
Extending Pruning Techniques to Polymorphic
Second Order ~-Calculus

Luca Boerio

Dipartirnento di Informatica, Universita' di Torino
Corso Svizzera 185, 10149 Torino, Italy

lucab@di.unito.it

Abstract. Type theory and constructive logics allow us, from a proof of a
formula, to extract a program that satisfies the specification expressed by
this formula. Normally, programs extracted in this way are inefficient.
Optimization algorithms for these programs have been developed. In this
paper we show an algorithm to optimize programs represented by second
order typed k-terms. We prove also that the simplified programs are
observational equivalent to the original ones.

1 Introduction
Constructive logics can be used to write the specifications of programs as logic

formulas to be proved. Writing programs as constructive proofs of such formulas, is a
good attempt to automate programming and program verification. We can extract
executable code from constructive proofs, using the Curry-Howard isomorphism of
formula-as-types ([8]) or the notion of realizability ((11] and [1]). Following these
ideas, some tools have been introduced to help programmers in developing proofs or
for the automatic extraction of programs, for example COQ, LEGO, NUPRL ([5] and
[6]).
Automatic program extraction has a great problem: often, the extracted code is not
efficient. Many attempts have been done to develop methods for the automatic erasing
of redundant parts from these programs.
For example, in intuitionistic logic, the formula 3x.A(x) is interpreted as a pair,
whose first element is a term t and whose second element is a proof of A(t). Generally,
only the value t of x is needed as program extracted. The proof of A(t), from a
computational point of view, is meaningless. Such a proof is not useful for the
computation of result. It is only useful to prove that the program meets the
specification but this is of use only once and not at every run of the program.
Several algorithms have been defined for erasing redundant code (e.g. Beeson [1] and
Mohring [9] that use manual techniques to label and remove redundant code, Takayama
[10] wich designed an automatic technique that motivated our work). A variant of them
are pruning techniques of S. Berardi ([2], [3] and [4]).
Berardi's idea is that, inside the tree representation of an expression, we can find
subtrees that are useless for computing the final result. Such parts can be removed in
the same way as dead branches in a tree are pruned. Of course the problem is how to
find useless subtrees.
In this paper, we show an algorithm to find useless subterms in computations. These
subterms can safely be replaced by dummy constants, leading to equivalent terms. The
main result of this paper, in particular, is that for each type A and term t of type A,
there exists a unique term t' of type A, of minimum length, such that t' is

121

observational equivalent to t. We'll describe the algorithm that receiving t, gives back
this simplest term.
We'll follow the technique used in [4], by defining two order relations '_<', one for types
and one for terms. Such relations are an attempt to formalize the previous ideas. A < B
means that A is simpler than B. In a similar way, if t and u are terms, t < u means that
t is a simplified version of u. This simpler term has the same input/output behaviour
of the original one if the type doesn't change.
In section 2 we introduce some bare notions about the system in which we write our
programs. In section 3 we formally define the pruning relation <. In section 4 we see
that simplifying a term doesn't alter its operational meaning. In section 5 we see that,
given a term t, there exists a minimum term t' equivalent to t. In section 6 we show an
algorithm to find minimum terms. In section 7 we have conclusions and possible
developments.

2 The System F2

We begin this section with the definition of our system. It is essentially Girard's
system F (see [7]), extended with constants for the monomorphic natural numbers and
special constants unit and Unit.
The intended purpose of Unit is to denote the type with only one element, denoted by
unit. Every expression that we consider useless for the computation of the final result
will be substituted by these constants.
Now the formal definitions.

Definition 1.
(i) The language of types of F 2 is inductively defined by
T ::= Unit I Nat I X I T -> T I VX.T
where X denotes a type variable, and Nat the constant for natural number type.
(ii) The language of pseudoterms is inductively defined
t ::= unit I 0 I S I rec I x I ~Lx:T.t I (t t) I AX.t I t[T]
where 0 and S are the constants for constructing the primitive natural number while rec
is the primitive polymorphic constant for the primitive recursion over Nat; x denotes a
term variable and AX.t and t[T] denote type abstraction and type application.
(iii) A context is any finite set of ordered pairs, whose first components are term
variables, having pairwise distinct names, and whose second components are types.
(iv) If F is a context of the form {<Xl:Tl> <xn:Tn> } dom(F') is {Xl Xn}.

