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A b s t r a c t  

A semantics by translation to a process calculus is used as the basis for an investi- 
gation of transformations to programs expressed in a parallel object-oriented language. 
Two concrete examples are studied. In one it is shown that transformations introduc- 
ing concurrency into the design of a priority queue class do not alter the observable 
behaviour. In the other, a more delicate relationship between two symbol table classes 
is established. 

1 I n t r o d u c t i o n  

In [5] a development method for parallel programs is proposed. Central to it are the appli- 
cation of program transformations to control the introduction of concurrency into designs 
and the use of concepts from object-oriented programming to constrain interference. Char- 
acteristic of the object-oriented style of programming is the description of a computational 
system as a collection of objects each of which is a self-contained entity possessing data  and 
procedures, or methods. A parallel object-oriented program typically describes a highly mo- 
bile concurrent system in which new objects are created as computation proceeds and the 
linkage between components changes as references to objects are passed in communications. 
Providing adequate, tractable models for such systems is challenging. But the challenge 
is one which must be addressed if program transformations are to be subject to rigorous 
justification. 

Among the most well-developed work on semantics of parallel object-oriented languages 
is that  on the POOL family [3]. For example in [1] an operational semantics for a member 
of the family is given while [2] offers a denotational semantics based on metric spaqes. An 
alternative technique was introduced in [13] where semantics for two small parallel object- 
oriented languages were given by translation to the ~r-calculus [9], a process calculus in which 
one can naturally express systems which have changing structure. This work was extended 
in [14] where a semantics for POOL was given by translation to the polyadie ~r-calculus [8] 
and a close correspondence between it and a two-level operational semantics, a reformulation 
of the semantics of [1], was established. The examples in the present paper are expressed 
in the language ~ro/3A of [5]. Semantics for it have been given by translation to the polyadic 
r-calculus [6] and to the higher-order ~r-calcuhs [15] introduced in [12]. 

The basic entities of the 7r-calculus and its descendants are names. In the (polyadic) 
7r-calculus processes communicate by using names to pass (tuples of) names to one another. 
In the higher-order ~r-calculus processes may also pass to one another process abstractions 
of arbitrarily high order. In the semantics by translation each entity - class, object, method,  
variable, s tatement ,  expression - is encoded as a process (or higher-order abstraction), with 
the representation of a composite phrase being defined directly in terms of those of its 
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constituents. Execution of a program is represented by reduction of the process encoding 
it. In particulax, the passing of references between objects is captured naturally as the 
passing of names between the processes representing them with the treatment of private 
names afforded by the restriction operator of the w-calculus playing a central r61e. An 
important contribution to the perspicuity of the translations is made by the imposition 
of a sort discipline [8] which constrains the use of names; and in the semantics using the 
higher-order ~-calculus, each program constructor is represented as a higher-order process 
abstraction. These refinements help to retain some of the high-level structure of programs. 

One advantage of giving programming language semantics by translation to a process 
calculus whose semantic basis is established is that we are thereby freed from the task of 
Constructing an adequate semantic domain and establishing that it supports constructions 
necessary to give a faithful interpretation of the language. In the case of parallel object- 
oriented languages, accomplishing this task can require something of a tour de force; see 
e.g. [2]. But the use of this method of semantic definition offers a second potential benefit 
and it is this that the present paper begins to explore. A topic of central concern in 
process calculus has been to give abstract descriptions of the behaviour of processes and 
to develop techniques for reasoning about this behaviour. By encoding language phrases~ 
and in particular programs, as processes, we can use process calculus apparatus to derive 
abstract descriptions of the behaviour they express and to reason about it. In this paper 
we investigate this possibility by studying two concrete examples from [5]. Principal aims 
of this study axe to illustrate the utility of process calculi in a rigorous treatment of such 
problems, and to contribute to the clarification of the difficulties involved in finding and 
proving sound general transformation rules for parallel object-oriented programs of the kind 
proposed in [5]. 

The process calculus used in this paper is an extension of the polyadic r,'-calculus with 
value expressions and conditional agents. We do not carry through in detail here the amal- 
gamation of the well-established theories of calculi in which processes exchange simple data 
values and the 7c-caiculus. Rather we state the results which we assume of the process cal- 
culus; they are all well-known in other settings. As mentioned earlier, data can be encoded 
as 7r-calculus processes or, more cleanly, as abstractions in the higher-order ~-caiculus. The 
reason for working in the less parsimonious setting is that our aim is to give proofs which 
are both simple and natural, and coding data such as integers and booleans as ~-caicuhs 
processes is not helpful in achieving this. 

It is not possible in the space available to give full accounts of the programming language, 
the process calculus, the translational semantics~ the examples and the analysis of them. In 
the following section we introduce the examples. Section 3 contains a condensed account of 
the calculus and an illustration of the semantics. In Section 4 we describe the analysis of 
the first example and in Section 5 very briefly sketch that of the second. A fuller account 

of this work is given in [16]. 

Acknowledgement. I am grateful to Matthew Hennessy, Cliff Jones and Davide Sangiorgi 
for comments on this work. 

2 The Examples 

The first example concerns two integer priority queue classes. The first is sequential while 
the second can be viewed as being obtained from it by transformations which are intended 
to introduce some concurrency. The first class definition is as follows: 

class Q 
vat V:NAT, P:Q 
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method Add(X :NAT) 

if V=nil then (V:=X ; P:=new(Q)) 

else if V<X then P!Add(X) 

else (P!Add(V) ; V:=X) ; 

return 

method Rem() :NAT 

vat T:NAT 

T:=V ; 
if not(V=nil) then (V:=P!Kem() ; if V=nil then P:=nil) ; 

