
Programming Objects with ML-ART

An extension to ML with Abstract and Record

Types

Didier R�emy

INRIA-Rocquencourt, BP 105, F-78153 Le Chesnay Cedex.

To appear in TACS'94

Abstract. Class-based objects can be programmed directly and e�-

ciently in a simple extension to ML. The representation of objects, based

on abstract and record types, allows all usual operations such as mul-

tiple inheritance, object returning capability, and message transmission

to themselves as well as to their super classes. There is, however, no

implicit coercion from objects to corresponding ones of super-classes.

A simpler representation of objects without recursion on values is also

described. The underlying language extends ML with recursive types,

existential and universal types, and mutable extensible records. The lan-

guage ML-ART is given with a call-by-value semantics for which type

soundness is proved.

Introduction

An important motivator for type-checking extensible records is their applica-

tion to object encoding. Initiated by Cardelli in 1984 [Car84], continued by

Wand [Wan87], and then many others, record type-checking has produced sev-

eral satisfactory solutions for higher order languages [CM89, HP90] and for ML

[JM88, OB88, Oho90, R�em93b]. Object encoding, based on record calculi, has

revealed severe di�culties, mainly due to over-reliance on recursive values. Con-

sequently, the tendency has been to design languages with objects as primitive

operations [Bru93, AC94, Hen91a, MHF93], rather than encodings, to achieve

important simpli�cation of type-theoretical models.

Pierce and Turner produced convincing evidence that object-oriented pro-

gramming can be treated as a matter of programming style, at least from a

theoretical point of view [PT93]. However, the use of F

!

<:

as the base language

supports the idea that encodings involve complex type theories, and the demon-

stration does not always apply to the ML programmer. The need to write many

coercions, due to the use of explicit types and to the absence of record exten-

sion, makes it obvious that large-scale object-oriented applications cannot be

programmed directly in F

!

<:

. Finally, the encoding is created in a call-by-name

language, which results in a duplication of too many structures. A recent version

of the encoding in a call-by-value language [Pie93] still contains inherent ine�-

ciencies. At least a large amount of syntactic sugar must be provided to program

objects in F

!

<:

.

We concur with the claim that object-oriented programming is essentially

a matter of style. Consequently, we do not address it in this paper. Our main

goal is to demonstrate that objects can be programmed in a small extension to

ML. Therefore, we repeat Pierce's method utilizing, however, a basic language

derived from ML. This results in a quite elegant and still
exible class-based

object-oriented programming style, almost as concise as if objects were primitive.

No syntactic sugar is required. This approach enables programming capabilities

such as multiple inheritance, object returning ability and message transmission

to self as well as super class. We recognize that implicit coercion of objects to

their counterparts in super classes is not possible. This is a serious restriction of

our approach to objects.

As in [PT93], we consider objects as abstract data structures, but our encod-

ing di�ers in two essential ways. First, we can take advantage of record extension

to implement inheritance in a simpler way which avoids successive coercions and

treats classes as \�rst class citizens". Ignoring implicit class coercions enables

us to move the recursion on \self" from method vector creation to method ap-

plication, converting objects to non recursive values.

The second interest of this paper is the language ML-ART utilized for pro-

gramming objects; it extends core ML with several orthogonal features. None

of these is really new, however, the combination is original. We give a complete

de�nition of ML-ART and verify type soundness, but we omit type inference.

The most important feature of ML-ART is extensible records. We choose

those described in [R�em93b], although other choices are permissible, provided

they implement polymorphic access and polymorphic extension. Polymorphic

access refers to the ability to de�ne a function that reads the same �eld of

many records, with di�erent domains. This is the key operation to message

passing. Record extension is the operation that creates new records from older

ones, via addition of new �elds. It is said to be polymorphic if it can operate

on records with di�erent domains. Record extension is used to program single

inheritance [Wan87] or even multiple inheritance reusing the trick that provides

record concatenation through record extension only [R�em93c].

