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A b s t r a c t :  Implementations of Constraint Logic Programming (CLP) sys- 
tems are often incomplete with respect to the theories they are intended 
to implement. This paper studies two issues that arise in dealing with 
these incomplete implementations. First, the notion of incomplete "satis- 
fiability function" (the analogue of unification) is formally defined, and the 
question of which such functions are reasonable is studied. Second, tech- 
niques are given for formally (proof-theoretically) specifying an intended 
CLP theory or a characterizing an existing CLP system, for the purpose of 
proving soundness and completeness results. Notions from linear logic and 
the notion of Henkinness of the theory are shown to be important here. 

1 Introduction 
The semantics of Constraint Logic Programming (CLP) languages is now well- 
understood. Implementations of CLP languages, however, are often not complete 
with respect to their intended semantics. In this paper, I study the theory of 
such incomplete implementations, by giving a recnrsion-theoretic, rather than 
model-theoretic, basis for CLP operational semantics. Based on this work, I 
then study techniques for specifying the intended theory of a CLP language, or 
giving characterizations of the actual theory implemented by a CLP language. 

A simple example shows that some CLP implementations are necessarily in- 
complete. Consider a first order language, structure and theory in which the 
terms encode lambda-expressions, and in which equality = holds between two 
terms iff they are/?y-equivalent. The theory can be made satisfaction-complete, 
and the structure is solution-compact. The CLP scheme [JL87] defines a the- 
oretical operational semantics for this theory such that a ground query s = t 
fails iff s and t are not /~-equivalent. However, in practice we have no com- 
plete algorithm for testing whether two lambda-terms are/~-equivatent; so the 
operational semantics cannot be implemented completely, not even by using the 
standard breadth-first technique of complete Herbrand-domain logic program- 
ming interpreters. 

Furthermore, many implementations of CLP languages are incomplete for 
efficiency reasons; for instance, CLP(R) [JMSY92] implements an efficient but 
incomplete linear equation solver rather than Tarski's complex algorithm for 
deciding real arithmetic. 

For these kinds of situations, we need to develop a theoretical framework, 
incorporating notions of computability, in which we can study issues of how 
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complete a CLP implementation is. This framework can then be used as a basis 
for comparing a CLP implementation with its intended theory, or specifying the 
smaller theory that  an incomplete implementation actually implements. This 
paper is intended to make steps in the direction of such a framework. 

In section 2, I present some basic definitions. In section 3, I construct CLP 
operational semantics based on a class of recursive functions called "satisfiabil- 
ity functions", which formalize the basic step in CLP languages (the analogue 
of unification). I also define what it means for a structure to "realize" a satis- 
fiability function, and give a necessary and sufficient, non-logical condition for 
such a function to be realizable. In section 4, I study various techniques for 
characterizing CLP theories with proof systems, and show how they could be 
used to prove the soundness and completeness of implementations. In section 5, 
I present some conclusions and discuss related work. 

2 Basic Definit ions 

Defini t ion 2.1 A first order language f~ is a tuple (F, P, V), where F is a re- 
cursive set of function symbols, each with an associated arity, P is a recursive 
set of predicate names, each with an associated arity, and V is a recursive set of 
variable names. 

Let C be a set of predicate names of s C C P(/ : ) .  Constrs(/:, C) is the set 
of all predicate application formulae from/~ formed using a predicate name from 
C. We also call these predicate application formulae "constraints". 

We define the terms and formulae o f / :  in the standard logical way; likewise 
the notions of structure, valuation, satisfiability w.r.t, a structure, model, and 
theory. 

3 Satisf iabil ity Functions 

The basic step in constraint logic programming interpreters (even incomplete 
ones) is the step which decides whether a new constraint is consistent with the 
previously-processed constraints. Every CLP interpreter has an algorithm for 
doing this for its intended theory; if the algorithm returns "true", the interpreter 
goes further down the same branch in the search tree, and if it returns "false", 
the interpreter backtracks 1 . This section studies the theory of such "satisfiability 
functions", which will be defined as partial recursive functions from finite sets of 
constraints to results including "true" and "false". 