return T 

A class definition provides a template  for its instances, the objects of that  class. Each 
instance of Q represents a cell which stores a nonnegative integer in the variable V and a 
pointer to another cell in the variable P. A priority queue is composed of a chain of cells 
in which integers are stored in ascending order. The value of the expression new(Q) is a 
reference to a new object of the class. On creation of a cell the values of V and P are 
undefined (n i l ) .  New cells are created and appended to the c h i n  as integers are added 
via the method Add which takes am integer parameter and returns no result. The smallest 
integer held in the queue (or n i l  if the queue is empty) is returned and removed by the 
Rein method. Evaluation of the expression P!Rem() involves the invocation in the object to 
which the value of P is a reference of the method Rem. Execution of the invoking object is 
suspended until an integer is returned to it, this being the value of the expression; a cell 
returns its value in the Rein method by executing the statement r e t u r n  T. Similarly, the 
statement P!Add(X) represents an invocation of the method Add in the object to which the 
value of P is a reference with the value of X as parameter.  A g i n  the activity of the invoking 
object is suspended until it is released from the rendezvous; in this case no value is returned 
and the appropriate releasing statement is r e t u r n .  An invariant of a queue of cells is that  
only the first cell is accessible to other objects. When an Add method is invoked in the first 
cell its activity is suspended until the integer is inserted into the queue at the appropriate 
point and a return signal ripples back along the queue to the first cell which then releases 
the caller from the rendezvous. A similar discipline constrains the Rein method. In ~roflA, 
at most one method may be active in an object at any time: a cell may not accept another 
method invocation until it has completed execution of the active method body. 

The second class definition is as follows: 

c l a s s  Q' 

vat V:NAT, P:Q' 

method Add (X: NAT ) 

return ; 

if V=nil then (V:=X ; P:=new(Q')) 

else if V<X then P!Add(X) 

else (P!Add(V) ; V:=X) 

method Rem() :NAT 

return V ; 

if not(V=nil) then (V:=P:Rem() ; if V=nil then P:=nil) 

Q' differs from Q in that  when the Add method is invoked in a cell it executes its r e t u r n  
statement immediately, thus freeing the calling object from the rendezvous; the two may 
thus proceed in parallel. The Rein method acts in a similar way; in this case the local variab]e 
T is no longer required. 

A 7roSA program consists of a sequence of class definitions together with an indication of 
which class furnishes the root object which alone e~sts  at the beginning of a computation. 
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Suppose prog is a program in which the class Q is defined, and suppose prog' is obtained 
from it by replacing the definition of Q by that  of Q' and each mention of Q by mention of Q'. 
The functions of this transformation are to increase the scope for concurrency in execution 
of the program, and to do so without altering its observable (input and output)  behaviour. 
That  the first intention is fulfilled will not be argued for here, though evidence that  it is 
is discernible in the argument which we give to show that  the observable behaviour of the 
program is not altered. The translational semantics associates with the programs prog and 
prog' agents P and P ' .  We may express the property of interest as the assertion that  P "~ P '  
where ~ is an appropriate one of the maay notions of behavioural equivalence which have 
been studied in process calculus. We show in Section 4 that  P _~ P '  holds when for _~ we 
take weak bisimulation equivalence [7, 9]. 

The second example concerns two symbol table classes in which references to objects of 
some class A are associated with nonnegative integer keys. Again the first class is sequential 
while the second can be viewed as being obtained from it by transformations which are 
intended to introduce some concurrency. The first class definition is as follows: 

class T 

vat K:NAT, V:A, L:T, R:T 

method Insert(X:NAT, W:A) 

if K=nil then (K:=X ; V:=W ; L:=new(T) ; R:=new(T)) 

else if X=K then V:=W 

else if X<K then L!Insert(X,W) 

else R!Insert(X,W) ; 

return 

method Search(X:NAT) :A 

if K=nil then return nil 

else if X=K then return V 

else if X<K then L!Search(X) 

else R! Search(X) 

A table is structured as a binary search tree in which each key occurs at most once. Each 
instaace of T represents a node of the tree. Only the root node is accessible to other objects. 
A node has a key K, a value V which is a pointer to an object of the class A, and pointers 
L and R to the left and right subtrees. On creation all have undefined values; this it true 
a/so of the variables of leaf nodes. The methods of T a~e I n s e r t  for inserting a key-value 
pair and Sea rch  which returns the reference associated with the key supplied as parameter 
(if it occurs in the table). Analogously to the behaviour of the sequential priority queue Q, 
when a method is invoked in the root node of a tree its activity is suspended until a return 
ripples back through the tree to it when it releases the caller from the rendezvous. 

The second class definition is as follows: 

class T l 

vat" K:NAT, V:A, L" T' , R: T' 

method Insert(X:NAT, W:A) 

return ; 

if K=nil then (K:=X ; V:=W ; L:=new(T') ; R:=new(T')) 

else if X=K then V:=W 

else if X<K then L!Insert(X,W) 

else R! Insert (X,W) 

method Search(X:NAT) :A 

if K=nil then return nil 

else if X=K then return V 
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else if X<K then commit L!Search(X) 

else commit R!Search(X) 

Two transformations are applied to obtain T' from T. The first involves moving the r e t u r n  
statement in the method I n s e r t  to the beginning of the body. The second transformation 
involves the replacement in the Search  method of the invocations of Sea rch  methods in the 
left and right subtrees by commit statements (in [5] ' y i e l d '  is used instead of 'commit ') .  
When an object c~ executes a commit statement by invoking a method in an object fl, it is 
implicit (i) tha t /3  should return its result not to a but to the object 7 to which a should 
return a result, and (ii) that  c~ is freed from the task of returning a result to 7. In particular,  
execution of ~ may continue in parallel with that  of/3. In T', if the Sea rch  method  is invoked 
in a node with a key smaller (resp. larger) than that stored there, the node will commit 
that  search to its left (resp. right) child. We may think of the node as passing to the child 
a return address to which the result of the search should be sent. This address will have 
been received by the node either directly from the initiator of the search or from its parent 
in the tree. 

