
Foundational Issues in Implementing
Constraint Logic Programming Systems

J a m e s H. A n d r e w s

Dep t . of C o m p u t i n g Science

S i m o n Fraser Un i ve r s i t y

B u r n a b y , BC, C a n a d a V5A 1S6

j a m i e Q c s , s f u . c a

A b s t r a c t : Implementations of Constraint Logic Programming (CLP) sys-
tems are often incomplete with respect to the theories they are intended
to implement. This paper studies two issues that arise in dealing with
these incomplete implementations. First, the notion of incomplete "satis-
fiability function" (the analogue of unification) is formally defined, and the
question of which such functions are reasonable is studied. Second, tech-
niques are given for formally (proof-theoretically) specifying an intended
CLP theory or a characterizing an existing CLP system, for the purpose of
proving soundness and completeness results. Notions from linear logic and
the notion of Henkinness of the theory are shown to be important here.

1 Introduction
The semantics of Constraint Logic Programming (CLP) languages is now well-
understood. Implementations of CLP languages, however, are often not complete
with respect to their intended semantics. In this paper, I study the theory of
such incomplete implementations, by giving a recnrsion-theoretic, rather than
model-theoretic, basis for CLP operational semantics. Based on this work, I
then study techniques for specifying the intended theory of a CLP language, or
giving characterizations of the actual theory implemented by a CLP language.

A simple example shows that some CLP implementations are necessarily in-
complete. Consider a first order language, structure and theory in which the
terms encode lambda-expressions, and in which equality = holds between two
terms iff they are/?y-equivalent. The theory can be made satisfaction-complete,
and the structure is solution-compact. The CLP scheme [JL87] defines a the-
oretical operational semantics for this theory such that a ground query s = t
fails iff s and t are not /~-equivalent. However, in practice we have no com-
plete algorithm for testing whether two lambda-terms are/~-equivatent; so the
operational semantics cannot be implemented completely, not even by using the
standard breadth-first technique of complete Herbrand-domain logic program-
ming interpreters.

Furthermore, many implementations of CLP languages are incomplete for
efficiency reasons; for instance, CLP(R) [JMSY92] implements an efficient but
incomplete linear equation solver rather than Tarski's complex algorithm for
deciding real arithmetic.

For these kinds of situations, we need to develop a theoretical framework,
incorporating notions of computability, in which we can study issues of how

75

complete a CLP implementation is. This framework can then be used as a basis
for comparing a CLP implementation with its intended theory, or specifying the
smaller theory that an incomplete implementation actually implements. This
paper is intended to make steps in the direction of such a framework.

In section 2, I present some basic definitions. In section 3, I construct CLP
operational semantics based on a class of recursive functions called "satisfiabil-
ity functions", which formalize the basic step in CLP languages (the analogue
of unification). I also define what it means for a structure to "realize" a satis-
fiability function, and give a necessary and sufficient, non-logical condition for
such a function to be realizable. In section 4, I study various techniques for
characterizing CLP theories with proof systems, and show how they could be
used to prove the soundness and completeness of implementations. In section 5,
I present some conclusions and discuss related work.

2 Basic Definit ions

Defini t ion 2.1 A first order language f~ is a tuple (F, P, V), where F is a re-
cursive set of function symbols, each with an associated arity, P is a recursive
set of predicate names, each with an associated arity, and V is a recursive set of
variable names.

Let C be a set of predicate names of s C C P(/ :) . Constrs(/:, C) is the set
of all predicate application formulae from/~ formed using a predicate name from
C. We also call these predicate application formulae "constraints".

We define the terms and formulae o f / : in the standard logical way; likewise
the notions of structure, valuation, satisfiability w.r.t, a structure, model, and
theory.

3 Satisf iabil ity Functions

The basic step in constraint logic programming interpreters (even incomplete
ones) is the step which decides whether a new constraint is consistent with the
previously-processed constraints. Every CLP interpreter has an algorithm for
doing this for its intended theory; if the algorithm returns "true", the interpreter
goes further down the same branch in the search tree, and if it returns "false",
the interpreter backtracks 1 . This section studies the theory of such "satisfiability
functions", which will be defined as partial recursive functions from finite sets of
constraints to results including "true" and "false".