As usual, for type system "a la Church", we have rules for well-formedness of terms.
A judgement of the form F [- t : T, means that the pseudoterm t is a well formed term
of type T in the context F.

Definition 2.
Let Z = {<0:Nat>, <S:Nat~Nat>, < rec :VX.Nat~X~(Nat~X-~X)~X>},
t, tl and t2 be pseudoterms, x a term variable, X a type variable, T, A and B types and
r a context. The term formation rules are:

(UniO r [- unit : Unit (Const) F I - c : A (wi th<c:A>E Z)

(Var) rl-x:T (if<x:T'>E F)

122

Fk.) {<x:A>} 1- t : B r 1- t l : A-OB F 1- t2 : A
(-o I) (-o E)

F I - ~ , x : A . t : A - o B r [- t l t 2 : B

(VI) F l- t : T (X not free in r) (VE) F[, t : V X . T
r [- A X . t : V X . T F I- t[A] : T[X:=A]

We assume the standard convention for the associativity of operators and for the
priorities. We call atom any atomic type, constant or variable, and symbol any term
constant and term variable. We use or, I], Y to denote atoms and s, s', s", ... to
denote symbols. Generally, we use upper case for types and lower case for terms. The
symbol '- ' expresses syntactical equality between expressions.
With FV(e) we indicate the free (type and term) variables of e, while with FVI(e) and
FV2(e) we respectively denote the free type variables and free term variables of e. As
usual, an expression is called closed if it hasn't free (type and term) variables. A
substitution a is a function from variables to expressions of the language such that, if
x is a term variable of type A, o(x) is a term of type A and, if X is a type variable,
t~(X) is a type. We denote substitutions with or, "c The effect of a substitution over
an expression is the replacement of all occurrences of free variables with the
corresponding expressions as indicated in the substitution itself. We suppose implicit
renaming of bound variables to avoid capture of free variables. A closed substitution is
a substitution t~ such that t~(x) is closed for any variable (type and term) x e dom(t~).

If F is a context, a substitution t~ is said to be a F-substitution, if dom(F) g dom(cy).
Let e be any expression. We denote T 2 = {T I T is a type of F2 },T 20 = { T IT is a
closed type of F2}, A2 -- {t I t is a terms ofF2}, A2 ~ = {t I t is a closed terms

of F2}, E2 = T2 u A2 and E2 ~ = T2 ~ u A2 ~

The system has ~ and r I rules for terms and types application. We suppose cz rules
implicit.

Definition 3.
(i) If t,u and f are terms and A a type the elementary reduction rules for F2 are:

(13) (Xx:A.0(u) -->1~ t[x:=u]
(11) ~,x:A.(f x) --->~ f (with x not free in f)

(B) (AX.t)[A] -OB t[X:=A]
(H) AX.(f [X]) -o H f (with X not free in f)

Together with these standard rules there are other ones for the constant rec; if a is a
term of type A and f a term of type Nat---~A--~A then:

(recO) rec [A] 0 a f "-~recO a
(recS) rec [A] (S n) a f -orecS f n (rec [A] n a f)

We write -orec for -oree0 u "--)recS.

(ii) Let r e {I], B , r l , H, rec}. We use: --~r also for the contextual closure of the
elementary reduction rule -or; -'41 for the union --->1~ u "-">B u ---->-q u -->H u "--)rec;
-on for exactly n steps of ---)1; -o_n for at most n steps; --->>n for at least n steps.
-or* is used for any finite number of steps of reduction r (included 0). We use =r for

123

conversion w.r.t, reduction r.We indicate =1~ u =B with =I~B and ~1~ u ---~B with
-~I3B, while =F denotes conversion respect all reduction rules together.
We assume the standard definitions of redex and normal form.

An important notion for the analysis of programs is observational equality =obs. We
can say that two programs are equal from an observational point of view if no
observation or test is able to distinguish them. Formally we have:

Definition 4.
Let t, u be two terms such that F l- t : T and F l- u : T . We define:

(i) t and u closed ~ l- t =obs u iff (Vclosed f s.t. I- f : T ~ N a 0 f(t) =13B f(u)

(ii) any t, u ~ F I- t =obs u iff (Vt~ closed F-substitution) 1- ~(t) =obs t~(u)

We can consider every closed function f :T~Nat as an observation, aiming to discover
any difference in the behaviour of t and u. If it is not possible with observations to find
a difference between the two terms, we say that they are observationally equivalent.

