: 

x x x 

~ = = = = ~ 1 )  (1) ~ ~  
( 2 ) ~ _ _ _ _ _ _ _ _ ~  

(2) 

a b a . b  

In fact, PlC is not only an action structure but also an action calculus [7], a special 
kind of action structure. We need not be concemed with all the details of action calculi 
here, but only with a key property -namely  that each action calculus is generated by 
two special kinds of action, o~ : 1 ~ 0 (discard) and {x} : 0 ~ 1 (datum, x E X ) ,  which 
are common to all action calculi over X,  and a set of  actions called controls which are 
specific to each action calculus. Monadic PIC has three controls: in : 1 ~ 1 (input), 
out : 2 ~ 0 (output) and u : 0 ~ 1 (restriction). Thus all monadic r-nets in PlC can be 
constructed by the action structure operations from the following generators: 
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Thus the waist or head of a node may bear many arcs, and the head may bear many 
export tags. 

To appreciate the difference between a--nets and the processes of the r-calculus [8], 
let us compare the net a E P l C  with the process P of the r-calculus in its standard 
notation: 

P = z (y ) . ( -~(x ) ly (v ) .~{z ) ) .  

There are several points: 

1. Note that a is abstracted (upon z), but P is not. Abstraction of port-names was 
not considered in the original r-calculus of [8]. Abstractions such as ( x )P  were 
introduced for the 7r-calculus in [5], but they were not allowed to react (as a E P I C  
reacts). 

2. Further, a exports results (the name-vector (yz)),  since actions are the arrows of 
an action structure and so possess a target arity. A notion of sorting for processes 
was introduced in [5] -thus (x )P  would have sort (1 ) -bu t  this corresponds only 
to source arity (the number of imports), not target arity (the number of exports). 

3. The input prefix x(y) in P must react (with something else) before a reaction in 
the body of P can occur. This guarding is at once a strength and a weakness 
of r-calculus; it allows sequence to be imposed upon actions, but this sequential 
control is present for all i/o particles. The action structure P IC on the other hand 
imposes no sequencing, except that a reaction may induce an identification of 
names which enables another reaction. Thus the fact that the redex of  a has a 
bound port (y) does not prevent its reaction; on the other hand the redex of a '  only 
exists because of the first reaction. 

Note that a does not include any polyadic particles, like x(yly2) or ~(YlY2). Such 
particles were not present in the original 7r-calculus [8], but were introduced in [5]. To 
represent them in 7r-nets we require akind of multi-arc. We shall have more to say later 
about whether multi-arcs are necessary, or whether their power can be gained by other 
means. For the moment we ignore them; thus we are discussing monadic PIC. 

3 The algebra PIC and its generators 

Let us briefly review the algebraic theory and dynamics of action structures [4]. Let 
X be a set (of names). The algebraic operations of an action structure A over X are 
the identities id,~, the binary operations product | and composition -, and the indexed 
family {ab. I x E X} of unary operations called abstractors. They obey the following 
rules of  arity, assuming that the arities are natural numbers: 

a : k---+m b : m ~ p  
i d  m : m - - - ~ m  a . b :  k---*p 

a : k---+n b : s a : m - - * n  

a |  b : k | 1 6 3  ab~a : 1 +m---~ 1 + n  
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(1) .. (2) 

(1) (1) 

(1) z 

in : 1 4 1  out : 2 4 0  u : 0 4 1  w : 1 4 0  (z) : 0 4 1  

In [6] it was pointed out that not all monadic Jr-nets can be so generated; no net with a 
source-cycle is generated)  (A source cycle is a cycle in which each arc leads to a tail 
- i.e. corresponds to an input particle.) The missing nets can be generated by adding a 
so-called reflexion operator [6]; hence we refer to the action structure of  all Jr-nets as 
RP I C, or reflexive PIC. Here we shall ignore these matters and stick to P I C, but all our 
points are relevant to PIC and RPIC alike. 

In terms of  the algebra we can now define reaction very succinctly. First we define 

in~ :0 - -* l  d=ef (u) . in  

out~ : 1 ~ 0  ~f  ( (zL) |  

which  gives  both  ports the n a m e  tag u; then  the rule for  s ingle  react ion is 

out~ | in~ "~ idl.  