In the first subsection, I define the notion of satisfiability function, and show 
how an operational semantics can be built on the basis of that  notion (rather 
than the notion of constraint theory) in order to ensure computability. In the 

1This does not necessarily describe completely the operation of all languages referred to as 
constraint logic programming languages. (For instance, it does not take into account disjunc- 
tive constraints.) However, it describes one common framework for CLP operational semantics, 
and is also the one defined in the standard hteratttre on CLP, e.g. [Mah93]. 
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second subsection, I point out that  not all satisfiability functions correspond to 
actual constraint theories which "realize" them, and thus that  the operational 
semantics arising from them do not define rational logic programming systems. 
I give, however, a condition on satisfiability functions which is necessary and 
sufficient for realizability. In the final subsection, I point out that  for a given 
constraint theory, there are either either 0 or 1 maximal satisfiability functions 
which are realized by it. 

3 . 1  S a t i s f i a b i l i t y  F u n c t i o n s  a n d  O p e r a t i o n a l  S e m a n t i c s  

D e f i n i t i o n  3.1 A satisflability function (in a language s with constraint pred- 
icates C) is a general recursive function from finite sets of constraints in 
Constrs(~, C) to a set T _D {true, false}. 

This definition of satisfiability function is general enough to capture the be- 
haviour of a wide variety of complete and incomplete implementations. We 
always interpret a resu l t  of false as "unsatisfiable" and true as "satisfiable"; 
but  other results, or no result, is also possible. To capture the very well-behaved 
satisfiability functions, we make the following definition: 

D e f i n i t i o n  3.2 A strict satisfiability function is one which is never undefined 
and always returns true or false. 

The satisfiability function associated with basic Prolog, for instance, is strict. 
Here is a non-strict example. 

E x a m p l e .  The basic behaviour of the CLP(R) system [JMSY92] on real- 
number constraints can be characterized with the following (non-strict) satis- 
fiability function sat. 

�9 If S contains a subset T consisting of unsatisfiable, linear constraints, 
sat(S) returns false. 

�9 Otherwise, if S contains no non-linear constraints, sat(S) returns true. 

�9 Otherwise (i.e. S contains non-linear constraints but  its linear constraints 
are satisfiable), sat(S) returns unsure. 

[] 
In basing an operational semantics on a satisfiability function sat, we may 

want to give a definition that takes into account the various t ruth values which 
can act as results of  sat. We must make the following minimum requirements, 
following Maher [Mah93]. 

D e f i n i t i o n  3.3 Given a satisfiability function sat on (s C) whose range is the 
t ruth values in 7 ,  a binary relation ~ is an operational transition relation for 
sat with program P if: 
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1. It is a relation between states, which are either t ruth values from T or 
pairs (G, C), where G is a multiset of non-constraint atoms and C is a 
multiset of constraints; 

2. The relation includes the transition 

(G u HO, C) --~ (G u BO, C u C'O) 

if the program P contains (some renaming of) the clause (H ~-- C', B), 
and sat(C O C'O) ~_ true; and 

3. The relation includes the transition 

(G U H, C) --~ false 

if for every (renamed) clause in P of the form (H'  ~-- C', B) and substitu- 
tion 0 such that  H'O is H,  we have that  sat(C U C'O) ~_ false. 

We say that  a goal G succeeds if (G, O) --~* (O, C) and sat(C) ~_ true; we define 
fair derivations in the usual way and say that  G fails if every fair derivation ends 
in the state false. Note that  if sat is strict, then the above definition will yield 
a unique transition relation, similar to that  defined by Maher [Mah93]. 

E x a m p l e .  Based on the definition of sat for CLP(R) above, we can char- 
acterize an operational semantics for (an idealized version of a part  of) CLP(R) 
as follows. The transition relation is the unique transition relation for (sat, P) 
having the additional property that: 

�9 We have the transition 

[] 

<G u He, C) (G u Be, C u C'O> 

if the program P contains (some renaming of) the clause H +- C', B, and 
sat(C U C10) ~_ unsure. 