Definition 5.
Let T be a theory on F2. If t and u are terms:

(i) we write F l- t --T u if (t,u) e T and FV2(t) w FV2(u) c dom(F);
(ii) with F It t --T u we mean that F 1- t =T u doesn't hold;
(iii) a theory T is consistent if there exist two terms t, u of same type and context,
such that F It t =T u;
(iv) a theory T is a maximum theory if it is consistent and for each consistent theory
T ' and for each pair of term t and u, we have F l- t =T' u ~ F 1- t =T u.

Lemma 1.
Observational equivalence is a maximum equational theory for F2.
The proof of lemma 1 was developed by Statman and written in an unpublished
manuscript of 1986.

Now some properties of F2.

Proposit ion 1.
System F 2 is Church-Rosser and strongly normalizing.
For the proof see e.g. [7].

A term is said algebraic if it consists only of: constants of kind f:13 or
f:oq--4...--~t~n---~, where 13, tXl tXn are atomic types, term variables of the form
x:tx, where o~ is an atom, and applications.

Proposit ion 2.
Closed algebraic terms of type Nat, in normal form, are only of this shape: sk(0), for
some integer k (if k = 0 sk(0) is 0).
Proof
Easy by induction.

124

3 Pruning in F2

In analogy with [4], we define three relations of <, two on well formed
expressions of the system and one over context. The first relation is over well formed
types. We write A <T B, if A and B are types. The second relation is defined over
contexts. We write F <-ctx F' if F and F' are contexts. The third one is defined on well
formed terms. We write t r:A<a;B U, if t and u are terms s.t. F I- t : A and A 1- u : B.

Definition 6.
Let t, tl , t2, Ul, u2 be any terms, A, B, C, D, T any types, c any costant, x, y, X, Y
any term and type variables, F and F' any contexts. The pruning relations "_<" for types
and terms are inductively defined by two deduction systems:
(i) The system <T

(Unit) Unit <T T (Nat) Nat <T Nat (VAR) X -<T X

A1 <T A2 B1 <T B2 A[X:=Z] <T B[Y:=Z]
(-">) A1-->B1 <T A2-->B2 (V) VX.A <T VY.B (*)

(ii) We say that F <-ctx 1" iff (Vx,A) ((<x:A>e F) ~ (3B) (<x:B>e F' and A <T B)).

(iii) The system r;A_<a;n

F <'etx A F <ctx A
(uni0 unit r;unit--<a;T t (const) c r;A<-A,A c

Y <ctx A (vat)
x F;A<--A;B X

where <x:A> e F and <x:B> e A

(~.) A <T B tl[X:=Z] r;C--<A;D t2[y:=z]
kx:A.tl 1-';A...~C--<A,;B..-~D ky:B.t2 (*)

where F = F' t..) {<z:A>} and A = A' t..) {<z:B>}

(app) t l I'iA---~C--<A;B-.oD t2 Ul F;A<--A;B u2
tlUl r;c<a;D t2u2

tl[X:=Z] F;A--<A;B t2[Y:=Z] tl F;VX.A--<AIVY.B t2 C <T D
(A) AX.tl r;VX.A-<A;VY.B AY.t2 (*) (APP) t1[C] F;A[X:=C]--<A;B[Y:=D] t2[D]

(*) In expressions involving binders we have to inlroduce fresh variables z and Z in
order to have the relation invariant up to a conversion. Without this caution we would
have for example, VX.X -<w VX.X, but not VX.X <T VY.Y.

To simplify the notation, in the rest of the paper we write only <, both for <T and for
r;A<a;B. Since these two relations are defined on different domains, it will be clear from
the context of which relation we are talking about.

125

The relation < is a formalization of the idea of simplification of a term. When an
expression or a part o f an expression is useless at the aim of the computat ion of the
final result, we can replace it with one o f the two special costants unit and Unit. So we
have a simpler expression.
To better understand how pruning an expression we state:

P r o p o s i t i o n 3.
(i) if A and B are types s.t. A _< B then
- either A - B
- or A - Uni t
- or A is obtained from B by replacing some proper subtypes of B with Unit.
(ii) i f t l and t2 are terms s.t. tl -< t2 then
- either tl - t2
- or tl --- unit
- or tI is obtained from t2 by replacing some proper subterms of t2 with unit
- or tl is obtained from t2 by replacing some types B, in type applications, with some
types A s.t. A < B
- or tl is obtained from t2 by replacing the type B of some of its term variables with a
type A s.t. A < B.
All these assertions are up to ct conversion.

