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Abstract.  Type theory and constructive logics allow us, from a proof of a 
formula, to extract a program that satisfies the specification expressed by 
this formula. Normally, programs extracted in this way are inefficient. 
Optimization algorithms for these programs have been developed. In this 
paper we show an algorithm to optimize programs represented by second 
order typed k-terms. We prove also that the simplified programs are 
observational equivalent to the original ones. 

1 Introduction 
Constructive logics can be used to write the specifications of programs as logic 

formulas to be proved. Writing programs as constructive proofs of such formulas, is a 
good attempt to automate programming and program verification. We can extract 
executable code from constructive proofs, using the Curry-Howard isomorphism of 
formula-as-types ([8]) or the notion of realizability ((11] and [1]). Following these 
ideas, some tools have been introduced to help programmers in developing proofs or 
for the automatic extraction of programs, for example COQ, LEGO, NUPRL ([5] and 
[6]). 
Automatic program extraction has a great problem: often, the extracted code is not 
efficient. Many attempts have been done to develop methods for the automatic erasing 
of redundant parts from these programs. 
For example, in intuitionistic logic, the formula 3x.A(x) is interpreted as a pair, 
whose first element is a term t and whose second element is a proof of A(t). Generally, 
only the value t of x is needed as program extracted. The proof of A(t), from a 
computational point of  view, is meaningless. Such a proof is not useful for the 
computation of  result. It is only useful to prove that the program meets the 
specification but this is of use only once and not at every run of the program. 
Several algorithms have been defined for erasing redundant code (e.g. Beeson [1] and 
Mohring [9] that use manual techniques to label and remove redundant code, Takayama 
[10] wich designed an automatic technique that motivated our work). A variant of them 
are pruning techniques of S. Berardi ([2], [3] and [4]). 
Berardi's idea is that, inside the tree representation of  an expression, we can find 
subtrees that are useless for computing the final result. Such parts can be removed in 
the same way as dead branches in a tree are pruned. Of course the problem is how to 
find useless subtrees. 
In this paper, we show an algorithm to find useless subterms in computations. These 
subterms can safely be replaced by dummy constants, leading to equivalent terms. The 
main result of this paper, in particular, is that for each type A and term t of type A, 
there exists a unique term t' of  type A, of  minimum length, such that t' is 
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observational equivalent to t. We'll describe the algorithm that receiving t, gives back 
this simplest term. 
We'll follow the technique used in [4], by defining two order relations '_<', one for types 
and one for terms. Such relations are an attempt to formalize the previous ideas. A < B 
means that A is simpler than B. In a similar way, if t and u are terms, t < u means that 
t is a simplified version of u. This simpler term has the same input/output behaviour 
of the original one if the type doesn't change. 
In section 2 we introduce some bare notions about the system in which we write our 
programs. In section 3 we formally define the pruning relation <. In section 4 we see 
that simplifying a term doesn't alter its operational meaning. In section 5 we see that, 
given a term t, there exists a minimum term t' equivalent to t. In section 6 we show an 
algorithm to find minimum terms. In section 7 we have conclusions and possible 
developments. 

2 The System F2 

We begin this section with the definition of our system. It is essentially Girard's 
system F (see [7]), extended with constants for the monomorphic natural numbers and 
special constants unit and Unit. 
The intended purpose of Unit is to denote the type with only one element, denoted by 
unit. Every expression that we consider useless for the computation of the final result 
will be substituted by these constants. 
Now the formal definitions. 

Definition 1. 
(i) The language of types of F 2 is inductively defined by 
T ::= Unit I Nat I X I T -> T I VX.T 
where X denotes a type variable, and Nat the constant for natural number type. 
(ii) The language of pseudoterms is inductively defined 
t ::= unit I 0 I S I rec I x I ~Lx:T.t I (t t) I AX.t I t[T] 
where 0 and S are the constants for constructing the primitive natural number while rec 
is the primitive polymorphic constant for the primitive recursion over Nat; x denotes a 
term variable and AX.t and t[T] denote type abstraction and type application. 
(iii) A context is any finite set of ordered pairs, whose first components are term 
variables, having pairwise distinct names, and whose second components are types. 
(iv) If F is a context of the form {<Xl:Tl> . . . . .  <xn:Tn> } dom(F') is {Xl . . . . .  Xn}. 