The effect of moving the r e t u r n  statement to the beginning of the I n s e r t  method  is 
similar to that  resulting from the ana/ogous transformation to the Add method of the class Q. 
More interesting are the transformations which introduce the commit statements.  A symbol 
table constructed from nodes of class T' may support a number of concurrent searches. The 
order in which the results of these searches may be returned is intimately related to the 
tree structure of the table. For example consider the following tree structure in which no 
method is active in any of the nodes (the nature of the references associated with the keys 
is irrelevant to the discussion): 

, 1 0  

.( 
�9 ( . (  

. (  
.( 

The root node may accept the sequence of invocations 

Sea rch (7 )  ; Sea rch  (6) ; Search  (2) ; S e a r c h ( l l )  ; Sea rch (12)  ; S e a r c h ( I )  

without the result of any of them being returned. Thereafter the results of the searches with 
keys 7 aad 11 may be returned but the results of the searches with the other four keys may 
not as the progress of each of them is blocked by uncompleted searches in relevant parts of 
the tree structure. An important  point here is that  since only one method may be active 
in an object,  one search cannot 'overtake'  another. If the result of the search with key 7 is 
returned and each of the searches makes as much progress as is then possible, the state of 
the table may be pictured thus: 
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Here we annotate  each node with a status recording if the node is active and if so how it is 
engaged. The status is f ( 'free')  if the node is inactive and (s, k) if it is executing a search 
with parameter  k.' In this state the results of the searches with keys 2, 6 and 11 may be 
returned, but the search with key 1 is blocked until that  with key 2 returns and the search 
with key 12 is blocked by the unfinished search with key 11. 

It is thus clear that  the correspondence between the classes T and T' is not a simple 
one. Account must also be taken of the progress of invocations of I n s e r t .  Further, in the 
case of infinite computations issues related to fairness arise. The analysis we give involves 
finding an abstract description of the behaviour of the process representing a newly-created 
table, and showing how the finite parts of this behaviour are related to those of a process 
describing the behaviour of a newly-created table of class T. Briefly, we show that  if p 
is a finite sequence of method invocations then the possible computat ions of the T'-table 
generated by # are the parallellzations allowed by the tree structure of the computat ion of 

the T-table generated by #. 

3 The  Language, the Calculus and  t h e  S e m a n t i c s  

The language ~rofl), in which the examples are expressed is described in [5, 6]. Semantics by 
translation for it appear in [15], where the higher-order r-calculus is used, and in [6], which 
employs the polyadic r-calculus. An important  development here is the use of an enrichment 
of the r-calculus with value expressions of simple types and conditional agents. This section 
contains a condensed description of the calculus and an illustration of the translation of 
roflA to it using fragments of the priority queue class Q. 

3 .1  T h e  Calculus  

We assume a set S of subject sorts among which are two distinguished sorts N and ~ for the 
simple types of natural  numbers and booleans. The set CO of object sorts is S ' ,  the set o f  
finite tuples of subject sorts. We write ( S l , . . . ,  sn) for the object sort of length n consisting 
of s l , . . . , s n  6 S. A sorting is a function ~ : So -* O where So = S -  {N,B). The basic 
entities of the calculus are link names and simple value expressions. The names may be 
thought of as names of channels via which processes may interact.  Each name is assigned a 
subject sort and the sorting determines that  only entities with the object sort ~(s)  may be 
communicated using a name of sort s E So; these entitles are tuples of names and values of 
the simple types (sorts). The subject sorts N and B have no associated object sorts: entities 
of these sorts are not names of links. This kind of sorting discipline was introduced in [8]. 
It was refined in [11] with the adoption of structural matching, rather  than name matching, 
of sorts, and the introduction of input /output  tags allowing a natural  form of subsorting. 
Here we use structural  matching of sorts but do not require inpu t /ou tpu t  tags. 
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We assume an infinite set of names x, y , . . .  of each subject sort and write x : s to indicate 
that  x is of sort s. We assume that N contains constant names 0, 1, . . . , /  and B constant 
names t t , ff ,  2 ,  and that  both have in addition an infinite number of variable names. A 
suitably expressive language of value expressions is assumed. We assume that  each closed 
expression (i.e. expression containing no variable names) of sort N or B has a value which 
is a closed name of that  sort (with • representing an undefined value). We assume also 
an infinite set of agent constants K of each object sort /9, writ ten K : tP. The set of agent 
expressions P, Q is given by 

P : : -  ~jej~rj. Pj [ t ' I Q  I ( , x ) P  I K ( ~ )  I i f ( b : P ; Q )  

where: in K(~>,  ~ ranges over tuples of link names and value expressions; in the conditional 
agent expression if(b : P, Q) ("if b then P else Q ' ) ,  b ranges over value expressions of sort B; 
a prefix r is an output  of the form ~(~)  or an input of the form x(ff); in a restriction (v x), 
x has a sort in So; the indexing set J in the guarded summation is finite; and each constant 

K has a defining equation K aef F where F is an abstraction of the form (~)P where ff is 
a tuple of distinct variable names containing all those occurring free in P (see below). \Ve 
write 0 for an empty summation and 7r for 7r. 0. In x(ff). P and (ff)P the occurrences of 
~" are binding with scope P;  the restriction operator (yx)  is also a binding operator.  We 
assume the standard notions of free names, substitution (of link names for link names and 
value expressions for variable names of sort N or B), alpha-conversion etc. and identify agent 
expressions which differ only by change of bound names. We write fn(P)  for the set of free 
names of P .  V~re consider only sort-respecting substitutions, i.e. those cr such that  x and 
a(x) have the same sort for every (variable) name x. We say a substitution cr is closed 
if for each variable name x of sort N or B, or(x) is a constant name. An agent expresslon 
containing no free variable names of sort N or 13 is called a process. 