In the first subsection, I define the notion of satisfiability function, and show
how an operational semantics can be built on the basis of that notion (rather
than the notion of constraint theory) in order to ensure computability. In the

1This does not necessarily describe completely the operation of all languages referred to as
constraint logic programming languages. (For instance, it does not take into account disjunc-
tive constraints.) However, it describes one common framework for CLP operational semantics,
and is also the one defined in the standard hteratttre on CLP, e.g. [Mah93].

76

second subsection, I point out that not all satisfiability functions correspond to
actual constraint theories which "realize" them, and thus that the operational
semantics arising from them do not define rational logic programming systems.
I give, however, a condition on satisfiability functions which is necessary and
sufficient for realizability. In the final subsection, I point out that for a given
constraint theory, there are either either 0 or 1 maximal satisfiability functions
which are realized by it.

3 . 1 S a t i s f i a b i l i t y F u n c t i o n s a n d O p e r a t i o n a l S e m a n t i c s

D e f i n i t i o n 3.1 A satisflability function (in a language s with constraint pred-
icates C) is a general recursive function from finite sets of constraints in
Constrs(~, C) to a set T _D {true, false}.

This definition of satisfiability function is general enough to capture the be-
haviour of a wide variety of complete and incomplete implementations. We
always interpret a resu l t of false as "unsatisfiable" and true as "satisfiable";
but other results, or no result, is also possible. To capture the very well-behaved
satisfiability functions, we make the following definition:

D e f i n i t i o n 3.2 A strict satisfiability function is one which is never undefined
and always returns true or false.

The satisfiability function associated with basic Prolog, for instance, is strict.
Here is a non-strict example.

E x a m p l e . The basic behaviour of the CLP(R) system [JMSY92] on real-
number constraints can be characterized with the following (non-strict) satis-
fiability function sat.

�9 If S contains a subset T consisting of unsatisfiable, linear constraints,
sat(S) returns false.

�9 Otherwise, if S contains no non-linear constraints, sat(S) returns true.

�9 Otherwise (i.e. S contains non-linear constraints but its linear constraints
are satisfiable), sat(S) returns unsure.

[]
In basing an operational semantics on a satisfiability function sat, we may

want to give a definition that takes into account the various t ruth values which
can act as results of sat. We must make the following minimum requirements,
following Maher [Mah93].

D e f i n i t i o n 3.3 Given a satisfiability function sat on (s C) whose range is the
t ruth values in 7 , a binary relation ~ is an operational transition relation for
sat with program P if:

77

1. It is a relation between states, which are either t ruth values from T or
pairs (G, C), where G is a multiset of non-constraint atoms and C is a
multiset of constraints;

2. The relation includes the transition

(G u HO, C) --~ (G u BO, C u C'O)

if the program P contains (some renaming of) the clause (H ~-- C', B),
and sat(C O C'O) ~_ true; and

3. The relation includes the transition

(G U H, C) --~ false

if for every (renamed) clause in P of the form (H' ~-- C', B) and substitu-
tion 0 such that H'O is H, we have that sat(C U C'O) ~_ false.

We say that a goal G succeeds if (G, O) --~* (O, C) and sat(C) ~_ true; we define
fair derivations in the usual way and say that G fails if every fair derivation ends
in the state false. Note that if sat is strict, then the above definition will yield
a unique transition relation, similar to that defined by Maher [Mah93].

E x a m p l e . Based on the definition of sat for CLP(R) above, we can char-
acterize an operational semantics for (an idealized version of a part of) CLP(R)
as follows. The transition relation is the unique transition relation for (sat, P)
having the additional property that:

�9 We have the transition

[]

<G u He, C) (G u Be, C u C'O>

if the program P contains (some renaming of) the clause H +- C', B, and
sat(C U C10) ~_ unsure.

In this operational semantics, even if we are unsure of the satisfiability of the
resulting set of constraints (if the system of equations is not linear), we go on
as if it were satisfiable. We may wish to say that a goal G is indeterminate if it
does not fail, but every fair derivation ends in either false or unsure.

3.2 Real izable Satisfiabil ity Functions

We would like our operational semantics to define sensible logic programming
systems, and to achieve that we have to put a condition on the satisfiability
functions we use. The condition is "realizability", and is best defined model-
theoretically. In this subsection, we study realizability and give an equivalent
condition, "reliability", which is stated in terms independent of model theory.