As usual, for type system "a la Church", we have rules for well-formedness of terms. 
A judgement of the form F [- t : T, means that the pseudoterm t is a well formed term 
of type T in the context F. 

Definition 2. 
Let Z = {<0:Nat>, <S:Nat~Nat>, < rec :VX.Nat~X~(Nat~X-~X)~X>},  
t, tl and t2 be pseudoterms, x a term variable, X a type variable, T, A and B types and 
r a context. The term formation rules are: 

(UniO r [- unit : Unit (Const) F I - c : A  (wi th<c:A>E Z) 

(Var) rl-x:T (if<x:T'>E F) 
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Fk.)  {<x:A>} 1- t : B  r 1- t l  : A-OB F 1- t2 : A 
(-o I) (-o E) 

F I - ~ , x : A . t : A - o B  r [- t l t  2 : B 

(VI )  F l- t : T (X not free in r )  (VE) F[ ,  t : V X . T  
r [ -  A X . t  : V X . T  F I- t[A] : T[X:=A] 

We assume the standard convention for the associativity of operators and for the 
priorities. We call atom any atomic type, constant or variable, and symbol any term 
constant and term variable. We use or, I], Y . . . .  to denote atoms and s, s', s", ... to 
denote symbols. Generally, we use upper case for types and lower case for terms. The 
symbol '- '  expresses syntactical equality between expressions. 
With FV(e) we indicate the free (type and term) variables of e, while with FVI(e) and 
FV2(e) we respectively denote the free type variables and free term variables of e. As 
usual, an expression is called closed if  it hasn't free (type and term) variables. A 
substitution a is a function from variables to expressions of the language such that, if 
x is a term variable of type A, o(x) is a term of type A and, if X is a type variable, 
t~(X) is a type. We denote substitutions with or, "c .... The effect of a substitution over 
an expression is the replacement of all occurrences of free variables with the 
corresponding expressions as indicated in the substitution itself. We suppose implicit 
renaming of bound variables to avoid capture of free variables. A closed substitution is 
a substitution t~ such that t~(x) is closed for any variable (type and term) x e dom(t~). 

If F is a context, a substitution t~ is said to be a F-substitution, if dom(F) g dom(cy). 
Let e be any expression. We denote T 2 = {T I T is a type of F2 },T 20 = { T IT  is a 
closed type of  F2}, A2 -- {t I t is a terms ofF2},  A2 ~ = {t I t is a closed terms 

of F2}, E2 = T2 u A2 and E2 ~ = T2 ~ u A2 ~ 

The system has ~ and r I rules for terms and types application. We suppose cz rules 
implicit. 

Definition 3. 
(i) If t,u and f are terms and A a type the elementary reduction rules for F2 are: 

(13) (Xx:A.0(u) -->1~ t[x:=u] 
(11)  ~,x:A.(f x) --->~ f (with x not free in f) 

(B) (AX.t)[A] -OB t[X:=A] 
(H) AX.(f [X]) -o H f (with X not free in f) 

Together with these standard rules there are other ones for the constant rec; if a is a 
term of type A and f a term of type Nat---~A--~A then: 

(recO) rec [A] 0 a f "-~recO a 
(recS) rec [A] (S n) a f -orecS f n (rec [A] n a f) 

We write -orec for -oree0 u "--)recS. 

(ii) Let r e {I], B , r l ,  H, rec}. We use: --~r also for the contextual closure of the 
elementary reduction rule -or; -'41 for the union --->1~ u "-">B u ---->-q u -->H u "--)rec; 
-on  for exactly n steps of ---)1; -o_n for at most n steps; --->>n for at least n steps. 
-or* is used for any finite number of steps of reduction r (included 0). We use =r for 
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conversion w.r.t, reduction r.We indicate =1~ u =B with =I~B and ~1~ u ---~B with 
-~I3B, while =F denotes conversion respect all reduction rules together. 
We assume the standard definitions of redex and normal form. 