In this operational semantics, even if we are unsure of the satisfiability of the 
resulting set of constraints (if the system of equations is not linear), we go on 
as if it were satisfiable. We may wish to say that  a goal G is indeterminate if it 
does not fail, but  every fair derivation ends in either false or unsure. 

3.2 Real izable  Satisfiabil ity Functions 

We would like our operational semantics to define sensible logic programming 
systems, and to achieve that  we have to put a condition on the satisfiability 
functions we use. The condition is "realizability", and is best defined model- 
theoretically. In this subsection, we study realizability and give an equivalent 
condition, "reliability", which is stated in terms independent of model theory. 

D e f i n i t i o n  3.4 An s  ~ realizes a satisfiability function sat if: 
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1. whenever sat(S) ~ true, S is ~-satisfiable; and 

2. whenever sat(S) ~_ false, S is not ~-satisfiable. 

If ~ realizes sat, we also say that  sat implements ~. 

Not every satisfiability function is realizable, not even the strict ones. For 
instance, if we have a satisfiability function which maps {p(z)} onto false but 
{p(x), q(x)} onto true, then this will not have any realizing structure, because 
any valuation satisfying {p(z), q(z)} will surely satisfy {p(x)}. An operational 
semantics based on such a satisfiability function would give unexpected results. 

The realizability of sat can be given an equivalent characterization in terms 
of the theory associated with sat. 

D e f i n i t i o n  3.5 Osa+, the theory associated with sat, is defined as 

{3[S] I sat(S) _-_ t rue} U {~3[+q I sat(S) ~ false} 

where 3[S] is the existential closure of the conjunction of the constraints in S. 

We have the following simple proposition: 

P r o p o s i t i o n  3.6 sat is realizable iff @sat is consistent. 

However, for the purposes of checking a given implementation of a satisfiabil- 
ity function, it would be bet ter  to have a more direct method of testing whether 
it is realizable. The condition called "reliability" allows us to do this. First, 
some technical definitions. 

D e f i n i t i o n  3.7 Let S be a set of constraints and let c E S. The variable sharing 
class Sic is the smallest subset of S such that: 

�9 c E Sic; 

�9 if b E Sic, and a E S shares a free variable with b, then a E Sic. 

D e f i n i t i o n  3.8 Let sat be a satisfiability function. A set of constraints S is 
sat-covered if for all c E S, there is a set T _~ Sic such that  sat(T) ~_ true. A set 
of constraints S is sat-consistent if there is some substitution 0 such that  S0 is 

sat-covered. 

Basically, a set S is sat-consistent if, for some 0, every element of this parti- 
tion of SO is satisfiable in any structure realizing sat. 

D e f i n i t i o n  3.9 A satisfiability function sat is reliable if whenever sat(S) ~_ 
false, S is not sat-consistent. 

For non-reliable satisfiability functions, some sets S are considered unsatisfi- 
able despite the fact that  some instance of S can be parti t ioned into sets which 
are generalizations of sets considered satisfiable. This is a situation which does 
not meet with our intuitions, and indeed the next theorem proves that  reliability 
is a necessary condition for realizability. 
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T h e o r e m  3.10 If a satisfiability function sat is realizable, then it is reliable. 

P r o o f  (sketch). Assume (toward a contradiction) that  sat is realized by some 
but not reliable. There must be an S and 0 such that  sat(S) ~_ false but SO is 

sat-covered. Each variable sharing class T / in  SO results in a satisfying valuation 
vi; but the union of these vi's is a valuation satisfying SO, contradicting the 
assumption that  ~ realizes sat. 
[] 

So reliability is necessary for realizability. It is also sufficient, as we will see 
next. 

T h e o r e m  3.11 If a satisfiability function sat is reliable, then it is realizable. 

P r o o f  (sketch). By Proposition 3.6, it is sufficient to prove that  if sat is 
reliable, | is consistent. By compactness, it is therefore sufficient to prove 
that  every finite subset of O~at is consistent. 