Remember always that the relation < is defined on well formed expression. So if we
write e l < e2 we implicitly assume that el and e2 are well formed.

P r o p o s i t i o n 4.
The pruning relation, <, is an order relation.

4 Pruning and Observational Equality

In this section we'll see the main theorem of this paper: pruning is compat ible
with observation equivalence.

L e m m a 2.
I f t and u are closed terms in normal form of type Nat, such that t < u, then t = u.
P r o o f
As in [4].

L e m m a 3.
Let x a term variable. Let A and A' types s.t. A _< A'. Let t, t', u and u' terms such that
F u {<x:A>} l- t : B , F ' u {<x:A'>} 1- t ' : B ' , FI- u:A, F'I- u '" A ' , f o r s o m e
F, F' , B, B', and t < t', u < u'. Then t[x:=u] _< t'[x:=u']
P r o o f
By induction on t.

L e m m a 4.
Let t, t', u' be terms. I f t _< t' and t'--->n u' with only 13 reduction steps, then t --->_<n u
for some term u < u'.
P r o o f
By induction on n, using the previous lemma and the definition of <.

126

Similar properties hold for type substitutions and B reductions.

Lemma 5.
(i) If A, A', T and T' are types and X is a type variable, such that A < A' and T < T'
then A[X:=T] _< A'[X:=T].
(ii) If t and t' are terms, T and T' are types and X is a type variable, such that t < t' and
T < T' then t[X:fT] < t'[X:=T].
(iii) Let t, t' and u' be any terms. If t < t' and t ' ~n u' with only B reduction steps, then
t ~_<n u for some term u _< u'.

From the previous lemmas the following result follows.

Lemma 6.
Let t, t' and u' be any terms. If t < t' and t'--~n u', with only I] or B reduction steps,
then t -'-)<n u for some term u < u'.

Now we are ready for the main theorem about the pruning and the observationality.

Theorem 1.
Let t and u terms. I f F [- t : A , F [- u : A a n d t - < u ~ F l - t = o b s U .
Proof
Using the previous lemmas, the proof is a case analysis of possible contexts and types
for t and u.

5 The Minimum Pruning of a T e r m

We have seen that the pruning relation is an order relation. We can show that for
each set of expressions of F2 there exists the greatest lower bound w.r.t. _<.

Definition 7.
We inductively define the function inf : E2 • E2---~E2
(i) for each pair of types,
(ii) for each pair of terms

(i) Let T1, T2, A, A1, A2, B, B1 and B2 be any types, t~ any atom, X, Y any type
variables. We have:

-inf(o~,c0 = ct
-inf(A1---~B 1,A2---~B2) = inf(A1,A2)--~inf(B 1,B2)
-inf(VX.T1,VY.T2) =VZ.inf(TI[X:=Z],T2[Y:=Z]) (Z fresh type variable)
else
-inf(A,B) = Unit

(ii) Let t , t', t l , t2, u, u', Ul and u 2 be any terms, c any constant, X, Y any type
variables, A, B any types, x, y any term variables then:

-inf(c,c) = c
- inf ix ,x) = x
-inf(~.x:A.t',~.y:B.u') -- ~z:inf(A,B).inf(t'[x:=z],u'[y:=z]) (where z is a fresh term
variable)
-inf(tlt2,UlU2) = inf(tl,Ul)inf(t2,u2)
-inf(AX.t',AY.u') = AZ.inf(t'[X:=Z],u'[Y:=Z]) (where Z is a fresh type variable)
-inf(t'[A],u'[B]) = inf(t',u')[inf(A,B)]

127

else
-inf(t,u) = unit

All these assertions are up to r renaming.