An important notion for the analysis of programs is observational equality =obs. We 
can say that two programs are equal from an observational point of  view if no 
observation or test is able to distinguish them. Formally we have: 

Definition 4. 
Let t, u be two terms such that F l- t : T and F l- u : T .  We define: 

(i) t and u closed ~ l- t =obs u iff (Vclosed f s.t. I- f : T ~ N a 0  f(t) =13B f(u) 

(ii) any t, u ~ F I- t =obs u iff (Vt~ closed F-substitution) 1- ~(t) =obs t~(u) 

We can consider every closed function f :T~Nat  as an observation, aiming to discover 
any difference in the behaviour of t and u. If it is not possible with observations to find 
a difference between the two terms, we say that they are observationally equivalent. 

Definition 5. 
Let T be a theory on F2. If t and u are terms: 

(i) we write F l- t --T u if (t,u) e T and FV2(t) w FV2(u) c dom(F); 
(ii) with F It t --T u we mean that F 1- t =T u doesn't hold; 
(iii) a theory T is consistent if there exist two terms t, u of same type and context, 
such that F It t =T u; 
(iv) a theory T is a maximum theory if it is consistent and for each consistent theory 
T '  and for each pair of term t and u, we have F l- t =T' u ~ F 1- t =T u. 

Lemma 1. 
Observational equivalence is a maximum equational theory for F2. 
The proof of lemma 1 was developed by Statman and written in an unpublished 
manuscript of 1986. 

Now some properties of F2. 

Proposit ion 1. 
System F 2 is Church-Rosser and strongly normalizing. 
For the proof see e.g. [7]. 

A term is said algebraic if  it consists only of: constants of  kind f:13 or 
f:oq--4...--~t~n---~, where 13, tXl ..... tXn are atomic types, term variables of the form 
x:tx, where o~ is an atom, and applications. 

Proposit ion 2. 
Closed algebraic terms of type Nat, in normal form, are only of this shape: sk(0), for 
some integer k (if k = 0 sk(0) is 0). 
Proof  
Easy by induction. 
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3 Pruning in F2 

In analogy with [4], we define three relations of <, two on well formed 
expressions of the system and one over context. The first relation is over well formed 
types. We write A <T B, if A and B are types. The second relation is defined over 
contexts. We write F <-ctx F' if F and F' are contexts. The third one is defined on well 
formed terms. We write t r:A<a;B U, if t and u are terms s.t. F I- t : A and A 1- u : B. 

Definition 6. 
Let t, tl ,  t2, Ul, u2 be any terms, A, B, C, D, T any types, c any costant, x, y, X, Y 
any term and type variables, F and F' any contexts. The pruning relations "_<" for types 
and terms are inductively defined by two deduction systems: 
(i) The system <T 

(Unit) Unit <T T (Nat) Nat <T Nat (VAR) X -<T X 

A1 <T A2 B1 <T B2 A[X:=Z] <T B[Y:=Z] 
(-">) A1-->B1 <T A2-->B2 (V) VX.A <T VY.B (*) 

(ii) We say that F <-ctx 1" iff (Vx,A) ((<x:A>e F) ~ (3B) (<x:B>e F' and A <T B)). 

(iii) The system r;A_<a;n 

F <'etx A F <ctx A 
(uni0 unit r;unit--<a;T t (const) c r;A<-A,A c 

Y <ctx A (vat) 
x F;A<--A;B X 

where <x:A> e F and <x:B> e A 

(~.) A <T B tl[X:=Z] r;C--<A;D t2[y:=z] 
kx:A.tl 1-';A...~C--<A,;B..-~D ky:B.t2 (*) 

where F = F' t..) {<z:A>} and A = A' t..) {<z:B>} 

(app) t l  I'iA---~C--<A;B-.oD t2 Ul F;A<--A;B u2 
tlUl r;c<a;D t2u2 

tl[X:=Z] F;A--<A;B t2[Y:=Z] tl F;VX.A--<AIVY.B t2 C <T D 
(A) AX.tl  r;VX.A-<A;VY.B AY.t2 (*) (APP) t1[C] F;A[X:=C]--<A;B[Y:=D] t2[D] 

(*) In expressions involving binders we have to inlroduce fresh variables z and Z in 
order to have the relation invariant up to a conversion. Without this caution we would 
have for example, VX.X -<w VX.X, but not VX.X <T VY.Y. 