We consider only agent expressions which respect the sorting E. The essence of respecting 
E, which is defined formMly by a family of rules [8], is that  each well-sorted agent expression 
is assigned an object sort, with P : 0 for each process P,  so that  definitions, applications 
and prefixes are consistent with E. Thus extending ' : '  componentwise to tuples we have e.g. 

that  if K a__~f (~)p  and K : 0 then ~ : 8 and in K ( ~ )  we must have ~ : 8; and in 7r = ~(~) ,  
if x : s then s E So and z~ : E(s).  To allow a simple presentation of the dynamics of the 
calculus a relation of structural congruence on agent expressions, writ ten --, is defined; see 
[8]. The behaviour of processes is given by a family of labelled transition relations. They 
are obtained from the transition relations for the polyadic ,-r-calculus by incorporating an 
appropriate t reatment  of value expressions. We adopt an 'early'  instantiation regime [10] 
in which variable names of the sorts N and 13 are instantiated by constant names when an 
input action is inferred. The relations are labelled by actions a of which there are three 
kinds: the silent action r ,  output  actions .~((, 5)~) and input actions x(~). Here ~ is a tuple 
each of whose entries is a link name (of a sort in So) or a constant name (of sort N or B), 
and E is a subset of the set of link names occurring in ~; E is the set bn(a)  of bound names 
of the action a;  also bn( r )  = O and bn(x(~)) = ~. A variant of a transition P --2-+ Q is a 
transition which differs only in that  P and Q have been replaced by structuraJ2y-congruent 
processes and a has been alpha-converted, where a bound name of a includes Q in its scope. 
The relations are defined by the following rules. In each rule the conclusion stands for all 
variants of the transition: 

1. 5(z~). P + . . .  ~ P where ~ is identical to ~ except that  each closed expression of 
sort N or B is replaced by its value, 

2. x (~)  P + . .  ~ p{~/~} provided the names of sort N or 8 in ~ are constant  names; 
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here P{v~} is the result of substituting the components of ~ for the corresponding 
components of ~" in P,  

3. I f P ~ P ' t h e n P ] Q - - % P ' i Q  providedbn(a)  N f n ( Q ) = r  

4. If P w((~--~-) P '  and Q =(--~ Q' then P [ Q - -~  (uE)(P '  [ Q') provided EClfn(Q) = ~, 

5. If P - -~ P~ then (ux)P _2_, (~x)p~ provided x does not occur in a, 

6. If P ~ ( { ~ )  P '  then (~,y)P ~((-~)~') P '  provided y occurs in g - (EU {x}), 

7. If P - ~  P '  then if(b : P,Q) --~ P' provided the value of b is tt, 

8. If Q _2_+ Q, then if(b : P, Q) _2_. Q, provided the value of b is ft. 

Following a standard line of development in process theory we write ~ for the reflexive 

and transitive closure of --%r for each a set ==~ to be ~-----*==~,~ and set ~ to be 

and ~ to be =g~ if a ~ T. Then weak bisimilarity is the largest symmetric relation ~ 

on processes such that if P ~ Q then for all a,  if P --% P' then for some Q', Q ~ Q~ 
and pi  ~ Qq We extend ~ to agent expressions by setting P ~ Q if Pa ~ Qa for 
each a which is the identity on link names. Similarly for abstractions, (~)P ~ (y~Q if 

P{g/~} ~ Q{g/~} for all ~. The relation ~ is an equivalence relation preserved by most of 
the process constructors, but it is not preserved by instantiation of link names and hence 
not by input prefix. In carrying out the analysis of the programming examples we use the 
natural  congruence relation on agent expressions determined by ~.  Since we work only 
with guarded summation no special treatment of initial r-actions is required to characterize 
the congruence. We say that agent expressions _P and Q are weakly equivalent, P ,.~ Q, if 
for every substitution a, Pcr ~ Qa. We assume that ~ is a congruence relation: on agent 
expressions, that it is preserved by recursive definition, and that simple equations have 
unique solutions up to ~.  We use also an appropriate form of expansion theorem, some 
straightforward algebraic laws involving conditional agent expressions, and standard r-laws. 

3.2 T h e  T r a n s l a t i o n  

To give the translation we take as subject sorts of the calculus N, B, NIL, and for each 
type name T and tuple T of type names, LINg[T], METHOD~;T] and METHOD[Ti]. Here T; T 
(resp. T;) indicates a method taking arguments of types T and returning a result, of type 
T (resp. no result type). To give the sorting it is convenient to introduce some synonyms. 
We set OBJECT[NAT] = N and OBJECT[BOOL] -- B. If A has methods M1,...,Mq and Mi has 
~ p e  Ui = T i ;T i  or Ti;  then we set OBJECT[A] -- METHOD[U1],...,METHOD[Uq]. Final ly,  i f  
T : T I , . . . , T r  then we set OBJECTS[T] ----- OBJECT[T1],...~OBJECT[T,]. The sort ing ~,, is then 
as follows: 

~(NIL) = 0 
~(LINK[T]) = (OBJECT[~r]) 

~,,(METHOD[:?;T]) = (OBJECTS[T], LINK[T]) 
~(METHOD[T;]) = (OBJECTS[T], NIL) 

As an example, for the priority queue class {? we have 

OBJECT[q] ~ METHOD[NAT;], METHOD[; NAT] 
~(METHOD[NAT;]) = (N, NIL) 
~(METHOD[; NAT]) = (LINK[NAT]) 
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Since we adopt structural  matching of sorts, we have e.g. that LINK[Q] = LINK[Q']. 
The translation function [.] associates with each phrase of the language an agent constant  

whose object sort conveys some static information about the phrase. The sorting will be 
explained in detail as we proceed. Briefly, the 'object identifier' of an instance of the class Q 
will be a pair of names (add, rein) : (METHOD[NAT;], METHOD[; NAT]). T h e  invocation of the 
Add method in such an instance will be represented as the sending to the process encoding 
it, via its add link, of a pair (x, r) : (N, NIL) with x being the parameter and r a link to 
be used for the return of the invocation. For the Rein method, along the rem link is sent a 
return link of sort I,INK[NAT] for the return of the value. Channels of sort IJNK[Q] are used 
to pass identifiers of objects of the class Q. The declaration of the class Q, for instance, is 
encoded as a replicator which may produce at a link of sort l-INK[q] an indefinite number of 
copies of the agent encoding an object of the class. 