D e f i n i t i o n 3.4 An s ~ realizes a satisfiability function sat if:

78

1. whenever sat(S) ~ true, S is ~-satisfiable; and

2. whenever sat(S) ~_ false, S is not ~-satisfiable.

If ~ realizes sat, we also say that sat implements ~.

Not every satisfiability function is realizable, not even the strict ones. For
instance, if we have a satisfiability function which maps {p(z)} onto false but
{p(x), q(x)} onto true, then this will not have any realizing structure, because
any valuation satisfying {p(z), q(z)} will surely satisfy {p(x)}. An operational
semantics based on such a satisfiability function would give unexpected results.

The realizability of sat can be given an equivalent characterization in terms
of the theory associated with sat.

D e f i n i t i o n 3.5 Osa+, the theory associated with sat, is defined as

{3[S] I sat(S) _-_ t rue} U {~3[+q I sat(S) ~ false}

where 3[S] is the existential closure of the conjunction of the constraints in S.

We have the following simple proposition:

P r o p o s i t i o n 3.6 sat is realizable iff @sat is consistent.

However, for the purposes of checking a given implementation of a satisfiabil-
ity function, it would be bet ter to have a more direct method of testing whether
it is realizable. The condition called "reliability" allows us to do this. First,
some technical definitions.

D e f i n i t i o n 3.7 Let S be a set of constraints and let c E S. The variable sharing
class Sic is the smallest subset of S such that:

�9 c E Sic;

�9 if b E Sic, and a E S shares a free variable with b, then a E Sic.

D e f i n i t i o n 3.8 Let sat be a satisfiability function. A set of constraints S is
sat-covered if for all c E S, there is a set T _~ Sic such that sat(T) ~_ true. A set
of constraints S is sat-consistent if there is some substitution 0 such that S0 is

sat-covered.

Basically, a set S is sat-consistent if, for some 0, every element of this parti-
tion of SO is satisfiable in any structure realizing sat.

D e f i n i t i o n 3.9 A satisfiability function sat is reliable if whenever sat(S) ~_
false, S is not sat-consistent.

For non-reliable satisfiability functions, some sets S are considered unsatisfi-
able despite the fact that some instance of S can be parti t ioned into sets which
are generalizations of sets considered satisfiable. This is a situation which does
not meet with our intuitions, and indeed the next theorem proves that reliability
is a necessary condition for realizability.

79

T h e o r e m 3.10 If a satisfiability function sat is realizable, then it is reliable.

P r o o f (sketch). Assume (toward a contradiction) that sat is realized by some
but not reliable. There must be an S and 0 such that sat(S) ~_ false but SO is

sat-covered. Each variable sharing class T / in SO results in a satisfying valuation
vi; but the union of these vi's is a valuation satisfying SO, contradicting the
assumption that ~ realizes sat.
[]

So reliability is necessary for realizability. It is also sufficient, as we will see
next.

T h e o r e m 3.11 If a satisfiability function sat is reliable, then it is realizable.

P r o o f (sketch). By Proposition 3.6, it is sufficient to prove that if sat is
reliable, | is consistent. By compactness, it is therefore sufficient to prove
that every finite subset of O~at is consistent.

Let S be a finite subset of O~t , where

S = {3[$1] , . . . , 3[Sj]] U {-~3[T1],..., =3[Tk]}

Let ~ be the minimal structure which contains a unique element for every free
variable in all the Si 's, and in which each S{ is satisfiable by a valuation mapping
variables to these elements. Clearly this structure is a model of the positive
formulae in S; we have only to prove that it is a model of the negated formulae
too.

Assume, toward a contradiction, that 2~ is satisfied by some valuation v in
~. There is some O and v' such that v = 8v', v' maps free variables directly
to domain elements, and T/0 is satisfied by v'. But by the construction and
minimality of ~, this means that T/Q can be partit ioned into sets which are
free-variable variants of subsets of the S{'s. T/ is therefore sat-consistent; but
we know that sat(T{) ~_ false, thus contradicting the assumption that sat was
reliable.
[]

The upshot of this is that if we base operational semantics on satisfiabil-
ity functions, they are by definition computable; but we are still able to give
assurances that they define sensible systems, by proving that the satisfiability
function is reliable.