To simplify the notation, in the rest of the paper we write only <, both for <T and for 
r;A<a;B. Since these two relations are defined on different domains, it will be clear from 
the context of which relation we are talking about. 
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The relation < is a formalization of  the idea of  simplification of  a term. When an 
expression or a part  o f  an expression is useless at the aim of  the computat ion of  the 
final result, we can replace it with one o f  the two special costants unit and Unit. So we 
have a simpler expression. 
To better understand how pruning an expression we state: 

P r o p o s i t i o n  3. 
(i) if  A and B are types s.t. A _< B then 
- either A - B 
- or A - Uni t  
- or A is obtained from B by replacing some proper subtypes of  B with Unit. 
(ii) i f  t l  and t2 are terms s.t. tl -< t2 then 
- either tl - t2 
- or tl --- unit  
- or  tI  is obtained from t2 by  replacing some proper subterms of  t2 with unit 
- or tl  is obtained from t2 by replacing some types B, in type applications, with some 
types A s.t. A < B 
- or tl is obtained from t2 by replacing the type B of  some of  its term variables with a 
type A s.t. A < B. 
All these assertions are up to ct conversion. 

Remember  always that the relation < is defined on well formed expression. So if we 
write e l  < e2 we implicitly assume that el  and e2 are well formed. 

P r o p o s i t i o n  4. 
The pruning relation, <, is an order relation. 

4 Pruning and Observational Equality 

In this section we'll see the main theorem of this paper: pruning is compat ible  
with observation equivalence. 

L e m m a  2. 
I f  t and u are closed terms in normal form of type Nat, such that t < u, then t = u. 
P r o o f  
As in [4]. 

L e m m a  3. 
Let  x a term variable. Let  A and A' types s.t. A _< A'. Let  t, t', u and u' terms such that 
F u  {<x:A>} l- t : B ,  F ' u  {<x:A'>} 1- t ' : B ' ,  FI- u:A, F'I- u '"  A ' , f o r s o m e  
F,  F' ,  B, B', and t < t', u < u'. Then t[x:=u] _< t'[x:=u'] 
P r o o f  
By induction on t. 

L e m m a  4. 
Let t, t', u' be terms. I f  t _< t' and t'--->n u' with only 13 reduction steps, then t --->_<n u 
for some term u < u'. 
P r o o f  
By induction on n, using the previous lemma and the definition of  <. 
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Similar properties hold for type substitutions and B reductions. 

Lemma 5. 
(i) If A, A', T and T' are types and X is a type variable, such that A < A' and T < T' 
then A[X:=T] _< A'[X:=T]. 
(ii) If t and t' are terms, T and T' are types and X is a type variable, such that t < t' and 
T < T' then t[X:fT] < t'[X:=T]. 
(iii) Let t, t' and u' be any terms. If t < t' and t ' ~n  u' with only B reduction steps, then 
t ~_<n u for some term u _< u'. 

From the previous lemmas the following result follows. 

Lemma 6. 
Let t, t' and u' be any terms. If t < t' and t'--~n u', with only I] or B reduction steps, 
then t -'-)<n u for some term u < u'. 

Now we are ready for the main theorem about the pruning and the observationality. 

Theorem 1. 
Let t and u terms. I f F [ -  t : A , F [ -  u : A a n d t - < u ~ F l - t = o b s U .  
Proof  
Using the previous lemmas, the proof is a case analysis of possible contexts and types 
for t and u. 

5 The Minimum Pruning of a T e r m  

We have seen that the pruning relation is an order relation. We can show that for 
each set of expressions of F2 there exists the greatest lower bound w.r.t. _<. 

Definition 7. 
We inductively define the function inf : E2 • E2---~E2 
(i) for each pair of types, 
(ii) for each pair of terms 

(i) Let T1, T2, A, A1, A2, B, B1 and B2 be any types, t~ any atom, X, Y any type 
variables. We have: 

-inf(o~,c0 = ct 
-inf(A1---~B 1,A2---~B2) = inf(A1,A2)--~inf(B 1,B2) 
-inf(VX.T1,VY.T2) =VZ.inf(TI[X:=Z],T2[Y:=Z] ) (Z fresh type variable) 
else 
-inf(A,B) = Unit 