As a first illustration, abbreviating I_INK[NAT], I_INK[NAT] to I_INK[NAT] 2 we have 

[var  V:NAT] : (LINK[NAT] 2) def (getput) REGNAT(get,put, 3_) 

where a natural  number register is defined by 

REGNAT : (LINK[NA'T] 2, N) clef (getput x) 
( -~(  x ). REGNhT(get,put, x) + put(y), aEGNAT(get, put, y) ) 

Here x represents the value stored, which is undefined on declaration, and get (put) the 
name used for reading (writing) the register. The agent [var  P:Q~ : (LINK[Q] 2) is defined by 

[var P: Q~ : (I,INK[Q] 2) def (get put) (u a, r) REGq(get, put, a, r) 

where REGQ : (UNK[Q] 2, OBJECT[Q]) is similar to REGNA T. The nil reference is captured by the 
restriction. A sequence of variable declarations is encoded as the composition of the agents 
representing the individual declarations. 

An expression E of type T is encoded as an agent constant [E~ : ~(UNK[T]) where 
consists of sorts corresponding to the distinct variables and new expressions occurring in E,  
and the last parameter is used for delivering the value of the expression. For constants and 
variables of type NAT we set 

[x]  : (UNK[NAT]) def 
[ n i l ]  : (LINK[NAT]) de=f 

[xl  :(UNK[NAT] 2) dej 

For the creation of a new object of class Q, 

( val) F-di( k ) 
(vd) Vdd( J_) 
(get ~al) get(~).-~(~) 

[newCQ)] : (LINK[q] 2) d=_ef (new vaI) new(a, r ). ~al(a, r) 

This agent is intended to receive at new from the replicator representing the declaration of 
the class Q a pair (a, r) representing the object identifier of a new instance of the class and 
to yield that  pair as its value at val. Then we have 

[P:=new(Q)] : (LINK[Q] 2, NIL) de=f (new put d)(v val : LINK[Q]) 

Here put is a link to the register agent corresponding to the variable p and d a link on which 
the agent encoding the assignment statement signals termination. In general, a s tatement S 
is encoded as an agent kS] : ~^(Ml-) where 8 consists o f  sorts corresponding to the distinct 
variables and new expressions occurring in S together with names associated with method 
calls. 

Continuing the illustration we have [P!hdd(X)] :(LINK[Q], LINK[NAT], NIL) defined by 
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[P!Add(X)] d_ef (getpget X d) (zJvaIo :LINK[q[, vall: LINK[NAT[, w : NIL) 
([vl(~tp, valo) I "-[x[(g~tx, ,,al~) 
I vaIo(a, r). ~. vall(y). (• ret)'~(y, ret). ret.-2) 

The third component receives the pair of links representing the reference stored in P, ac- 
tivates the second component and receives from it the value of the parameter,  then sends 
that with a p r iwte  return link along the Add-component of the reference. It then waits for a 
return along ret before signalling termination at d. The boolean expression V<X is encoded 
as an agent of sort (LINK[NAT[ 2, LINK[BOOL]) thus: 

IV<X[ ~ f  (get V get x val) (z~ valo : LINK[NAT[, vall: LINK[NAT[, w : NIL) 
([vl(getv, vat0) I ~ .  [X](getx, vail) I LeSS(,al0, vail, W, vat)) 

where LESS : (LINK[NAT[ 2, NiL, LINK[BOOL]) is defined by 

LESS d__ef ( valo vall w val) valo( xo ). ~. vall ( X l ). - ~ (  Xo < xl) 

Continuing further, setting 8 = (LINK[NAT[ 2, LINK[o[, LINK[NAT[, NIL) we have 

[if V<X then P!Add(X) else (P!Add(V) ; Y:=X)] :8 de__f 
(get v put V getp get x d) (v val : LINK[BOOL], do : NIL, dl : NIL) 

([V<X](gety, getx , val) 
I vaI(b), if(b : d0, dl) 
I do. [P!tdd(X)~<getp, getx, d) 
] dl. [P!Add(V) ; V:=X~(getp, getv,putv, getx, d)) 

Continuing with the illustration we have that for the body S,~ad of the Add method of Q, 
SAda, : (LINK[Q[, LINK[NAT[ 2, LINK[Q[ 2, LINK[NA-rJ, NIL 2) where the penult imate abstracted name is 
used in encoding the r e t u r n  statement in SAda. We then have [method Add(X:NAT) ,Shad] : 
(LINK[q], LINK[NAT] 2, LINK[I;)] 2, METHOD[NAT;], NIL) defined by 

[method Add(X :NAT), Stdd~ def (new get V pUtv get p putp add d) 
(~, getx, put X) ([vaz" X: NAT](getx, putx) 

] add(y, ret). P---~x(Y). [SAdd~ (new, getv, putv, getp, putp, getx, ret, d)) 

The encoding of the Kern method is along similar lines. Then an instance of class 0 in the 
quiescent state is represented by the agent Oh j0 : (LINK[q],OBJECT[O]) defined as follows 

where ~ = get y, puty , getp, purR: 

Objo def (new add r e m ) ( u ~ ( [ v a r  V :NAT, P: O](P~ t BodyQ(new,~, add, rein)) 

where 

Bodyq a~_f (new add rein)(ud) (([method AddS(..., add, d) + [method Rem~(..., rem, d) ) 
I d. Bodyo(new, add, rem)) 

This captures that  in the quiescent state the object offers its two methods, and that it returns 
to the quiescent state when execution of a method invocation finishes. As mentioned earlier 
the declaration of the class Q is encoded as a repticator: 

[ c l a s s  O[ ~ f  (new) (u add, rem) ! EC~( add, rem). Objq(new, add, rein) 

Here '! '  is the replication operator from [8] which may be eliminated in favour of an agent 
constant. We can think of !P as P ] P I P ] ' " '- Finally the encoding of a program is obtained 
by composing the representations of the class declarations with the agent corresponding to 
the root object, and restricting on all link names except those which correspond to the 
interface of the program. 
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4 P r i o r i t y  Q u e u e s  

In this section we describe the analysis of the priority queue classes 0 and Qr outlined in the 
Introduction. Due to the l imitation of space, very many details are omitted. Suppose prod 
is a program in which the definition of Q appears. Then as outlined in the preceding section 
its encoding [[prog~ is an abstraction of the form 

(...) (u ...) (Classes(...) I RootObject(. . .)) 