Let S be a finite subset of O~t ,  where 

S = {3[$1] , . . . ,  3[Sj]] U {-~3[T1],..., =3[Tk]} 

Let ~ be the minimal structure which contains a unique element for every free 
variable in all the Si 's, and in which each S{ is satisfiable by a valuation mapping 
variables to these elements. Clearly this structure is a model of the positive 
formulae in S; we have only to prove that  it is a model of the negated formulae 
too. 

Assume, toward a contradiction, that  2~ is satisfied by some valuation v in 
~. There is some O and v' such that  v = 8v', v' maps free variables directly 
to domain elements, and T/0 is satisfied by v'. But by the construction and 
minimality of ~, this means that  T/Q can be partit ioned into sets which are 
free-variable variants of subsets of the S{'s. T/ is therefore sat-consistent; but 
we know that  sat(T{) ~_ false,  thus contradicting the assumption that  sat was 
reliable. 
[] 

The upshot of this is that  if we base operational semantics on satisfiabil- 
ity functions, they are by definition computable; but we are still able to give 
assurances that  they define sensible systems, by proving that  the satisfiability 
function is reliable. 

3.3 Maximality Results 

Finally, some words about maximality. Given a particular constraint theory, 
what is the "biggest" satisfiability function which implements it? It turns out 
that  either a theory has a complete, strict satisfiability function, or else there is 
no maximal satisfiability function which implements it. 

We can defne  maximali ty by comparing the completeness of two satisfiability 
functions with respect to a structure. 
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Defini t ion 3.12 Let sat1 and sat2 both implement ~. We say sat1 E_~ satu, 
in words "sat1 is a better approximation to ~ than sat2", if: 
1. Whenever sa t l (S )  ~_ true we have that  sat2(S) ~- true; and 
2. Whenever saQ(S)  ~_ fa lse  we have that  sat2(S) ~- false.  

A satisfiability function sat is a maximal approximation to ~ if there is no 
satisfiability function sat ~ such that  sat I ~ sat and sat E_~r sat ~. 

T h e o r e m  3.13 A structure ~ has either 0 or 1 maximal approximations. 

P r o o f .  If the set S ~ of satisfiable finite sets of constraints of ~ is recursive, 
then clearly there is a unique, strict, maximal  approximation to ~. Otherwise, 
for any sat which implements ~, we can build a better  approximation sat ~ by 
allowing more sets to return true or false.  
[] 

Thus for the example structure given in the Introduction (/?y-equivalence of 
lambda expressions), there is no maximal implementation. Whenever we have a 
satisfiability function (and thus a constraint logic programming system) which 
implements this structure, we can always do better. 

4 Specification and Characterization with 
Proof  Systems 

We have seen that  incomplete implementations of CLP languages are sometimes 
desirable or even necessary. We have also seen that  such incomplete implemen- 
tations can be given a coherent theoretical basis. But in order to make practical 
use of incomplete implementations, we need to be able to compare them directly 
with descriptions of theories. 

To do so, we really need formal (syntactic) descriptions of the theories to 
be compared to; the kinds of informal descriptions found in the li terature are 
sometimes too imprecise to be used in formal proofs, and this imprecision is 
multiplied when we have several groups of interacting constraints (Herbrand, 
rational tree, integer, real, etc.). There are at least two other practical reasons 
for developing formal descriptions of CLP languages: 

�9 With increasing prominence of constraint systems, it will become neces- 
sary to develop some standard formalism for describing constraint theories, 
much as BNF was developed to describe programming language syntax. 

�9 Syntactic, or more specifically logical, characterizations of constraint theo- 
ries will be absolutely necessary to any program-logic system which intends 
to prove properties of constraint logic programs. 