3.3 Maximality Results

Finally, some words about maximality. Given a particular constraint theory,
what is the "biggest" satisfiability function which implements it? It turns out
that either a theory has a complete, strict satisfiability function, or else there is
no maximal satisfiability function which implements it.

We can defne maximali ty by comparing the completeness of two satisfiability
functions with respect to a structure.

80

Defini t ion 3.12 Let sat1 and sat2 both implement ~. We say sat1 E_~ satu,
in words "sat1 is a better approximation to ~ than sat2", if:
1. Whenever sa t l (S) ~_ true we have that sat2(S) ~- true; and
2. Whenever saQ(S) ~_ fa lse we have that sat2(S) ~- false.

A satisfiability function sat is a maximal approximation to ~ if there is no
satisfiability function sat ~ such that sat I ~ sat and sat E_~r sat ~.

T h e o r e m 3.13 A structure ~ has either 0 or 1 maximal approximations.

P r o o f . If the set S ~ of satisfiable finite sets of constraints of ~ is recursive,
then clearly there is a unique, strict, maximal approximation to ~. Otherwise,
for any sat which implements ~, we can build a better approximation sat ~ by
allowing more sets to return true or false.
[]

Thus for the example structure given in the Introduction (/?y-equivalence of
lambda expressions), there is no maximal implementation. Whenever we have a
satisfiability function (and thus a constraint logic programming system) which
implements this structure, we can always do better.

4 Specification and Characterization with
Proof Systems

We have seen that incomplete implementations of CLP languages are sometimes
desirable or even necessary. We have also seen that such incomplete implemen-
tations can be given a coherent theoretical basis. But in order to make practical
use of incomplete implementations, we need to be able to compare them directly
with descriptions of theories.

To do so, we really need formal (syntactic) descriptions of the theories to
be compared to; the kinds of informal descriptions found in the li terature are
sometimes too imprecise to be used in formal proofs, and this imprecision is
multiplied when we have several groups of interacting constraints (Herbrand,
rational tree, integer, real, etc.). There are at least two other practical reasons
for developing formal descriptions of CLP languages:

�9 With increasing prominence of constraint systems, it will become neces-
sary to develop some standard formalism for describing constraint theories,
much as BNF was developed to describe programming language syntax.

�9 Syntactic, or more specifically logical, characterizations of constraint theo-
ries will be absolutely necessary to any program-logic system which intends
to prove properties of constraint logic programs.

One possible framework for such formal descriptions is proof theory, which
has been used to good advantage in the past to describe basic logic programming
[HS84, HSH90, MNPS91]. The use of proof theory as a general framework for
characterizing CLP, which has not to my knowledge been studied before, is the
topic of this section.

8]

There are two ways in which proof-theoretic characterizations could be used:
(a) to specify an intended theory; and
(b) to characterize an existing implementation.
Examples of (a) would include giving an axiomatization of Horn clauses with
Presburger arithmetic, to which we could then compare individual CLP imple-
mentations. Examples of (b) would include giving a proof-theoretic characteri-
zation of the CLP(R) implementation [JMSY92], to see how it looks compared
to an axiomatization of real arithmetic.

In this section, l will first discuss some techniques we could use to give proof-
theoretic descriptions of CLP theories. One of the major issues that will emerge
is the question of whether or not the theory is "Henkin" (has a closed "witness"
term for every existential truth). I will then give examples of how such descrip-
tions could be used in proving soundness and completeness of implementations,
and in characterizing existing CLP implementations. It will turn out that ideas
from linear logic [Gir87] will be relevant to this last point.

4.1 Description Techniques

Here I give two distinct techniques that we might use to describe constraint
theories. The first technique is fairly simple but applicable only to Henkin
theories; the second is more complex but applicable to both Henkin and non-
Henkin theories.

4.1.1 Closed Cons t r a in t Technique

In this technique, we characterize the entire theory by characterizing the truth
or falsehood of closed (ground) constraints. We then rely on proof rules for
existential quantification to handle free variables. I will give two examples, then
discuss the technique in general.

Example: H e r b r a n d universe logic p rog ramming . Proof-theoretic char-
acterizations of basic logic programming have been studied for years. Consider
the following example, similar to the system of Miller et al. [MNPS91]. The
syntax of goals (G) and definitions (D) is as follows.

c = I I GS G I G v C I

D ::-- VxD I P (Xl , - - ' , ;~n) +"- G

Sequents are of the form
D1 , Dm ~- G

and are intended to express "the goal G follows from the definitions D1, . . . , Din."
Sequents can be given formal derivations by using the proof rules in Figure 1.