where Classes is the composition of the replicators which represent the class definitions and 
l~oot0bject is an agent representing the root object of the system. [prog~ is abstracted on 
the link names which correspond to the interface of the program; all other link names are 
restricted. Consider the context 

C[*] ~ ( . . . ) (anew,  . . .)(.(new)]OtherClasses(...)[RootObject(...)) 

derived by encoding the incomplete program obtained by omitting the definition of Q; the ' . '  
indicates where the abstraction [ c l a s s  Q] should be placed to recover [prog~. We assume 
that the name new on which the encoding of [ c l a s s  Q] is abstracted is not part of the 
program's interface and is thus restricted. Let prod ~ be obtained from prod by replacing the 
definition of O with that of Qt and each mention of Q by mention of Qr. The behavioural 
equivalence of prod and prod t may be expressed as follows: 

T h e o r e m  1 C[[c lass  Q~] ~ C[[c lass  O'~]. 

A sketch of the proof follows. If the root object is an instance of one of the priority queue 
classes then since the only class new instances of which may be created by the root object 
is the class of which it is an instance, the result follows easily. To prove the theorem in 
the more interesting case, two principal results are required. The first is an addition to the 
collection of useful properties of replicators presented in [8]. 

T h e o r e m  2 Suppose that R - - ! ( ~ y ) ~ ( y ) . P ,  R'  - ! ( , y ) ~ ( y ) . P '  and ( , x ) ( R  [ P)  
(~, x)(R ~ [ P~) where x occurs in P and pt  only in positive subject position. Then for any S 
in which x occurs only in positive subject position, (u x) (R[  S) ~ (~,x)(Rl[ S). 

Proof: Assume (u x)(R I P) ~ (~' x)(R' ] P') where R, P, R', P '  are as above. Set ELSE' if E - 

(~ ~ ) ( R  I s)  and E' - ( .  ~z~(R' I S') for some ~ and S ~ S' in both of which ~ occurs o~ly 
in positive subject position. We claim that /3  is a weak bisimulation up to strong bisimilarity 
,5. To prove this we first recall from [8] that (~,x)(R I P) ~ (~,x)(R I (~,x)(R ] P)) and 
similarly for R ~ where .~ is strong equivalence. Suppose EBE ~ where E and E ~ are as above 
and E _2.+ F.  Then either F =- (~, x~) (R  I T) where S --% T, or F =_ (u x=~/)(R I P I T) 

where S ~ T. In the first case S' ~ T' ~ T so E' ~ F' --- ( .  x~)(~'  I r') and ~6F' .  In 

the second case S'  ~(~ T '  ~ T so E' ::::v F' =- (~, x'5~])(R' I P' I T'). Now by the fact noted 
above, F ~ V = ( ,  ~ Y ) ( a  I (" ~)(~1 P) I T) and ~ '  ~ ~ '  - ( ,  z~Y)(a'  I (" x)(R'l P') I 
T') .  Moreover as (~,x)(R ] P) ~ (~,x)(R' ] P') and T ~ T', GBG'. Hence E '  ==~ F '  with 
F ,5  B ,:- F ~. So ~ is a weak bisimulation up to ,5 and hence if x occurs in S only in positive 
subject position, (u x)(R [ S) ~ (l.,x)(R' [ S). Now if cr is a substi tution in which x does 
not occur then repeating the above axgument replacing R, P, R ~, P~ by Ra, P(7, R~a, P'a we 

have that  if x occurs in T only in positive subject position, (~,x)(Ra I T) ~ (~,x)(R'(z I T). 
Hence if x occurs in S only in positive subject position then for any (7, ( (ux)(R [ S))a - 
(ux)(Ra'  [ Sa') ~ (ux)(R'a'  I Sa') - ( (ux)(R'  ] S))a for some a '  in which x does not 
occur. Hence (u x)(R I S) ~ (u x)(/ t '  [ S). [] 

The second result describes a close relationship between the agents encoding the classes. 



512 

T h e o r e m  3 We have 

(u new)([class Q~(new} I ObjQ(new .... )) ~ (u new)([class Q'](new) I ObjQ,(new, ...)). 

To prove Theorem 1, in Theorem 2 we take R - [ c l a s s  Q]{new), R' -= [ c l a s s  Q'](new) and 
S the context g[.] without the restriction on new so that  (unew)(RI  S) =- g[ [ e l a s s  Q~] 
and (v new)(R'l  S) = C[[c lass  Q'~]. The condition that new occur in ObjQ, ObjQ, and S 
only in positive subject position is met: it is straightforward to check from the full definition 
of the translation [.]. Furthermore, by Theorem 3 the other condition of Theorem 2 is met 
in this case. Hence an appeal to Theorem 2 gives the desired result, that C[[c lass  {?~] 
C[[cla-~s Q'~]. 

To prove Theorem 3 is less straightforward than it might appear at first glance. It is 
fairly easy to describe a relation containing the relevant pair of agents which one would 
expect to be a bisimnlation up to ~.  But to prove that it is so would require an argument 
taking account of the fact that  an indefinite number of new cell-agents may be created , 
and that  each time a new cell is added to the chain, new behaviour becomes possible. To 
overcome this difficulty we distil from an understanding of the abstract behaviour of the 
classes a system of equations in agent variables which by virtue of its form is known to have a 
unique solution up to ~.  We then derive abstract descriptions of the behaviour of the agents 
Objq and ObjQ, and use these to give inductive proofs that  the processes in Theorem 3 are 
corresponding members of two families which are solutions to this system. See [16] for the 
proofs and an account of the t reatment  of run-t ime errors, an issue which must be addressed 
in order for the above discussion to be fully accurate. This topic is addressed briefly in the 
case of the symbol tables at the beginning of the next section. 

5 Symbol  Tables  

In this section we outline the analysis of the relationship between the symbol table classes 
T and T' described in the Introduction. As explained there the correspondence between the 
classes is not a simple one. In particular there is no simple behavioural equivalence between 
the agents encoding them. Thus the analysis differs markedly from that for the priority 
queue classes. As mentioned at the end of the previous section we must= take account of 
the possibility of run-t ime errors. We do this by introducing an empty statement A and 
inserting an extra conditional at the head of each method body of class T: 

method Insert(X:NAT, W:A) 

if X=nil then A 

else if K=nil then ... 

method Search(X:NAT) 

if X=nil then A 

else if K=nil then ... 