(ii) Let t ,  t', t l ,  t2, u, u', Ul and u 2 be any terms, c any constant, X, Y any type 
variables, A, B any types, x, y any term variables then: 

-inf(c,c) = c 
- inf ix ,x)  = x 
-inf(~.x:A.t',~.y:B.u') -- ~z:inf(A,B).inf(t'[x:=z],u'[y:=z]) (where z is a fresh term 
variable) 
-inf(tlt2,UlU2) = inf(tl,Ul)inf(t2,u2) 
-inf(AX.t',AY.u') = AZ.inf(t'[X:=Z],u'[Y:=Z]) (where Z is a fresh type variable) 
-inf(t'[A],u'[B]) = inf(t',u')[inf(A,B)] 
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else 
-inf(t,u) = unit 

All these assertions are up to r renaming. 

Extending these definitions to contexts we have: 
Definition 8. 
For  each pair of  contexts exists the infcxt and, if F and A are contexts, we define 
infctx(F,A) = {<x:C> I <x:A> ~ F, <x:B>~ A and C = inf(A,B) } 

Now we can state, without proof  
Lemma 7. 
(i) I f  e l  and e2 are both types or both terms and F1 and F2 are contexts then inf(el,e2) 
is the g.l.b, o f  e l  and e2 w.r.t. < while infctx(F1,F2) is the g.l.b, of  F 1 and F 2 w.r.t. 

<ctx. 
(ii) The sets T2 and A 2 are lower semilattices w.r.t. <. 

As consequence, we have the theorem which puts in relation deduction with pruning. 

Theorem 2. 
I f  t and u are terms s.t. F 1- t : A and A l- 
and u < z, then 
infext(F,A) I- inf(t,u) : inf(A,B) 

u : B and there exists a term z s.t. t _< z 

Now we introduce two structures useful for the optimization algorithm that we'll define 
in the next  section. 

Definition 9. 
For  each term t, s. t. F 1- t : T we define: 
(i) LE(t) = {t' I t'< t} 
(ii) CLE(t) = {t' I t'___ t and F'  I- t' : T and F'c_ F} 

I f  t is a term, the set LE(t) (less equal t) is the set o f  all the terms that we can obtain 
from t replacing some parts by the special constants, while the set CLE(t) (contestual 
less equal) is the set of  simplified version of  t with same type and context  and so 
equivalent to t itself. 

Proposition 5. 
Given any term t we have: 
(i) LE(t) is a finite complete lower semilattice w.r.t. ___ 
(ii) CLE(t) is a sub semilattice of  LE(t) 
Proof  
(i) A simple consequence of  lemma 7. 
(ii) Easy, generalizing theorem 2 and remembering that every term t' ~ CLE(t) has the 
same type of  t and has a context included in F. 

Definition 10. 
Let  t any term. W e  denote the minimum element of  CLE(t) as FL2(t). 
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Proposition 6. 
Fl2(t) =obs t. 
Proof 
From theorem 2, since Fl2(t) < t. 

6 An Algorithm for Finding Minimum Prunings 

In this section we show an algorithm to find the term FL2(t), defined in last 
section. In order to compute FI 2 we use the technique of C. Mohring based on marking 
of types (see [9]). A mark is a label that we put over an atomic type, constant or 
variable. Marks are of two kind: 'r' and 'c'. The former means that a term or subterm 
whose type has such mark is redundant, i.e. useless for the computation of final result. 
Instead the latter mark means that the expression may be useful for the computation of 
the result. When an expression is entirely marked we can remove the parts marked 'r'. 
We let parts marked 'c' while we replace redundant types by Unit and the corresponding 
(redundant) terms by unit. So there is a strong correspondence between Mohring's 
manual technique of type labelling and our extended syntax with constants denoting 
useless expression. The marking technique will be used to compute a 'minimum' 
marking that corresponds to a 'minimum' term (with respect to the pruning relation). 
The underlying computational structure is the abstract syntax tree of a term. We use 
the fully decorated tree, in which associated with every node there is the type of the 
subterm individuated by this node. Now, we introduce some definitions and 
terminology about trees and markings. 