One possible framework for such formal descriptions is proof theory, which 
has been used to good advantage in the past to describe basic logic programming 
[HS84, HSH90, MNPS91]. The use of proof theory as a general framework for 
characterizing CLP, which has not to my knowledge been studied before, is the 
topic of this section. 
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There are two ways in which proof-theoretic characterizations could be used: 
(a) to specify an intended theory; and 
(b) to characterize an existing implementation. 
Examples of (a) would include giving an axiomatization of Horn clauses with 
Presburger arithmetic, to which we could then compare individual CLP imple- 
mentations. Examples of (b) would include giving a proof-theoretic characteri- 
zation of the CLP(R) implementation [JMSY92], to see how it looks compared 
to an axiomatization of real arithmetic. 

In this section, l will first discuss some techniques we could use to give proof- 
theoretic descriptions of CLP theories. One of the major issues that will emerge 
is the question of whether or not the theory is "Henkin" (has a closed "witness" 
term for every existential truth). I will then give examples of how such descrip- 
tions could be used in proving soundness and completeness of implementations, 
and in characterizing existing CLP implementations. It will turn out that ideas 
from linear logic [Gir87] will be relevant to this last point. 

4.1 Description Techniques 

Here I give two distinct techniques that we might use to describe constraint 
theories. The first technique is fairly simple but applicable only to Henkin 
theories; the second is more complex but applicable to both Henkin and non- 
Henkin theories. 

4.1.1 Closed Cons t r a in t  Technique 

In this technique, we characterize the entire theory by characterizing the truth 
or falsehood of closed (ground) constraints. We then rely on proof rules for 
existential quantification to handle free variables. I will give two examples, then 
discuss the technique in general. 

Example:  H e r b r a n d  universe  logic p rog ramming .  Proof-theoretic char- 
acterizations of basic logic programming have been studied for years. Consider 
the following example, similar to the system of Miller et al. [MNPS91]. The 
syntax of goals (G) and definitions (D) is as follows. 

c = I I GS G I G v C  I 

D ::-- VxD I P (Xl , - - ' , ;~n )  +"- G 

Sequents are of the form 
D1 . . . .  , Dm ~- G 

and are intended to express "the goal G follows from the definitions D1, . . . ,  Din." 
Sequents can be given formal derivations by using the proof rules in Figure 1. 

The rules of the proof system both act as a formal and unambiguous descrip- 
tion of truth, and give us some intuitive sense of the meaning of the connectives 
(GI&G2 follows from F if both G] and G2 follow from F, and so on). We 
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FI -G1  F ~  G2 FI -G1  FF-G2 

F t- G I ~ G 2  F F- G1 V G2 F F- G1 V G2 

r ~- G[x := t] 

r ~- 3 x ( G )  r ~- t = t 

D , D ,  F F - G  D [ x : = t ] , F F - G  F ~ G  

D,F~-G VxD,  F t - G  ( p ( t l , . . . , t , O ~ - - G ) , F t - p ( t l , . . . , t , O  

Figure 1: A proof-theoretic characterization of a basic logic programming lan- 
guage. F is any sequence of definitions. 

F ~ a = b  F F a = b  F F b = c  F ~ a = b  

F t- b =  a F t- a = c F I-- s(a) = s(b) 

r ~ a + 0 = a  F F- a + s(b) = s(a + b) 

Figure 2: Additional rules for a proof-theoretic characterization of a Presburger 
arithmetic constraint logic programming language. 

can prove the soundness and completeness of an SLD-resolution operational se- 
mantics with respect to this proof system by two relatively simple structural 
inductions (e.g. [And89]). 
[] 

Note that  we had only to characterize the behaviour of equality formulae, 
and that  we did so by saying that  two terms are equal if they are identical. (We 
must make the assumption that  there is at least one closed term in the language, 
but this is reasonable.) 