The one-step reaction relation " ~  over  Jr-nets is the smallest which satisfies this role 
and is preserved by product, composit ion and abstraction. This corresponds exactly to 

our graphical description of  reaction in Section 2. 
Let us briefly retum to the notion of  multi-arcs, i.e. polyadic Jr-nets. These are 

obtained by generalizing the in and out generators to 

(1) (1 + k) 

) ) 

~ 

(1) 

in (k) : 1---+k out  (k) : 1 + k 4 0 

3This has nothing to do with achieving infinite reaction sequences. Every r-nets as defined in Section 2 
is reduced in size by a reaction, so infinite reaction is impossible. It will becomepossible when we introduce 
replication. 
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Then the reaction role becomes 

out(~ k) | in(~ k) ~ idk, 

which has the effect of simultaneously coalescing k pairs of source and target nodes. 
Part of the power of the boxes which we define below is that this polyadic reaction can 
be simulated by them, so (as was the case with original r-calculus) we lose nothing by 
taking the monadic form as basic. 

Notation We shall freely use the following abbreviations: 

ab for a . b  

(xy) for (x) | (y) 

(x)a for ab~a - (w |  (a :m- -*n) .  

For example, we have 

(x)(ux)out = out~ 

(ux)out = (x).out~ . 

4 A d d i n g  boxes and  replication 

Recall the example we gave in Section 2 of a 7r-calculus process in original notation: 

P = x(y).(~(x)ly(v).-g(z)) ; 

because the input prefix x(y) guards what follows, the internal reaction at y cannot occur 
until an external reaction at x occurs. We cannot match this in PIC; a redex which 
consists of a pair of particles at the same port, without further instantiation of names, 
can always be reduced. 

Recall also, from [5], how the polyadic r-calculus can be derived from the monadic 
form. This derivation requires that we define the polyadic prefix constructions u(x-').P 
and ~(x-).P, where Zis any sequence of names. This is done as follows for sequences 
of length two, thus enabling a pair of names to be transmitted in a single reaction: 

u(xlx2).P dc_f u(w).w(xl).w(x2).P 

~(YlY2).Q d~__f (vw)~(w).~{yl).~(y2).Q. 

Note that this uses both input and output monadic guards. Honda and Tokoro [3] made 
the remarkable discovery that in fact the input monadic guards are enough; with them 
we can get the power of output guards, and hence also of polyadic communication. 
Here, in essence, is their construction: 

u(xlz2).P d~j u(w).(uvl)(~(vl) l v~(xl).(uv2)(~(v2) l v2(x2).P)) 

-a(yly2).Q d~__f (uw) @(w) l w(vO.(~(yl) l w(v2).(~(y2) l Q)) ) �9 
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This has all the beauty of a zip-fastener; note how a parallel bar on one side is matched 
by a prefix on the other, and vice versa. 

In action structures for r-calculus, it will be product (| and a construction called 
boxing which play this r01e. The construction of Honda and Tokoro justifies the box 
control construction of [7] as a sufficient extension of PlC for imposing sequence upon 
reactions. The remainder of this section is devoted to defining an extended form of 
~r-net with boxing and replication. This is essentially the action calculus PlC(box, rep) 
which was defined in [7]. The new ingredient here is the graphical presentation; we 
shall use this in Section 5 to present the Honda-Tokoro construction. 

We define the control operation box, which takes a single action as parameter, with 
the following arity role: 

a : 1 - ~ n  

boxa  : l ~ n  " 

The correspondence with the r-calculus is as follows: if a corresponds to the process 
abstraction (x)P then (u) �9 box a corresponds to the input prefix construction u(x).P. 
(Of course, the target arity n of a has no correspondent in the r-calculus.) 

We indicate this construction in 7r-nets informally as follows: 

(1) 

b o x a :  l---*n ( a :  1 - + n )  

The ring indicates that the arc, which we shall call a box arc, impinges on a 's  single 
import node, which loses its import tag. 