Definition 11. 
Let t be a term such that F 1- t : T 
(i) The fully decorated tree of t, FDT(t), is the syntax tree of t in which each node that 
identifies a subterm is decorated by the type of the subterm itself. 
(ii) The fully decorated version of F [- t : T, FDV(F [- t : T), is defined as the ordered 
pair <F, FDT(t)>, formed by the context F and the fully decorated tree of t. 
(iii) Atoms(F,t), the set of occurrences of atoms of FDV(F I- t : T), is formed by 
every occurrence of atom in the types of the variables in the context F with every 
occurrence of atom in the types that decorate the nodes of FDT(t) and the occurrences of 
atoms of applied types in type applications of t. 
(iv) Let Lab be the set formed by the two labels 'r' and 'c', namely Lab = {'r', 'c'}. A 
marking M of FDV(F [- t : T) is a map from Atoms(F,t) to Lab. When we say a 
marking M of t, we mean the restriction of the map M to FDT(t). Note that we can 
identify a marking of a FDV with the set C c_ Atoms(F,t) of occurrences of atoms that 
are marked by 'c'. 

We show these concepts with an example 
Example. 
Let term 1 --- ((AX.kx:X.x)[a--->a](~.y:a.a))b with a an atom, a and b free term 
variables of type ct. We can deduce {<mot>, <b:~>}l- terml: a.  The FDV for this 
judgement, with an example of marking for it, is: 
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app::a c 

app::ar--->a c b: :a r 

A P p : : ( ~ r ~ & ) ~ ( a r ~ e ~  c) ;~y::ar~c~c 

a ' :uf l  
AX::VX.XC--,X c [ar--~ac] 

I 
~ : : X C ~ X  c 

I 
x : :X  c 

{<a:aC>,<b:ote> } 

We call this marking M1. 

Not all the markings are useful or meaningful for the pruning. We single out some 
kinds of markings for their use in optimization. 

Definition 12. 
Let t be a tenn. A marking M of t is canonical if for each node V of FDT(t) no atom 
in the types associated to descendent nodes of V is marked with a 'c', when the type 
associated to V is completely redundant, i.e. all of its atoms are marked with label 'r'. 

Now we defme the map that gives the correspondence between marking and pruning. 

Definition 13. 
Given a fully decorated syntax free for a term t and a canonical marking M for it, we 
denote Simplify(M,t) the term obtained replacing every maximum subtype in t, totally 
marked by 'r', with Unit and every maximum subterm of t, whose type is totally 
marked by 'r ~, with unit. 

Now, we can define others kinds of markings. 

Definition 14. 
Let t be a term s.t. 1" l- t : T, 
(i) A marking M on t is consistent iff Simplify(M,t) is a well formed term w.r.t, some 
context F' <--ctx F. 
(ii)A marking M is saturated iff it is consistent and canonical. 

Observe that, to have consistency in a marking of t, any two atoms matched during the 
typechecking of t have to be marked in the same way. 
As already said, there is a strong correspondence between marking and pruning. This 
correspondence is expressed by the map Simplify. It is an isomorphism from saturated 
markings and the expressions of the system in which: 1) there are no non-atomic types 
whose atoms are just Unit; 2) the only term of type Unit is unit. With this choices, 
we can prove that if t is a term, for each saturated marking M there exists one and only 
one pruned term t' < t such that Simplify(M,t) = t'. 
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For example the marking M1 is saturated. Applying Simplify to it, we have 
S i m p l i f y ( M l , t e r m l ) -  ((AX.~.x:X.x)[Unit---~ct](~.y:Unit.a))unit that is also the 
minimal element of CLE(terml), namely FL2(terml). 

We can define also an order on markings. 

Definition 15. 
Let t be a term s.t. F l- t : T. Let M and M' be markings for the FDV(F 1- t : T). We 
say: 
M < M' iff each 'c' assigned by M is also assigned by M'. 

We can prove that the two ordering correspond to each other. If t is a term and M, M' 
markings over t, then M < M' iff Simplify(M,t) _< Simplify(M',t). 
Obviously, the minimum marking has all 'r'. In this way, the whole term is replaced 
by unit and we obtain a term which is not equivalent to the original, We look for a 
term with same type and same context. So we use an initial marking MO that brought 
with it these conditions. 