E x a m p l e :  P r e s b u r g e r  a r i t h m e t i c .  Consider the standard language and 
theory of Presburger arithmetic (i.e., integers constructed from 0 and the suc- 
cessor function s(_), with the arithmetic operation + and the relation =). A 
characterizing proof system can be constructed taking the one for Herbrand 
logic programming, and adding some more rules to make it a complete proof 
system for Presburger arithmetic sequents of the form D1, .  �9 Dm t- G (see for 
example [Kle52]). Such additional rules are shown in Figure 2. 
[] 

This specifying proof system does not tell us how to solve such constraints 
or how to construct our implementation; it merely gives a formal and intuitive 
description of what kinds of constraints we want to solve. It thus acts as a 
specification of a CLP language for solving Presburger arithmetic constraints. 
Any implementation, however, would presumably use Presburger's algorithm 
[Mon76] or some variant of it. 
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B , C , F ~  G x = t, r ~- G[z := t] 

F ~- G 3xB,  F F- G B&C, F ~- G x = t, F F- G[z := x] 

Figure 3: Additional rules for a proof-theoretic characterization of a rational- 
trees CLP language. A is a WRTA, and y is a new variable. 

Again, we had only to give additional rules for the behaviour of closed arith- 
metic formulae; essentially, we have expanded the meaning of = from identity 
between closed terms (the t = t axiom) to ar i thmetic  equality of closed terms 
(the t = t axiom plus the new rules and axioms). 

For theories like the ones given, the task of coming up with a proof-theoretic 
specification can be reduced to coming up with a proof-theoretic specification 
of the valid closed constraints. The essential proper ty  here is that  the intended 
theory is Henkin [Sho67]; that  is, whenever 3zB  is true, there is a closed te rm t 
such that  B[x := t] is true 2. 

Unfortunately, however, not all interesting constraint theories are Henkin. A 
simple example is the theory of rational trees: we have that  3x(x  = f ( x ) )  is 
true, but there is no closed t such that  t = f ( t ) .  Another impor tan t  example 
is the theory of real ari thmetic,  in which we have no closed term t such that  
t • t = 2. For these theories, we have to use other methods.  

4 .1 .2  A x i o m a t i c  T e c h n i q u e  

Another technique for specification is to provide axioms which can be added 
to the left-hand side of a sequent in order to obtain proofs of solvable queries. 
Unlike the closed-constraint approach, this technique is universal. 

E x a m p l e :  R a t i o n a l  t r e e s .  Van Emden and Lloyd [vEL84] and Maher 
[Mah88] have given Hilbert-style logical descriptions of the theory of rational 
trees, with varying soundness and completeness properties. The logical conse- 
quences of these theories include all formulae of the form 

3xl . . .3Xn((Xl  = Q)&:...&:(x,~ = tn)) 

where the xi 's  are distinct and the t~'s are terms whose variables are among the 
xi's. Let us call these the weak rational tree axioms (WRTAs).  

Using WRTAs, we can build a sequent-calculus characterization of a rational- 
trees CLP language. It  consists of the rules in Figure 1 with the addition of the 
rules in Figure 3. An example derivation of 3x(x = f ( f ( x ) )  can be found in 
Figure 4. 
[] 

2A more precise and traditional definition of Henkin theories is those theories T for which, 
for every sentence 3xA of the language, there is a constant e in the language such that T 
(3~A) ~ (AEx := e]). 
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y = f ( y )  ~ f ( f ( ~ ) )  = f ( f ( y ) )  
y = f ( y )  e f ( y )  = f ( f ( y ) )  

y = f ( y )  }- y = f ( f ( y ) )  
y = f ( y )  [- 3x ( x  = f ( f ( x ) ) )  

3x(x ---- f(x)) }- 3x(x = f(f(x))) 
I-- 3 x ( x  = f(f(x))) 

Figure 4: Example derivation of 3x(x  = f ( f ( x ) )  in the theory of rational trees. 

Given any satisfiability function sat, we can develop a proof-theoretic char- 
acterization i- such that  F t- G if G succeeds with respect to F; we can do this 
by giving rules which allow us to add any element of Osa t to the left-hand side. 
This t- does not necessarily have the converse property - that  if F F- G then G 
succeeds with respect to F - but as we will see later, we can achieve such results 
with the use of techniques from linear logic. 