The rules of the proof system both act as a formal and unambiguous descrip-
tion of truth, and give us some intuitive sense of the meaning of the connectives
(GI&G2 follows from F if both G] and G2 follow from F, and so on). We

82

FI -G1 F ~ G2 FI -G1 FF-G2

F t- G I ~ G 2 F F- G1 V G2 F F- G1 V G2

r ~- G[x := t]

r ~- 3 x (G) r ~- t = t

D , D , F F - G D [x : = t] , F F - G F ~ G

D,F~-G VxD, F t - G (p (t l , . . . , t , O ~ - - G) , F t - p (t l , . . . , t , O

Figure 1: A proof-theoretic characterization of a basic logic programming lan-
guage. F is any sequence of definitions.

F ~ a = b F F a = b F F b = c F ~ a = b

F t- b = a F t- a = c F I-- s(a) = s(b)

r ~ a + 0 = a F F- a + s(b) = s(a + b)

Figure 2: Additional rules for a proof-theoretic characterization of a Presburger
arithmetic constraint logic programming language.

can prove the soundness and completeness of an SLD-resolution operational se-
mantics with respect to this proof system by two relatively simple structural
inductions (e.g. [And89]).
[]

Note that we had only to characterize the behaviour of equality formulae,
and that we did so by saying that two terms are equal if they are identical. (We
must make the assumption that there is at least one closed term in the language,
but this is reasonable.)

E x a m p l e : P r e s b u r g e r a r i t h m e t i c . Consider the standard language and
theory of Presburger arithmetic (i.e., integers constructed from 0 and the suc-
cessor function s(_), with the arithmetic operation + and the relation =). A
characterizing proof system can be constructed taking the one for Herbrand
logic programming, and adding some more rules to make it a complete proof
system for Presburger arithmetic sequents of the form D1, . �9 Dm t- G (see for
example [Kle52]). Such additional rules are shown in Figure 2.
[]

This specifying proof system does not tell us how to solve such constraints
or how to construct our implementation; it merely gives a formal and intuitive
description of what kinds of constraints we want to solve. It thus acts as a
specification of a CLP language for solving Presburger arithmetic constraints.
Any implementation, however, would presumably use Presburger's algorithm
[Mon76] or some variant of it.

A, F ~- G B[x := y], F ~- G

83

B , C , F ~ G x = t, r ~- G[z := t]

F ~- G 3xB, F F- G B&C, F ~- G x = t, F F- G[z := x]

Figure 3: Additional rules for a proof-theoretic characterization of a rational-
trees CLP language. A is a WRTA, and y is a new variable.

Again, we had only to give additional rules for the behaviour of closed arith-
metic formulae; essentially, we have expanded the meaning of = from identity
between closed terms (the t = t axiom) to ar i thmetic equality of closed terms
(the t = t axiom plus the new rules and axioms).

For theories like the ones given, the task of coming up with a proof-theoretic
specification can be reduced to coming up with a proof-theoretic specification
of the valid closed constraints. The essential proper ty here is that the intended
theory is Henkin [Sho67]; that is, whenever 3zB is true, there is a closed te rm t
such that B[x := t] is true 2.

Unfortunately, however, not all interesting constraint theories are Henkin. A
simple example is the theory of rational trees: we have that 3x(x = f (x)) is
true, but there is no closed t such that t = f (t) . Another impor tan t example
is the theory of real ari thmetic, in which we have no closed term t such that
t • t = 2. For these theories, we have to use other methods.

4 .1 .2 A x i o m a t i c T e c h n i q u e

Another technique for specification is to provide axioms which can be added
to the left-hand side of a sequent in order to obtain proofs of solvable queries.
Unlike the closed-constraint approach, this technique is universal.

E x a m p l e : R a t i o n a l t r e e s . Van Emden and Lloyd [vEL84] and Maher
[Mah88] have given Hilbert-style logical descriptions of the theory of rational
trees, with varying soundness and completeness properties. The logical conse-
quences of these theories include all formulae of the form

3xl . . .3Xn((Xl = Q)&:...&:(x,~ = tn))

where the xi 's are distinct and the t~'s are terms whose variables are among the
xi's. Let us call these the weak rational tree axioms (WRTAs).