Extending these definitions to contexts we have:
Definition 8.
For each pair of contexts exists the infcxt and, if F and A are contexts, we define
infctx(F,A) = {<x:C> I <x:A> ~ F, <x:B>~ A and C = inf(A,B) }

Now we can state, without proof
Lemma 7.
(i) I f e l and e2 are both types or both terms and F1 and F2 are contexts then inf(el,e2)
is the g.l.b, o f e l and e2 w.r.t. < while infctx(F1,F2) is the g.l.b, of F 1 and F 2 w.r.t.

<ctx.
(ii) The sets T2 and A 2 are lower semilattices w.r.t. <.

As consequence, we have the theorem which puts in relation deduction with pruning.

Theorem 2.
I f t and u are terms s.t. F 1- t : A and A l-
and u < z, then
infext(F,A) I- inf(t,u) : inf(A,B)

u : B and there exists a term z s.t. t _< z

Now we introduce two structures useful for the optimization algorithm that we'll define
in the next section.

Definition 9.
For each term t, s. t. F 1- t : T we define:
(i) LE(t) = {t' I t'< t}
(ii) CLE(t) = {t' I t'___ t and F' I- t' : T and F'c_ F}

I f t is a term, the set LE(t) (less equal t) is the set o f all the terms that we can obtain
from t replacing some parts by the special constants, while the set CLE(t) (contestual
less equal) is the set of simplified version of t with same type and context and so
equivalent to t itself.

Proposition 5.
Given any term t we have:
(i) LE(t) is a finite complete lower semilattice w.r.t. ___
(ii) CLE(t) is a sub semilattice of LE(t)
Proof
(i) A simple consequence of lemma 7.
(ii) Easy, generalizing theorem 2 and remembering that every term t' ~ CLE(t) has the
same type of t and has a context included in F.

Definition 10.
Let t any term. W e denote the minimum element of CLE(t) as FL2(t).

128

Proposition 6.
Fl2(t) =obs t.
Proof
From theorem 2, since Fl2(t) < t.

6 An Algorithm for Finding Minimum Prunings

In this section we show an algorithm to find the term FL2(t), defined in last
section. In order to compute FI 2 we use the technique of C. Mohring based on marking
of types (see [9]). A mark is a label that we put over an atomic type, constant or
variable. Marks are of two kind: 'r' and 'c'. The former means that a term or subterm
whose type has such mark is redundant, i.e. useless for the computation of final result.
Instead the latter mark means that the expression may be useful for the computation of
the result. When an expression is entirely marked we can remove the parts marked 'r'.
We let parts marked 'c' while we replace redundant types by Unit and the corresponding
(redundant) terms by unit. So there is a strong correspondence between Mohring's
manual technique of type labelling and our extended syntax with constants denoting
useless expression. The marking technique will be used to compute a 'minimum'
marking that corresponds to a 'minimum' term (with respect to the pruning relation).
The underlying computational structure is the abstract syntax tree of a term. We use
the fully decorated tree, in which associated with every node there is the type of the
subterm individuated by this node. Now, we introduce some definitions and
terminology about trees and markings.

Definition 11.
Let t be a term such that F 1- t : T
(i) The fully decorated tree of t, FDT(t), is the syntax tree of t in which each node that
identifies a subterm is decorated by the type of the subterm itself.
(ii) The fully decorated version of F [- t : T, FDV(F [- t : T), is defined as the ordered
pair <F, FDT(t)>, formed by the context F and the fully decorated tree of t.
(iii) Atoms(F,t), the set of occurrences of atoms of FDV(F I- t : T), is formed by
every occurrence of atom in the types of the variables in the context F with every
occurrence of atom in the types that decorate the nodes of FDT(t) and the occurrences of
atoms of applied types in type applications of t.
(iv) Let Lab be the set formed by the two labels 'r' and 'c', namely Lab = {'r', 'c'}. A
marking M of FDV(F [- t : T) is a map from Atoms(F,t) to Lab. When we say a
marking M of t, we mean the restriction of the map M to FDT(t). Note that we can
identify a marking of a FDV with the set C c_ Atoms(F,t) of occurrences of atoms that
are marked by 'c'.

We show these concepts with an example
Example.
Let term 1 --- ((AX.kx:X.x)[a--->a](~.y:a.a))b with a an atom, a and b free term
variables of type ct. We can deduce {<mot>, <b:~>}l- terml: a. The FDV for this
judgement, with an example of marking for it, is:

129

app::a c

app::ar--->a c b: :a r

A P p : : (~ r ~ &) ~ (a r ~ e ~ c) ;~y::ar~c~c

a ' :uf l
AX::VX.XC--,X c [ar--~ac]

I
~ : : X C ~ X c

I
x : :X c

{<a:aC>,<b:ote> }

We call this marking M1.