For the Search method of dass T' the alteration is identical to that above while for the 
I n s e r t  method we have 

method Inser t (X:NAT,  W:A) 
r e t u r n  ; 
if X=nil then A 

else if K=nil then ... 
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The t reatment  of run-time errors in the priority queue example is similar. The reason for 
making these modifications to the class definitions is that  in their absence, due to the pos- 
sibility of a method being invoked with a parameter  having an undefined value, the precise 
relationship between the class definitions would be much less simple. When,  for instance, 
the I n s e r t  method of a T~-node is invoked, the caller is released from the rendezvous before 
the parameter is examined. In contrast,  if a T-node examines the parameter,  it does so 
before returning to the caller. Since, according to the semantics by translation, the process 
encoding a node may deadlock during examination of an undefined value - an agent of the 
form if(_L : P, Q) has no transitions - it is clear that  as a tree structure evolves, significantly 
different behaviour may be manifest in the two cases. A related issue is the t reatment  of 
searches for keys absent from a table. We assume that  the result of such a search is a nil 
reference and use the expression ~(nil) to represent the return on a link r of a tuple of names 
corresponding to a nil reference. 

We first obtain an abstract description of the behaviour generated by the sequential class 
T. To describe symbol tables we use the tree expressions given by 

t ::= ~ I tl<~ (k ,a)  t>tr 

Here ~ represents a tree consisting of a single node with key L,  and in the tree described by 
tl <~ (k, a) t> 4 ,  the root has key k and value a, if h is a key of the left subtree tz then h < k, 
and if h is a key of the right subtree tr then h > k. We write t'x for the value associated 
with key x in t (if it exists). 

To represent trees of nodes of the class T we introduce agents Tt as follows. Recalling 
that  Obj r  : (LINK[T],OBJECT[T]) where OBJECT[T] ---- METHOD[NAT, A;], METHOD[NAT;A] we have 
Tt : (LINK[T], OBJECT[T], (N, OBJECT[A]) h, N 1) if t represents a tree with l leaves and h internal 
nodes, where the linear order of the paxameters is related in some natural  way to the 
corresponding tree structure. Let E =- ObjT(new ,ins,srch) be the process representing 
an empty node of class T. Let also C ( k, a) = C ( new, ins, srch, k, a, insl, srchl, insr, srchr) 
be the representation of a node of class T storing an integer key k and with a : OBJECT[A] 
representing the reference stored in the variable V and (insl, srchl), resp. ( in ,r ,  8rchr), the 
reference stored in the variable L, resp. R. Then T~(:~, 1 )  = E where ~ = new, ins, srch, and 
for t = tt <~ (x,a)  t> 4 ,  

T, ~ f  (~x a ...)(~'q-')(Tt;(~l, ...) I C(x ,a )  l Tt~(Pr, ...)) 

where ~" = insl, srchl, insr, srchr, Pl = new, insl, srchl and Pr = new, insr, srchr. We define 
also tT~ : (N, OBJECT[hi, LINK[T], OBJECT[T], (N, OBJECT[A]) h, N I) as follows: 

T~ ~ f  (yb~. . . ) i f (y  = _L : T~(~,_L),Tto(~,y,b,_L,_t)) 

where to = r <1 (y,b) t> r and for t = tl <1 (x ,a)  t> tr, 

tT ~ def (yb~. . . )  cond( y = _L : Tt(~,x ,a , . . . ) ,  
y = x : Tt ,(~,x,b, . . . ) ,  
y < = : (vq-)(T;T,, (y, b , ~ ,  ...) I C(x ,a )  lTt ,(~r, . . . )) ,  
else : (~q-)(Tt,(:~t,...)l C(x ,a )  lT~(y ,b ,Pr , . . . ) ) )  

where t ~ = tl <1 (x, b) t> t ,  and cond abbreviates a nested conditional. Finally define 

= (L, n e w ) ( E l i c l a s s  Ti<new)) 

and define C(k, a), Tt and -tT/~ similarly as restricted compositions. Then omitt ing some 
parameters to improve readability we have the following. 
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T h e o r e m  4 For a~ly t, Tt(...) ~ ins(y, b, r). F. T ~ ( y ,  b, ...) + srch(z, r). ~(~x). Tt(.-.>. 

This result is proved by finding abstract descriptions of E and C and then establishing, using 
an inductive argument, that the family {Tt, T~"}t satisfies the system of equations implicit 
in the theorem. Note that Te(ig,_k) = (u new)(ObjT(p ~ ] [ c l a s s  T~(new)) so the theorem 
gives a convenient description of the behaviour of a newly-created object of class T (in 
restricted correspondence with a private copy of the replicator representing the class). We 
now wish to give a corresponding abstract description of the behaviour of (u new)(ObjT,(p-" ) ] 
lclass Tq<~e~)). 

To describe the behaviour of a tree of T'-nodes we consider augmented tree expressions 
(t, a) where t is a tree expression and a a function which assigns to each node n of the tree 
described by t a status a(n). If n is a leaf then a(n) may be f or of the form (i~, m, b, r) or 
the form (s, m, r). The first indicates that the node in inactive ('free'), the second that the 
I n s e r t  method with parameters (m, b) and return link r has been invoked but  has not yet 
returned, and the third that the Search method has been invoked with parameter m and 
return link r but that  the search has not yet been returned or committed. If n is an internal 
node with key k then a(n) may additionally be of the form (i, m, b) where m r •  k. This 
indicates that the I n s e r t  method with parameters (m,b)  has been invoked and returned 
but  not yet passed on to the appropriate child node. 