Using WRTAs, we can build a sequent-calculus characterization of a rational-
trees CLP language. It consists of the rules in Figure 1 with the addition of the
rules in Figure 3. An example derivation of 3x(x = f (f (x)) can be found in
Figure 4.
[]

2A more precise and traditional definition of Henkin theories is those theories T for which,
for every sentence 3xA of the language, there is a constant e in the language such that T
(3~A) ~ (AEx := e]).

84

y = f (y) ~ f (f (~)) = f (f (y))
y = f (y) e f (y) = f (f (y))

y = f (y) }- y = f (f (y))
y = f (y) [- 3x (x = f (f (x)))

3x(x ---- f(x)) }- 3x(x = f(f(x)))
I-- 3 x (x = f(f(x)))

Figure 4: Example derivation of 3x(x = f (f (x)) in the theory of rational trees.

Given any satisfiability function sat, we can develop a proof-theoretic char-
acterization i- such that F t- G if G succeeds with respect to F; we can do this
by giving rules which allow us to add any element of Osa t to the left-hand side.
This t- does not necessarily have the converse property - that if F F- G then G
succeeds with respect to F - but as we will see later, we can achieve such results
with the use of techniques from linear logic.

4 . 2 P r o v i n g P r o p e r t i e s o f I m p l e m e n t a t i o n s

We are now in a position to tie together the theory of satisfiability functions with
the techniques for description of CLP theories. Say we are given a satisfiability
function sat on (s C) and a transition relation -+ for sat. We are also given
a proof system intended to describe the intended theory in a logical form. The
kinds of results we would want to prove are:

�9 Soundness of success: i f (G, 0) - - : (0, C) w.r.t, program P, where sat(C) ~_
true, then P F- G.

�9 Soundness of failure: if (G, O) ---+* w.r.t, program P, then P ~ G.

�9 Completeness of success: if P F- G, then (G, 0) ---** (0, C) w.r.t. P , where
sat(C) ~_ true.

�9 Completeness of failure: if P ~/G, then (G, O) --** false.

Clearly, if sat is strict and we can prove soundness and completeness of success,
or soundness of success and failure, then we can prove the rest of the results.

I will just note here that the soundness and completeness of Prolog II with
respect to the proof system given in the last subsection can be proven by tech-
niques similar to those given in [Co183, Mah88, And89]. I will go into more detail
about the CLP(R) example from Section 3.1.

E x a m p l e : a c h a r a c t e r i z a t i o n o f C L P (R) . Consider the satisfiability func-
tion sat and transition relation ~ we defined for CLP(R) in Section 3.1. We
can define a characterizing proof system for this operational semantics using the
axiomatic technique and some ideas from linear logic [Gir87].

85

F1, ! r F- G1 F2, ! r F G2

F l ,F2 , !F b GI&G2

!D,D, FF G
!D, F P G

3 [c l & - - . & c ~] , F F G

F b G

FFG1
F F GI V G2

r ~- G[z := t]
r F 3~(O)

D[z := t], r F G
VxD, F b G

B[x := y] , r ~- G
3xB, F F G

PFG2
F P G1 V G2

c, !F F c

P F G
(p(t~,. . . ,t~) ~-- G), r e p(t~ , . . . ,t,~)

B , C , F ~ - G
B&C, F ~- G

Figure 5: A proof-theoretic characterization of CLP(R). F is any sequence of
formulae, !F is a sequence of formulae preceded by !, y is a new variable, and
c l , . . . , ck are constraints such that sat({e l , . . . , ck}) -~ true.

The proof system is given in Figure 5.
system are as follows.

The important ideas in this proof

�9 As in the axiomatic characterization of rational trees, we allow axioms
about satisfiable systems of equations to be introduced and manipulated
in the antecedent (left-hand side) of a sequent.

�9 In the antecedent, we precede each rule from the program with the linear
logic ! operator. This is an operator which allows for duplication of as-
sumptions; for formulae in the antecedent not preceded by !, we do not
allow duplication. (The antecedent is viewed as a multiset.)

�9 We require that at the top of the proof be axiomatic sequents of the form
c, !F F c, where !P is a sequence of formulae all of which are preceded by !.