Not all the markings are useful or meaningful for the pruning. We single out some
kinds of markings for their use in optimization.

Definition 12.
Let t be a tenn. A marking M of t is canonical if for each node V of FDT(t) no atom
in the types associated to descendent nodes of V is marked with a 'c', when the type
associated to V is completely redundant, i.e. all of its atoms are marked with label 'r'.

Now we defme the map that gives the correspondence between marking and pruning.

Definition 13.
Given a fully decorated syntax free for a term t and a canonical marking M for it, we
denote Simplify(M,t) the term obtained replacing every maximum subtype in t, totally
marked by 'r', with Unit and every maximum subterm of t, whose type is totally
marked by 'r ~, with unit.

Now, we can define others kinds of markings.

Definition 14.
Let t be a term s.t. 1" l- t : T,
(i) A marking M on t is consistent iff Simplify(M,t) is a well formed term w.r.t, some
context F' <--ctx F.
(ii)A marking M is saturated iff it is consistent and canonical.

Observe that, to have consistency in a marking of t, any two atoms matched during the
typechecking of t have to be marked in the same way.
As already said, there is a strong correspondence between marking and pruning. This
correspondence is expressed by the map Simplify. It is an isomorphism from saturated
markings and the expressions of the system in which: 1) there are no non-atomic types
whose atoms are just Unit; 2) the only term of type Unit is unit. With this choices,
we can prove that if t is a term, for each saturated marking M there exists one and only
one pruned term t' < t such that Simplify(M,t) = t'.

130

For example the marking M1 is saturated. Applying Simplify to it, we have
S i m p l i f y (M l , t e r m l) - ((AX.~.x:X.x)[Unit---~ct](~.y:Unit.a))unit that is also the
minimal element of CLE(terml), namely FL2(terml).

We can define also an order on markings.

Definition 15.
Let t be a term s.t. F l- t : T. Let M and M' be markings for the FDV(F 1- t : T). We
say:
M < M' iff each 'c' assigned by M is also assigned by M'.

We can prove that the two ordering correspond to each other. If t is a term and M, M'
markings over t, then M < M' iff Simplify(M,t) _< Simplify(M',t).
Obviously, the minimum marking has all 'r'. In this way, the whole term is replaced
by unit and we obtain a term which is not equivalent to the original, We look for a
term with same type and same context. So we use an initial marking MO that brought
with it these conditions.

Definition 16.
Given a FDV(F l- t : T), the initial marking M0 for it, is the map that assigns 'r' to
every atom in Atoms(F,t), excluding: 1) the atoms in the type associated to the root,
namely the type of the term; 2) the atoms in the type of variables inside the context.

This initial marking is canonical but inconsistent. The aim of our algorithm is, to find
a minimum consistent marking M' that is greater (respect to <_) than the initial
marking M0. This operation is called saturation of a marking. In this section we call
binder both ~,x:A and AX in term and pair <x:A> in context.

Now, we can write our optimization algorithm.
Definition 17.
Optimization Algorithm
Input: A term t , a context I" and a type T such that F [- t : T.
Output: FL2(t).
Perform in sequence the following steps:

Build the FDV(F I- t : T).
- Build the initial marking M0.

Saturate M0, obtaining M'.
Apply Simplify(M',t).

The interesting part of the algorithm is then in the saturation procedure. It consists of
two parts. In the first part we build a structure, the adiacence graph that is used to
connect the atoms that have to be marked with the same label. So the edges of the
graph are a different way to describe consistency condition. If two objects are linked, it
means that they have been matched during the type checking procedure. In the second
part, the labels 'c', starting from the type T of the term, flow along the paths of the
adiacence graph. When this flow is completed the algorithm stops and the resulting
marking is consistent.

131

Definition 18.
Saturation Algorithm
Input: A FDV(F l- t : T) and M0 for it.
Output: The minimum saturated marking M' s.t. M0 -< M'
- Build the adiacence graph of FDV(F l- t : T).
- Propagate the labels to achieve consistency.