In our formal constructions we require a bit more detail, to maintain the convention 
that each tag in a net occurs uniquely. Let us define a region of a net to be a part which 
is not crossed by a box boundary. We shall ensure that each tag occurs only in the 
outermost (unboxed) region of a net, as follows. We introduce a new kind of arc, called 
a link, drawn from a node head to a node tail. In forming box a, if any name tag or 
export tag occurs on a node of a then this node is linked to a new distinct extemal node, 
which receives the tag instead. Here is an example: 

27 

(1) x ~:)~,.  

(2) 
a b o x  a 

When boxes are nested, the linking for a name x forms a tree, making x everywhere 
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accessible. Intuitively, we can see that boxes exist to confine a r c s  (which are the 
ingredients of redexes), not nodes; so the links are just a graphical device to liberate 
nodes again. 

In practice we need not bother always to add the new nodes and the links, since they 
can be uniquely supplied when missing. But with this formal treatment the operations 
of  product, composition and abstraction remain exactly as they were described earlier. 
Note in particular,that they will not coalesce any node in a box, and that they add no 
further links. 

For boxes we have a new kind of redex, consisting of an arc entering and a box arc 
leaving the same node waist, thus: 

To reduce such a redex we coalesce its source node with the import node of a, remove 
both arcs and the box surrounding a, and then coalesce any pair of  linked nodes in the 

enlarged outer region, removing the link arcs. 
Now, just as we did for in, we define 

def 
b o x ~ a : O - ~ n  = (u)boxa 

and add a further reaction role 

out u | boxua "~ a .  

In passing, note that in becomes redundant in the presence of box, since it behaves 
exactly as box id. But the main point of  concern here is as follows: if  "~  is taken to 
be the smallest relation which satisfies this rule and is preserved by the action structure 
operations, the effect in terms of 7r-nets is that reaction cannot occur inside a box. 

It is a routine matter to check that these operations and the reaction relation yield an 
action structure. It is very close to the action calculus PIC(box) defined in [7], but not 
identical; in Section 6 we look at the slight adjustment needed, and also some alternative 

reaction relations. 
Let us now look briefly at replication. In [8] a form of replication, written 7r �9 P, 

was defined in which a copy of the process P is generated every time the prefix 7r is 
activated. In [5] a more general form !P  was defined, simply by imposing the axiom 
!P  = P [ !P; this amounts to declaring that an unbounded number of copies of P exist 

side-by-side without any need for activation. 
Here we adopt the former approach, since it is closer to boxing. In fact, in the same 

spirit, we require the activating prefix to be an input action. This is the control operation 
rep which was defined in [7]. Its arity rule is 

a : 1--*0 
r epa  : 1--*0 ' 
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and we indicate the construction graphically as follows: 

(1) 

rep a : 1--*0 (a : 1 ~ 0 )  

The reaction rule for rep is just as for box, except that the box is retained alongside the 
copy (which is why the target arity must be 0): 

r e p ~ a : O ~ O  d__ef (u)repa 

out,, | rep,,a x,~ a | rep,,a.  

\ 
: tZ 

U 

With this rule, we come close to the action calculus PIE(box, rep) defined in [7]; a similar 
small adjustment is needed as for box. For the purposes of this paper we need say no 
more about rep, since it poses no more problems than box for graphical presentation. 

5 Using boxes: the Honda-Tokoro construction 

We shall now use the construction of Honda and Tokoro to simulate multi-arc reduction, 
using boxes. (We do not need replication.) We add nothing to their idea, but merely 
present it in the setting of r-nets. 

Let us first generalise box, as we generalised in. We define the constructor box (k) 
thus (so that box = boxO)): 

(1) 

box(k)a : 1--~n (a : k--~n) 
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Correspondingly we generalise the reaction rule for box, for arbitrary a : k --* n: 

box(k)a : 0 ~ n deal (u)box(k)a 

out(~ k) | box(k)a k,~ a .  