Definition 16. 
Given a FDV(F l- t : T), the initial marking M0 for it, is the map that assigns 'r' to 
every atom in Atoms(F,t), excluding: 1) the atoms in the type associated to the root, 
namely the type of the term; 2) the atoms in the type of variables inside the context. 

This initial marking is canonical but inconsistent. The aim of our algorithm is, to find 
a minimum consistent marking M' that is greater (respect to <_) than the initial 
marking M0. This operation is called saturation of a marking. In this section we call 
binder both ~,x:A and AX in term and pair <x:A> in context. 

Now, we can write our optimization algorithm. 
Definition 17. 
Optimization Algorithm 
Input:  A term t ,  a context I" and a type T such that F [- t : T. 
Output: FL2(t). 
Perform in sequence the following steps: 

Build the FDV(F I- t : T). 
- Build the initial marking M0. 

Saturate M0, obtaining M'. 
Apply Simplify(M',t). 

The interesting part of the algorithm is then in the saturation procedure. It consists of 
two parts. In the first part we build a structure, the adiacence graph that is used to 
connect the atoms that have to be marked with the same label. So the edges of the 
graph are a different way to describe consistency condition. If two objects are linked, it 
means that they have been matched during the type checking procedure. In the second 
part, the labels 'c', starting from the type T of the term, flow along the paths of the 
adiacence graph. When this flow is completed the algorithm stops and the resulting 
marking is consistent. 
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Definition 18. 
Saturation Algorithm 
Input: A FDV(F l- t : T) and M0 for it. 
Output: The minimum saturated marking M' s.t. M0 -< M' 
- Build the adiacence graph of FDV(F l- t : T). 
- Propagate the labels to achieve consistency. 

Now we see the algorithm for the construction of the adiacence graph. In this step, we 
build the structure used for obtaining the consistency in the marking. 

Definition 19. 
(i) Given a FDV(F [- t : T), we call adiacence graph, AG(F [- t : T), the graph so 
defined: 
1) The set Nod of nodes is formed by hte union of: 

a) Atoms(F,t) 
b) the set of occurrences of term variables of FDT(t) 
c) the set of binders in the FDT(t) and in the context 
d) the set of all types of FDT(t) 

2) The set Edg of edges is formed by four kinds of edges connecting different kinds of 
nodes: 

a) normal edges connect pairs of atoms in types 
b) bind edges connect free variables with their binders in the context and bound 
variables with their binders in term 
c) broadcast edges link type variables with types 
d) bind broadcast edges link types with types in square brackets. 

3) Every part of the FDV(F [- t : T), matched during the typechecking, is linked by a 
related edge. 
(ii) Given a FDV(F [- t : T), its augmented tree, Tedge(F [- t : T), is obtained from 
the FDV adding the AG(F 1- t : T) on it. 

Definition 20. 
Adiacence Graph Construction Algorithm 
Input: A FDV(F [- t : T) and M0 for it. 
Output: The Tedge(F [- t : T) of FDV. 
Perform the following steps: 

1) Link,with a bind edge, every free term variable to its binder in the context F 
2) For each X-abstraction node 

~x: :A--->B 
I ~ ::B 

of the tree, link corresponding atoms in the two occurrences of B with normal edges 
and link every occurrence of the bound variable x in t to its binder 7~x with a bind 
edge. 
3) For each term application node 

app::B 

/ ~ : : A  
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of  the tree, link corresponding atoms in the two occurrences of A and in the two 
occurrences of B with normal edges. 
4) For each A-abstraction node 

AX::VX.A 

- ' ~ : : A  

of  the tree, link corresponding atoms in the two occurrences of A with normal 
edges. 
5) For each type application node 

APP::B(A) 

~ ::VX.B(X) [A] 

of  the tree, link every occurrence of X in B(X) to the corresponding occurrences of 
A in B(A) with a broadcast edge. Link corresponding atoms in the two occurrences 
of B, that are not X or atoms of  A, with normal edges. Link every occurrence of A 
in B(A) to the occurrence of A in [A] with a bind broadcast edge. 