The abstract description of the behaviour of trees of T~-nodes is obtained by focussing on 
augmented tree expressions (t, or) in which each method invocation has progressed as far as 
it can through the tree structure, subject to the constraints imposed by other outstanding 
invocations. To do this we use the function fall on augmented tree expressions which is 
such that  fall(t, a) describes a tree in which the method invocation outstanding at the root 
node, if there is one, is propagated as far through the tree structure as possible without any 
other method invocation making further progress. 

For n a node of the tree described by an augmented tree expression ( t , a )  we let 
fall(t, a, n) be the augmented tree expression describing the tree obtained by replacing the 
subtree ( t , ,  a~) rooted at n by fall(t~, a~). Now suppose n is a node of the tree described 
by ( t ,a)  and let n = n l , . . . , %  = root(t) be the nodes on the path from n to the root of t .  
Define (tl ,  a l )  = fall(t, a, nl) and for 2 < i < p, (ti, ai) = falI(ti_l, Cri-1, ni). Then define 
cascade(t, a, n) = (tp, up). The function cascade is useful in describing the overall progress 
of method invocations when a search is returned by a node. We then say that (t, a) is settled 
if for each node n of t, cascade(t, a, n) = (t, a). In giving the abstract description we stay 
within the domMn of settled expressions. We say also that  a node n of t is ready (to return 
a search) if for some m and r, a(n) = (s, m, r) and n has key m or key .J_. Finally we say 
(t, a) is blocked if a(root(t)) 7 ~ f .  

We can now define the agents which provide an abstract description of the behaviour of 

trees of T'-nodes. Suppose (t, a)  is settled. If ( t , a )  is blocked we set Ut,~, aef UR while if --'~ t,O" 

(t, a) is not blocked we set 

Ut o" d e f  uR , = t,~, + ins(y, b, r). Ut,,a, + srch(x, r). Ut,,,~,, 

where (t', or') = (t, a[(i,, y, b, r)/root(t)]) and (t", a") = fall(t, a[(s, x, r)/root(t)]), and where 

U R ~ f  ~{g(a). Ut,,a, I for some ready node n of t, t(n) = <k, a) and a(n) = (s, k, r), 
1~,0" - -  

and (t', a ' )  = cascade(t, a[f/n],  n)} 

+ ~{g(nil). Ut,,~, ] for some leaf n of t, a (n )  = (s, k, r) and 
(t', a') = cascade(t, a[f  /n], n)} 
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The last summand is present only if the root node has status ( i~ ,m,b,r) ,  so that ( t ,a)  is 
blocked, and in it (t ~, cd) is the appropriate expression representing the fall of the insertion 
as far as possible through the tree. 

The agent Ut,R~ describes the possible returns of method invocations from the tree of 
T'-nodes described by (t,(r). The first summand describes the returns of searches for keys 
present in the table, the second the return of searches for keys absent from the table, and 
the third the return from the root node of an Inserl ;  method. That this family of agents 
describes the behaviour of trees of TLnodes is the substance of the following theorem. 

T h e o r e m  5 Setting (t0, ~o) = (~, [Ylroot]) we have 

(~, new)( ObjT,(new , ins, srch) I [c lass  T'~(new) ) ~ U~o,ao. 

The proof is again by induction and involves finding abstract descriptions of the be- 
haviour of agents encoding nodes. Using these abstract descriptions of the behaviour of 
(u new)(ObjT(... ) ] [c lass  T~(new)) and (u new)(ObjT,(... ) ] [c lass  T'](new)), we may 
now describe the relationship between the classes sketched in the Introduction. Let ~ = 
#1 , . . . ,#p  be any sequence of method invocations in which none of the parameters is J_ 
and which is such that if #i is Search(k) then for some j < i, #j is Inser t (k ,  a) for some 
reference a. (It is not essential to make these restrictions but doing so allows us to concen- 
trate on the main case). Associated with ~ are a sequence ~ -= a l  . . . .  , ~2p of actions and a 
sequence t '=  to , . . . ,  tp of tree expressions, where to = r if #i is Inse r t (k ,  a) then for some 
r, a2i-1 = ins(k ,a ,r )  where a corresponds to a, a2i = 7, and ~ = i~'-l[a/k], and if #i is 
Search(k) then for some r, a2i-1 = srch(l~,r), a2i = Y(t-~--lk) and tl = ti-1. 

By Theorem 4, (u new)(ObjT<.. . ) l[class T](new>) ~ 2>,p(...)is the unique compu- 
tation of the T-node (with private replicator) determined by ~. Theorem 5 describes the 
possible computations of the T'-node (with private replicator) determined by ~. They are 
labelled by the permutations of the sequence ~ allowed by the evolving tree structure. Note 
that in the encoding of a program in which T' occurs, whenever an object-agent invokes a 
search in a T'-table it creates a private link for the return of the result and suspends its 
activity until a result is returned to it. This private name is handled (in the precise sense of 
[8]) by only one T'-node agent at any one time. Moreover the restriction operator ensures 
that the return links associated with distinct searches are not confused and that the result 
of a search is returned to the appropriate invoking object. 

6 C o n c l u s i o n  

The process calculus apparatus employed to analyse the examples has been limited to purely 
equational reasoning. This approach is certainly appropriate for establishing the equivalence 
of the encodings of the priority queue classes and there are no doubt other instances of 
equivalence-preserving transformations whose soundness could be established by analogous 
reasoning. In the symbol tables example the equational techniques are useful in giving 
abstract descriptions of the behaviour generated by the two classes. From these the precise, 
intricate relationship between the classes may be seen more dearly. Remaining within the 
process calculus framework, one might also investigate the modal and temporal properties 
of the agents encoding the classes, and examine whether the use of a higher-order calculus 
would ease the analysis. It would also be of interest to examine alternative approaches to 
the question of the soundness of the kind of program transformations considered here. For 
instance, can the metric-space semantics of [2] be used to tackle this kind of question? And 
can the Hoare-style proof system for partial correctness of POOL programs presented in [4], 
or extensions of it, be used fruitfully is studying such problems? This paper has addressed 
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the issue of the soundness of program transformations through two concrete examples. It 
is hoped that it may contribute to the development of techniques for proving soundness of 
general transformation rules for parallel object-oriented programs. 
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