For k = 2, if we tag the source nodes with y~ and Y2 this reaction is just 

Y2 

\ Y2 

**'a .... 

Our first task then is to encode (yly2)out(~ 2) and box(~2)a. We adapt the Honda-Tokoro 
expressions given at the beginning of  this section, as follows (using square brackets for  
boxes, and staggered to show the structure): 

(yly2)out(2) dd= 

(2) def 
box a = 

v(w) ((w)out~ | 

box~ [(vl) 

((yl)out~ 1 | 

box~ [(v 2) 

(w)o.toj)]) 
box u [(w) 

V(Vl)( <Vl)OUtw | 

box~ [(zD 

V(V2)( (V2)OUtw | 

Now take the product 
bo = (yly2)out(u 2) | box (2)a ; 

we must  show that bo ~ (yly2)a. We show b0 as a net in Figure 1. Some annotation 
has been added to help comparison with the expressions; formally, the only alphabetic 
symbols in the net are Yl, Y2 and u (apart from the schematic variable a). 

The reduction sequence 

b o " ~ b  1 ~ . . .  ",~b 5 ~ (yly~)a 

is shown in Figure 2. At each stage one box is exploded. Note that there are two 
links; they are the arcs which cross a box boundary, other than box arcs which are 
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( v w ) ~ , ) ~  

Yl 1 
~ -~1(Yl) 

~ - - - ~ ~  ' 3 w ( v 2 ) ~  
/ _ ~ ~  --~ 

>-~------------------3 

(vv2) ...... ~ / / ~ ( v : )  

Figure 1" bo = (yly~}out(~ 2) | box(~2)a 
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~ S ~1> ~ / _ ~ '  

| 

| Iy2~ 

~(':)  ~2) 
| 

(vw) 
Yl ~ Y2~ -'~ 

| 

1 ) ," . . . . . .  ; 

"-~ a'j 

Figure 2: Reduction of bo: b o "~ b 1 "x~ b2 x,~ b3 ,~ b4 ~ b5 ~, (yly2) a 
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distinguished by a ring. It is exactly the control of these links which imposes the proper 
sequence on reduction to ensure that Yl is bound to xl and Y2 to x2. 

Essentially we have b5 = (yay2)a as required; the only difference is that b5 has three 
arcless, tagless nodes as garbage. This garbage is highly inert, and persists harmlessly 
through all operations and reductions. (An algebraic aside: this garbage is neatly 
removed by imposing the identity v �9 w = id0 upon the action structure.) 

Does this reduction sequence entitle us to claim that we have encoded (yly2)out~ ~) 
properly? Not fully; for its existence still allows that some bi may have other possible 
reductions, or may take part in them when placed in a suitable context. If that were so, 
the encoding would be invalid. However, it is not so. One can convince oneself by 
inspecting the nets that every arc shown could never take part in any other reduction. 
To justify this claim rigorously requires an adaptation of the notions of reachability (of 
arcs) and incident, discussed in [6]. 

6 Varia t ions  

The reaction relation we have chosen for boxes is probably the smallest which is 
reasonable. But there is a series of variations which are weaker, in the sense that they 
allow earlier coalescence of nodes and may therefore permit certain reactions to occur 
earlier. The Honda-Tokoro construction works in all of them; this is some evidence that 
each of them imposes "sufficient" sequencing. This appears to be due to the common 
feature of all the variations: they all require the two arcs of a redex to lie within the 
same region. 

Link immigration We begin by pointing out how the action structure defined above 
differs from the action calculus PlC(box) given in [7]. Consider 

a = ( x x ) .  (yz )box~[ . . . y . . . z . . . ]  ; 

if y, z do not occur elsewhere in the box, in PIC(box) this is equal to 

b = b o x u [ . . . z . . . z  . . . ] ,  

i.e. the instantiation of y and z to x may permeate the box. But a and b correspond to 
different nets: 

x 

u 

x 

u 

a b 
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Let us call a link inward if it points into a box. Then we achieve the effect ofinstantiation 
permeating a box if we equate each pair of nets like a and b, i.e, whenever two inward 
links have the same source node then we may coalesce their target nodes. This induces 
an equivalence relation upon r-nets (actually a congruence with respect to all the 
constructions); when we divide by this congruence, I conjecture that the action structure 
becomes isomorphic to Pie(box). 