Now the second step. With this structure, the consistency of a marking is equivalent to 
the following conditions: 
(1) for each pair of atoms connected with a normal edge they are marked in the same 
way; 
(2) for each free or bound term variable x:A in t, if A has at least one mark 'c' and 
<x:A> e F or Xx:A is the binder of x, corresponding atoms in the two occurrences of 
A are marked in the same way; 
(3) for each type variable connected to a type by a broadcast edge, either the variable 
and the atoms of the type are marked 'r' or the variable and at least one atom of the type 
are marked 'c'; 
(4) for each occurrence of type A, connected to a type A in square brackets, by a bind 
broadcast edge, if its marking contains at least one 'c' then corresponding atoms in the 
two occurrences of A are marked in the same way. 
There is still something to say. In our system the type of the constants cannot be 
simplified. So there is only a term strictly less then a constant, namely unit. This 
imply that either a constant is removed or is totally used. So we have to add a fifth 
case to the procedure, for the treatment of constants. 

Definition 21. 
Marking Propagation Algorithm 
Input: The Tedge(F J- t : T) of FDV and the initial marking M0. 
Output: The minimum saturated marking M' s.t. M0 < M'. 
Repeat one of the following steps until no more step can be executed: 

(1) Take any normal edge such that at least one atom is marked 'c'. Then mark the 
other atom 'c' and remove the edge; 
(2) or take any bind edge such that the free or bound variable has at least one 'c' in 
the marking of  its type. Let x:A this variable and <x:A> c F or Xx:A its binder. 
Then remove the bind edge and link with one normal edge each corresponding atom 
in the two occurrences of A; 
(3) or take a broadcast edge such that either the type variable is marked 'c' or the 
type has an atom marked 'c'. Then, in the first case, mark last atom of  the type 
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with 'c'. In the second case mark the type variable with 'c'. In both cases remove the 
edge; 
(4) or take a bind broadcast edge such that the type not inside the square brackets 
has at least one 'c' in its marking. Let A this type. Link each corresponding atom 
in the two occurrences of A with a normal edge. Remove the bind broadcast edge; 
(5) or take a constant c:A such that at least one of its labels is 'c'. Then label with 
'c' each atom of A. 

This part ends the description of our optimization algorithm. We can prove that 
saturation algorithm always stops with the minimum consistent marking, namely the 
one with less 'c' in it, s.t. the type and the context are totally marked with 'c'. Owing 
to the correspondence between pruning and marking, this leds to the minimal pruning 
among the ones which respect the type and the context of the original term. 

Theorem 3. 
Let t be a term s.t. F I- t : T. The saturation algorithm computes the saturation of 
M0, i.e. the minimal marking M' s.t. M0 < M' and M' is saturated. 

Theorem 4. 
Let t be any term. Simplify is an isomorphism between saturated markings of t and the 
set of terms t' < t, whose sintax respects the rules: 1) don't exist non-atomic types 
whose atoms are just Unit; 2) the only term of type Unit is unit. 

As consequence of  the two previous theorems, we have the correctness of our 
optimization algorithm. 

Theorem 5. 
Given a term t such that F [- t : T for some type T and context F, the optimization 
algorithm computes F12(t), i.e. the minimal term t' < t whose type is T and whose 
context if FV2(t). 

7 Conc lus ions  and Future  W o r k s  

In this paper, we have described a first step toward a simplification of expressions 
in F2. Every time we find a subexpression useless for the final result, we replace it by 
a unit. New expressions are shorter but may contain a lot of instances of constant unit. 
We are developing another step, i.e. the elimination of these instances. In this way we 
save more time and space during the evaluation of the expressions. 
In future, we want also introduce the notion of Harrop type in our system. Informally, 
a type H is Harrop if all terms of such type are equivalent. So, for each Harrop type H, 
we can define a canonical constant CH and replace each term t of type H by this 
constant. 
Another idea is to introduce Kinds in our system. Kinds may be useful for pruning 
type variables. If a )~-binder in a term binds a term variable x of type A never used in 
the body of the abstraction, we can prune kx:A to ~x:Unit. For a A-binder that binds a 
type variable never used, we can do nothing. Introducing a special Kind UNIT, we can 
mark this useless abstraction, using this new constant, and in future remove such an 
abstraction. 
Finally, we have to remember that, our techniques are useful above all for 
automatically generated programs. In such programs there may appear large parts of 
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redundant code. Normally, for code generated by hand, the best optimizer is the 
programmer's head. 
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