�9 We require that the sequence of formulae not preceded by ! be split across
the two premisses of the rule introducing & on the right.

All this has the effect of forcing each assumption arising from the sat rule to be
used once and only once in the course of a proof.
[]

An example proof is given in Figure 6. Note that the proof would not have
gone through if the query had been simply 3x, y(x �9 y = 4), because we would
have had the extra formula y' = 2 to contend with. Conversely, if we had allowed
axioms to be simply of the form (c, r F c), we would have been able to prove
3z, y(x .y = 4), even though that is not a linear equation and thus not solvable in
the operational semantics. As it is, with respect to this proof system, we should
be able to prove that the operational semantics has the properties of soundness
and completeness of success and soundness of failure. Because sat is not strict
in this case, however, we cannot prove completeness of failure.

This characterizing proof system is somewhat unwieldy due to the fact that
the real-number axioms introduced in the antecedent may be huge. It may be

88

u, = 2, !Vz(p(z) ~ - z = 2) ~ u' = 2)
y, = 2, !Vz(p(z) ~- ~ = 2), (p(v,) ~- y, = 2) ~ ; (y ,)

y, = 2, !Vz(p(z) ~ - z = 2), V z (p (z) ~ - z = 2) ~ p (y ,)

x , . y, = 4 ~ x , . y, = 4 ~' = 2, !Vz(p(z) ~ - z = 2) ~ p (y ')

x ' . y' = 4, y ' = 2, !Vz(p(z) ~ z = 2) ~- x' . y' = 4&p(y')
x , . y, = 4, y, = 2, !yz(p(z) ~ z = 2) ~- 3y(x, . y = 4 & p (y))

x , . y, = 4, y, = 2, !yz(p(z) ~ z = 2) F- 3x, y (x .y = 4&p(y))
(x,.. y, = 4&y, = 2), !Vz(p(z) ~ z = 2) ~- 3x, y (x . y = 4 & p (y))

q y ' (x ' , y ' = 4 & y ' = 2), !Vz(p(z) *--- z = 2) F 3 x , y (x . y = 4&:p(y))

3x', y'(x', y' = 4&y' = 2), !Yz(p(z) ~- z = 2) ~- 3x, y (x . y = 4 & p (y))

!Vz(p(z) ~ - z = 2) ~ 3x, y(~ . ~ = 4~; (~))

Figure 6: An example proof in the characterizing proof system for CLP(R).

possible to simplify the axioms, but even as it stands the proof system can be
used for proving properties of CLP(R) programs.

The linear logic technique may be useful for characterizing other incomplete
CLP-like languages. Some implementations of finite-domain constraint solvers
are incomplete for efficiency reasons [Mac85]; and many implementations of Pro-
log use unification without occurs check, which is sound with respect to the
rational-tree axioms but which sometimes goes into an infinite loop.

5 C o n c l u s i o n s a n d R e l a t e d W o r k

I have shown that the class of satisfiability functions adequately characterizes the
behaviour of a wide variety of implementations of CLP languages, and that there
is a simple, non-model-theoretic condition ("reliability") for testing whether a
satisfiability function is reasonable.

I have also discussed techniques for specifying and characterizing CLP sys-
tems with sequent calculi. I have pointed out that the question of whether the
theory is Henkin is important, and that the notation and proof theory of linear
logic (or other such "substructural" logics) can help in characterization.

The definition of a reliable satisfiability function is closely related to Scott's
definition of an information system [Sco82]. However, neither the space of sat-
isfiability functions, nor the space of information systems (under a reasonable
mapping from one notion to the other), are proper subsets of the other.

H5hfeld and Smolka [HS88] and Friihwirth [Frii92] have both explored the
idea of formally describing constraint theories. H5hfeld and Smolka describe an
alternative framework to Jaffar and Lassez's for constraint systems; like Jaffar
and Lassez, however, they do not consider explicitly any computability restric-
tions on constraint satisfaction algorithms. Friihwirth gives a Horn-clause-based
language for defining constraint simplification rules, or SiRs, for any given do-
main. However, while SiRs have a logical form, they do not necessarily take the
form of a simple and intuitive axiomatization or proof system.

87

There are several directions for future work in this area:

�9 Case studies. I would very much like to see these ideas applied for the
purpose of fully and precisely characterizing existing, practical systems.