4 . 2  P r o v i n g  P r o p e r t i e s  o f  I m p l e m e n t a t i o n s  

We are now in a position to tie together the theory of satisfiability functions with 
the techniques for description of CLP theories. Say we are given a satisfiability 
function sat on (s C) and a transition relation -+ for sat. We are also given 
a proof system intended to describe the intended theory in a logical form. The 
kinds of results we would want to prove are: 

�9 Soundness of success: i f (G,  0) - - :  (0, C) w.r.t, program P,  where sat(C) ~_ 
true, then P F- G. 

�9 Soundness of failure: if (G, O) ---+* w.r.t, program P,  then P ~ G. 

�9 Completeness of success: if P F- G, then (G, 0) ---** (0, C) w.r.t. P ,  where 
sat(C) ~_ true. 

�9 Completeness of failure: if P ~/G, then (G, O) --** false.  

Clearly, if sat is strict and we can prove soundness and completeness of success, 
or soundness of success and failure, then we can prove the rest of the results. 

I will just note here that  the soundness and completeness of Prolog II with 
respect to the proof system given in the last subsection can be proven by tech- 
niques similar to those given in [Co183, Mah88, And89]. I will go into more detail 
about  the CLP(R) example from Section 3.1. 

E x a m p l e :  a c h a r a c t e r i z a t i o n  o f  C L P ( R ) .  Consider the satisfiability func- 
tion sat and transition relation ~ we defined for CLP(R) in Section 3.1. We 
can define a characterizing proof system for this operational semantics using the 
axiomatic technique and some ideas from linear logic [Gir87]. 
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F1, ! r  F- G1 F2, ! r  F G2 

F l ,F2 , !F  b GI&G2 

!D,D, FF G 
!D, F P G 

3 [ c l & - - . & c ~ ] , F F  G 

F b G  

FFG1 
F F GI V G2 

r ~- G[z := t] 
r F 3~(O) 

D[z := t], r F G 
VxD, F b G 

B[x := y] , r  ~- G 
3xB, F F G 

PFG2 
F P G1 V G2 

c, !F F c 

P F G  
(p(t~,. . .  ,t~) ~-- G), r e p( t~ , . . .  ,t,~) 

B , C , F ~ - G  
B&C, F ~- G 

Figure 5: A proof-theoretic characterization of CLP(R).  F is any sequence of 
formulae, !F is a sequence of formulae preceded by !, y is a new variable, and 
c l , . . . ,  ck are constraints such that  sat({e l , . . . ,  ck}) -~ true. 

The proof system is given in Figure 5. 
system are as follows. 

The important  ideas in this proof 

�9 As in the axiomatic characterization of rational trees, we allow axioms 
about satisfiable systems of equations to be introduced and manipulated 
in the antecedent (left-hand side) of a sequent. 

�9 In the antecedent, we precede each rule from the program with the linear 
logic ! operator. This is an operator which allows for duplication of as- 
sumptions; for formulae in the antecedent not preceded by !, we do not 
allow duplication. (The antecedent is viewed as a multiset.) 

�9 We require that  at the top of the proof be axiomatic sequents of the form 
c, !F F c, where !P is a sequence of formulae all of which are preceded by !. 

�9 We require that  the sequence of formulae not preceded by ! be split across 
the two premisses of the rule introducing & on the right. 

All this has the effect of forcing each assumption arising from the sat rule to be 
used once and only once in the course of a proof. 
[] 

An example proof is given in Figure 6. Note that  the proof would not have 
gone through if the query had been simply 3x, y(x �9 y = 4), because we would 
have had the extra formula y' = 2 to contend with. Conversely, if we had allowed 
axioms to be simply of the form (c, r F c), we would have been able to prove 
3z, y(x .y = 4), even though that  is not a linear equation and thus not solvable in 
the operational semantics. As it is, with respect to this proof system, we should 
be able to prove that  the operational semantics has the properties of soundness 
and completeness of success and soundness of failure. Because sat is not strict 
in this case, however, we cannot prove completeness of failure. 