Now we see the algorithm for the construction of the adiacence graph. In this step, we
build the structure used for obtaining the consistency in the marking.

Definition 19.
(i) Given a FDV(F [- t : T), we call adiacence graph, AG(F [- t : T), the graph so
defined:
1) The set Nod of nodes is formed by hte union of:

a) Atoms(F,t)
b) the set of occurrences of term variables of FDT(t)
c) the set of binders in the FDT(t) and in the context
d) the set of all types of FDT(t)

2) The set Edg of edges is formed by four kinds of edges connecting different kinds of
nodes:

a) normal edges connect pairs of atoms in types
b) bind edges connect free variables with their binders in the context and bound
variables with their binders in term
c) broadcast edges link type variables with types
d) bind broadcast edges link types with types in square brackets.

3) Every part of the FDV(F [- t : T), matched during the typechecking, is linked by a
related edge.
(ii) Given a FDV(F [- t : T), its augmented tree, Tedge(F [- t : T), is obtained from
the FDV adding the AG(F 1- t : T) on it.

Definition 20.
Adiacence Graph Construction Algorithm
Input: A FDV(F [- t : T) and M0 for it.
Output: The Tedge(F [- t : T) of FDV.
Perform the following steps:

1) Link,with a bind edge, every free term variable to its binder in the context F
2) For each X-abstraction node

~x: :A--->B
I ~ ::B

of the tree, link corresponding atoms in the two occurrences of B with normal edges
and link every occurrence of the bound variable x in t to its binder 7~x with a bind
edge.
3) For each term application node

app::B

/ ~ : : A

132

of the tree, link corresponding atoms in the two occurrences of A and in the two
occurrences of B with normal edges.
4) For each A-abstraction node

AX::VX.A

- ' ~ : : A

of the tree, link corresponding atoms in the two occurrences of A with normal
edges.
5) For each type application node

APP::B(A)

~ ::VX.B(X) [A]

of the tree, link every occurrence of X in B(X) to the corresponding occurrences of
A in B(A) with a broadcast edge. Link corresponding atoms in the two occurrences
of B, that are not X or atoms of A, with normal edges. Link every occurrence of A
in B(A) to the occurrence of A in [A] with a bind broadcast edge.

Now the second step. With this structure, the consistency of a marking is equivalent to
the following conditions:
(1) for each pair of atoms connected with a normal edge they are marked in the same
way;
(2) for each free or bound term variable x:A in t, if A has at least one mark 'c' and
<x:A> e F or Xx:A is the binder of x, corresponding atoms in the two occurrences of
A are marked in the same way;
(3) for each type variable connected to a type by a broadcast edge, either the variable
and the atoms of the type are marked 'r' or the variable and at least one atom of the type
are marked 'c';
(4) for each occurrence of type A, connected to a type A in square brackets, by a bind
broadcast edge, if its marking contains at least one 'c' then corresponding atoms in the
two occurrences of A are marked in the same way.
There is still something to say. In our system the type of the constants cannot be
simplified. So there is only a term strictly less then a constant, namely unit. This
imply that either a constant is removed or is totally used. So we have to add a fifth
case to the procedure, for the treatment of constants.

Definition 21.
Marking Propagation Algorithm
Input: The Tedge(F J- t : T) of FDV and the initial marking M0.
Output: The minimum saturated marking M' s.t. M0 < M'.
Repeat one of the following steps until no more step can be executed:

(1) Take any normal edge such that at least one atom is marked 'c'. Then mark the
other atom 'c' and remove the edge;
(2) or take any bind edge such that the free or bound variable has at least one 'c' in
the marking of its type. Let x:A this variable and <x:A> c F or Xx:A its binder.
Then remove the bind edge and link with one normal edge each corresponding atom
in the two occurrences of A;
(3) or take a broadcast edge such that either the type variable is marked 'c' or the
type has an atom marked 'c'. Then, in the first case, mark last atom of the type

133

with 'c'. In the second case mark the type variable with 'c'. In both cases remove the
edge;
(4) or take a bind broadcast edge such that the type not inside the square brackets
has at least one 'c' in its marking. Let A this type. Link each corresponding atom
in the two occurrences of A with a normal edge. Remove the bind broadcast edge;
(5) or take a constant c:A such that at least one of its labels is 'c'. Then label with
'c' each atom of A.