Negation. I have avoided talking about negation in this paper because it
poses general problems for logic programming theory which have not been
adequately answered yet. A framework which characterizes the failure of
constraint queries as well as their success would be desirable.

Moving toward a standard description language. It would be premature at
this point to propose some standard for describing constraint systems, but
this would bring many benefits if done, much as BNF brought a standard
manner of describing programming language syntax.

6 A c k n o w l e d g e m e n t s

I appreciate the helpful comments and suggestions I have received from Veronica
Dahl, Alistair Lachlan, Sanjeev Mahajan, Fred Popowich, Stephan Wehner (all
of SFU), Thorn Friihwirth, Nevin Heintze, Tim Hickey, and Gert Smolka, as
well as Torkel Franzen and the anonymous referees. This research has been
supported by the Natural Sciences and Engineering Research Council of Canada,
the SFU Centre for Systems Science, and the SFU President's Research Grant
Committee, via Infrastructure Grants NSERC 06-4231, CSS 02-7960 and PRG
02-4028, Equipment Grants NSERC 06-4232, CSS 02-7961 and PRG 02-4029,
Operating Grants OGP0002436 (Dahl) and OGP0041910 (Popowich), and the
author's NSERC Postdoctoral Fellowship.

References

[And89]

[Co183]

[Frii92]

[Gir87]

[nS84]

James H. Andrews. Proof-theoretic characterisations of logic pro-
gramming. In Mathematical Foundations of Computer Science, vol-
ume 379 of Lecture Notes in Computer Science, pages 145-154,
Por~bka-Kozubnik, Poland, 1989. Springer.

Alain Colmerauer. Prolog and infinite trees. In K. L. Clark and S.-
A. T~irnlund, editors, Logic Programming, pages 231-251. Academic
Press, 1983.

Thorn Frfihwirth. Constraint simplification rules. Technical Report
92-18, ECRC, Munich, Germany, July 1992.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-
102, 1987.

Masami Hagiya and Takafumi Sakurai. Foundation of logic program-
ming based on inductive definition. New Generation Computing,
2:59-77, 1984.

[Hs88]

[HSH90]

[JL87]

[JMSY92]

[Kle52]

[Mac85]

[Mah88]

[Mah93]

[MNPS91]

[Mon76]

[Sco82]

[Sho67]

[vEL84]

88

Markus HShfeld and Gert Smolka. Definite relations over con-
straint languages. Technical Report 53, LILOG, IBM Deutschland,
Stuttgart, Germany, October 1988. To appear in Journal of Logic
Programming.

Lars Hdlngs and Peter Schroeder-Heister. A proof-theoretic ap-
proach to logic programming I: Clauses as rules. Journal of Logic
and Computation, 1(2), 1990.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming.
In Proceedings of the Conference on Principles of Programming Lan-
guages, Munich, 1987.

Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C.
Yap. The CLP(7r language and system. ACM Transactions on
Programming Languages and Systems, 14(3):339-395, July 1992.

Stephen Cole Kleene. Introduction to Metamathematics, volume 1 of
Bibliotheca Mathematica. North-Holland, Amsterdam, 1952.

Alan Mackworth. Constraint satisfaction. Technical Report 85-15,
Department of Computer Science, University of British Columbia,
September 1985.

Michael J. Mailer. Complete axiomatizations of the algebras of finite,
rational and infinite trees. In Proceedings of the Third Annual Sym-
posium on Logic In Computer Science, pages 348-357, Edinburgh,
July 1988. Computer Society Press.

Michael J. Maher. A logic programming view of CLP. In Proceedings
of the Tenth International Conference on Logic Programming, pages
737-753, Budapest, July 1993. MIT Press.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of
Pure and Applied Logic, 51:125-157, 1991.

James Donald Monk. Mathematical Logic, volume 37 of Graduate
texts in mathematics. Springer-Verlag, New York, 1976.

Dana Scott. Domains for denotational semantics. In International
Colloquium on Automata, Languages, and Programming, 1982.

Joseph Shoenfield. Mathematical Logic. Addison-Wesley, Reading,
Mass., 1967.

Maarten H. van Emden and John W. Lloyd. A logical reconstruction
of Prolog II. Journal of Logic Programming, 2:143-149, 1984.