This characterizing proof system is somewhat unwieldy due to the fact that  
the real-number axioms introduced in the antecedent may be huge. It may be 
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u, = 2, !Vz(p(z )  ~ -  z = 2) ~ u' = 2) 
y, = 2, !Vz(p(z)  ~- ~ = 2), (p(v,)  ~- y, = 2) ~ ; ( y , )  

y, = 2, !Vz(p(z )  ~ -  z = 2), V z ( p ( z )  ~ -  z = 2) ~ p ( y , )  

x , .  y, = 4 ~ x , .  y, = 4 ~'  = 2, !Vz(p(z )  ~ -  z = 2) ~ p ( y ' )  

x ' .  y' = 4, y '  = 2, !Vz(p(z)  ~ z = 2) ~- x' .  y' = 4&p(y') 
x , .  y, = 4, y, = 2, !yz(p(z)  ~ z = 2) ~- 3y(x,  . y = 4 & p ( y ) )  

x , .  y, = 4, y, = 2, !yz(p(z)  ~ z = 2) F- 3x, y (x  .y  = 4&p(y)) 
(x,.. y, = 4&y, = 2), !Vz(p(z) ~ z = 2) ~- 3x,  y (x  . y  = 4 & p ( y ) )  

q y ' ( x ' ,  y '  = 4 & y '  = 2),  !Vz(p(z)  *--- z = 2) F 3 x ,  y ( x .  y = 4&:p(y))  

3x', y'(x',  y' = 4&y' = 2), !Yz(p(z) ~- z = 2) ~- 3x,  y ( x .  y = 4 & p ( y ) )  

!Vz(p(z)  ~ -  z = 2) ~ 3x, y(~ .  ~ = 4~; (~) )  

Figure 6: An example proof in the characterizing proof system for CLP(R). 

possible to simplify the axioms, but even as it stands the proof system can be 
used for proving properties of CLP(R) programs. 

The linear logic technique may be useful for characterizing other incomplete 
CLP-like languages. Some implementations of finite-domain constraint solvers 
are incomplete for efficiency reasons [Mac85]; and many implementations of Pro- 
log use unification without occurs check, which is sound with respect to the 
rational-tree axioms but which sometimes goes into an infinite loop. 

5 C o n c l u s i o n s  a n d  R e l a t e d  W o r k  

I have shown that the class of satisfiability functions adequately characterizes the 
behaviour of a wide variety of implementations of CLP languages, and that there 
is a simple, non-model-theoretic condition ("reliability") for testing whether a 
satisfiability function is reasonable. 

I have also discussed techniques for specifying and characterizing CLP sys- 
tems with sequent calculi. I have pointed out that the question of whether the 
theory is Henkin is important, and that the notation and proof theory of linear 
logic (or other such "substructural" logics) can help in characterization. 

The definition of a reliable satisfiability function is closely related to Scott's 
definition of an information system [Sco82]. However, neither the space of sat- 
isfiability functions, nor the space of information systems (under a reasonable 
mapping from one notion to the other), are proper subsets of the other. 

H5hfeld and Smolka [HS88] and Friihwirth [Frii92] have both explored the 
idea of formally describing constraint theories. H5hfeld and Smolka describe an 
alternative framework to Jaffar and Lassez's for constraint systems; like Jaffar 
and Lassez, however, they do not consider explicitly any computability restric- 
tions on constraint satisfaction algorithms. Friihwirth gives a Horn-clause-based 
language for defining constraint simplification rules, or SiRs, for any given do- 
main. However, while SiRs have a logical form, they do not necessarily take the 
form of a simple and intuitive axiomatization or proof system. 
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There are several directions for future work in this area: 

�9 Case studies. I would very much like to see these ideas applied for the 
purpose of fully and precisely characterizing existing, practical systems. 

Negation. I have avoided talking about negation in this paper because it 
poses general problems for logic programming theory which have not been 
adequately answered yet. A framework which characterizes the failure of 
constraint queries as well as their success would be desirable. 

Moving toward a standard description language. It would be premature at 
this point to propose some standard for describing constraint systems, but 
this would bring many benefits if done, much as BNF brought a standard 
manner of describing programming language syntax. 
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