I f  this coalescence is not made, the situation amounts to the enforced delay of a 
substitution. This strongly suggests the notion of explicit substitution, studied by Abadi 
et al [1 ] for the A-calculus. Indeed, by extending P I C to allow substitution particles like 
(Z/y) (pronounced "x for y", where x is free and y bound) within the body of an action, 
we would hope to model delayed substitutions in an action calculus. 

Reaction within a box In the Honda-Tokoro construction the essential use of boxing 
was to prevent an arc outside a box from reacting with one inside. This purpose is still 
perfectly achieved even if we allow reaction within a box, or more exactly within any 
region. This is expressed not by changing the reaction rules 

out~, | "~ id 1 

out~ | "~ a 
out~| "~ a| 

but simply by requiring that they may be applied in any context - i.e. that the reaction 
relation be preserved by the box and replication constructions as well as by the action 
structure operations. Of course one may choose to allow reaction within a box but 
forbid it within a replication (perhaps on the grounds that such reactions count for more, 
since their effect will be multiplied indefinitely). 

In the context of this more liberal regime, link immigration also takes on a greater 
significance because it will enable earlier reaction within a box. 

Link emigration 

is there a reaction? 
will wait until the box is exploded. 

There is a phenomenon dual to the immigration of links. Consider 

a = box~[(x)(zx)]. (yz)((v)out~ @ in~) ; 

Apparently not; if we look at the net we can see that the reaction 

Zt 

This is in agreement with PlC(box) as defined in [7] (in contrast with the case for link 
immigration). There is no obvious reason why such an implication for coalescing two 
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nodes should not be allowed to permeate from the inside to the outside of  a box. If  
reaction within boxes is also allowed (as discussed above), then this is a way to allow 
any coalescences which arise from intemal reaction to be felt externally; the box still 
prevents reaction between its interior and exterior. 

How can this outward permeation be achieved? In r-nets we can proceed dually to 
the immigration case. Let us call a link outward if it points out of  a box. Then we get 
what we want by equating each pair of nets like the following: 

i.e. whenever two outward links have the same source node then we may coalesce their 
target nodes. Again, this induces a congruence relation upon ~r-nets. 

How can we match this congruence algebraically? We would hope to match it 
by imposing an equational axiom in addition to those of [7]. At first sight, there is an 
intriguing possibility which may be correct; it is to choose an appropriate effect structure 
E (see [4]) for ~r-nets, and to impose the axiom 

box(a ,  e) = b o x a .  e (e E E ) .  

Certainly (x)(xz) is a member of  the natural effect structure, so we would have for the 
above example 

a = box~[id~]. (z)(xz). (yz)((v)out u | 

= box~[idl] .(x)((v)out~ |  

which has a reaction. The ramifications of  this idea are interesting; the richer the effect 
structure, the greater is the influence which reaction within a box may exert upon the 
environment - without losing the purpose of the box. One should also recall that since 
effects are inert, to export them from the box cannot reduce the possibility of  internal 
reactions. 

This idea remains largely unexplored, and deserves further research. 

7 C o n c l u s i o n  

The aim of this informal paper has been to explore the graphical presentation of the 
various action structures which enrich the r-calculus. 

By exploring r-nets with boxes we have illustrated the power of boxing; we have 
also found a surprising degree of freedom in its precise meaning. Of course the 
Honda-Tok0ro construction was known, and some of the various of the boxing regimes 
discussed in the previous section were vaguely familiar;, so w-nets were not strictly 
necessary for some of the observations which we have made. But I had no idea about 
the phenomenon of link emigration before looking at r-nets and trying to formalise 
them. The nets therefore seem to be at least a good auxiliary tool of  investigation, 
provided that they are not allowed to prevent a more abstract treatment when it becomes 
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appropriate. We have also seen that there is good hope for algebraic characterisation of 
the various boxing regimes. 

Little has been said here about the family of action calculi, of which PlC and 
PlC(box, rep) and its variants are members. But the graphical presentation is by no 
means restricted to these members of the family. It may be fruitful to identify a class of 
action calculi which yield naturally to graphical representation; this may be of value not 
only theoretically, but also for the implementation of such an action calculus considered 
as a programminglanguage. 
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