This part ends the description of our optimization algorithm. We can prove that
saturation algorithm always stops with the minimum consistent marking, namely the
one with less 'c' in it, s.t. the type and the context are totally marked with 'c'. Owing
to the correspondence between pruning and marking, this leds to the minimal pruning
among the ones which respect the type and the context of the original term.

Theorem 3.
Let t be a term s.t. F I- t : T. The saturation algorithm computes the saturation of
M0, i.e. the minimal marking M' s.t. M0 < M' and M' is saturated.

Theorem 4.
Let t be any term. Simplify is an isomorphism between saturated markings of t and the
set of terms t' < t, whose sintax respects the rules: 1) don't exist non-atomic types
whose atoms are just Unit; 2) the only term of type Unit is unit.

As consequence of the two previous theorems, we have the correctness of our
optimization algorithm.

Theorem 5.
Given a term t such that F [- t : T for some type T and context F, the optimization
algorithm computes F12(t), i.e. the minimal term t' < t whose type is T and whose
context if FV2(t).

7 Conc lus ions and Future W o r k s

In this paper, we have described a first step toward a simplification of expressions
in F2. Every time we find a subexpression useless for the final result, we replace it by
a unit. New expressions are shorter but may contain a lot of instances of constant unit.
We are developing another step, i.e. the elimination of these instances. In this way we
save more time and space during the evaluation of the expressions.
In future, we want also introduce the notion of Harrop type in our system. Informally,
a type H is Harrop if all terms of such type are equivalent. So, for each Harrop type H,
we can define a canonical constant CH and replace each term t of type H by this
constant.
Another idea is to introduce Kinds in our system. Kinds may be useful for pruning
type variables. If a)~-binder in a term binds a term variable x of type A never used in
the body of the abstraction, we can prune kx:A to ~x:Unit. For a A-binder that binds a
type variable never used, we can do nothing. Introducing a special Kind UNIT, we can
mark this useless abstraction, using this new constant, and in future remove such an
abstraction.
Finally, we have to remember that, our techniques are useful above all for
automatically generated programs. In such programs there may appear large parts of

134

redundant code. Normally, for code generated by hand, the best optimizer is the
programmer's head.

Acknowledgements
I want to thank my supervisor M. Coppo for his help in recent years and for his

valuable remarks and suggestions about this paper. Above all I thank S. Berardi since
without his foundational work, his encouragement and discussions about pruning this
paper would never have been written.

Bibliography

[1] M. Beeson, Foundations of Constructive Mathematics, Berlin, Springer-Verlag,
1985

[2] S. Berardi, Extensional Equality for Simply Typed A-calculi, Technical Report,
Turin University, 1993.

[3] S. Berardi, A canonical Projection between Simply Typed)~-calculi, Technical
Report, Turin University, 1993.

[4] S. Berardi, Pruning Simply Typed ~.-terms, Technical Report, Turin University,
1993.

[5] R. L. Constable et al., Implementing Mathematics with the Nuprl Proof
Development System, Prentice-Hall, 1986.

[6] G. Dowek, A. Felty, H. Herbeiin, G. Huet, C. Murthy, C. Parent, C. Pauling-
Mohring, B. Werner, The Coq Proof Assistant- User's Guide, INRIA -
Rocquencourt, 1983.

[7] J.-Y. Girard, Interpretation Fonctionelle et Elimination des Coupures de
l'Arithmetique d'Ordre Superieur, These de Doctorat d'Etat, Soutenue le 26 Juin
1972.

[8] W.A. Howard, The Formulae-as-Types notion of Construction, in 'Essays on
Combinatory Logic, Lambda Calculus and Formlism', Eds J. P. Seldin and j. R.
Hindley, Acca_demic Press, 1980.

[9] C. Paulin-Mohring, Extracting Fco's Programs from Proofs in the Calculus of
Constructions, In: Association for Computing Machinery, editor, Sixteenth Annual
ACM Symposium on Priciples of Programming Languages, 1989.

[10] Y. Takayama, Extraction of Redundancy-free Programs from Constructive Natural
Deduction Proofs, Journal of Symbolic Computation, 1991, 12, 29-69

[11] A. S. Troelstra, Mathematical Investigation of lntuitionistic Arithmetic and
Analysis, Lecture Notes in Mathematics, 344, Springer-Verlag, 1973