The language is also enriched with recursive types. Record types and recursive

types are su�cient to program objects with value abstraction, modulo serious

ine�ciencies and di�culties with the compilation of recursive values. Thus, we

choose to extend the language with existential types, as described by La�ufer and

Odersky [LO92], and use type abstraction to conceal the internal state of objects.

This necessitates replacement of record types with more expressive projective

types [R�em92b]. Finally, existential types introduce scope borders which can

only be crossed using universal types in a dual way.

The paper is organized as follows. In section 1, we compare encodings of

objects with type and value abstraction. In section 2 we informally introduce

the language ML-ART. We motivate and introduce its components, one by one.

A formal presentation is supplied in the appendices. In section 3, we show how

objects can be programmed in ML-ART. In the �nal section, we discuss and

conclude the experience.

1 Objects cannot be programmed with value abstraction

Abstractly, objects are �rst class structures which can only be reached by mes-

sages. Moreover, a message may be sent to many objects that do not necessarily

accept the same set of messages. In a very simplistic view, messages are labels,

objects are records fa

1

= f

1

; : : :a

n

= f

n

g whose domains are the set of messages

that the objects may receive, and each value f

i

is a function that describes the

reaction of the object when it receives message a

i

.

In practice, however, objects belong to classes. A class is a collection of

objects that answer exactly the same set of messages and whose functions f

i

's

can be written m

i

r where r only depends on the object. The function m

i

is

called the method, and r is called the state. An object can thus be seen as

a record of closures fa

1

= hr;m

1

i; : : :a

n

= hr;m

n

ig or equivalently hr; fa

1

=

m

1

; : : :a

n

= m

n

gi, which we write hr; ~mi and

���!

hr;mi, respectively, for short. This

equivalence has been studied more formally in [HP92].

Yet, the two representations are quite di�erent in practice. The representation

hr; ~mi enables sharing of the record of methods ~m while the other does not. When

objects are primitive in the language, they can be treated as if they were records

of closures, and can still be e�ciently compiled by pairing the state with a record

of methods, provided this is done consistently everywhere. Conversely, objects

should rather be represented by a closure hr; ~mi when they are derived constructs

or directly programmed in the language.

The advantage of objects as records of closures is that states of objects are

hidden in the partial application of m

i

's to r. This guarantees that they cannot

be directly accessed, except via messages. In the other view, objects expose

their state. Access to the state can easily be protected by tagging objects with

a non-accessible constructor. However, this is insu�cient in a typed language,

since the types will reveal the internal state of objects. Although this does no

violate security, it creates incompatible sets of objects with identical interfaces,

but di�erent internal states. For instance, bidimensional points implemented

with polar and cartesian coordinates could not be interchanged. More generally,

di�erent summands of the same data structure (for instance, nil and cons objects)

cannot be viewed as two implementations of the same speci�cation (the list

interface).

As shown in [PT93], the state of objects can be nicely hidden using type

abstraction. Higher-order type operators also play a key-role. When objects are

viewed as pairs (r; ~m) of an internal state r and a vector of methods ~m, the

type of r, say �

r

, must be hidden, but still allow r to be passed to any �eld

of ~m. Thus, each method m

i

must have type �

r

! �

i

, where the codomain of

the methods, described by ~�

i

, di�ers on most �elds. There must be a uniform

way of describing a pair whose �rst component has some type �

r

and whose

second component is a record of functions of common domain �

r

, and di�erent

codomains. In [PT93] , the language F

!

<:

provided both existential types and

powerful type operators. Here, the base language is ML. It is immediately ex-

tended with extensible records [R�em93b] and a form of existential [LO92]. Then,

projective types [R�em92b] are added as a palliation to the lack of type operators.

2 An informal introduction to ML-ART

We have shown evidence that before any attempt to program objects, the lan-

guage ML must be extended with several features. Each extension is quite simple

and none of them is really new; either they have been described somewhere else,

or already implemented in some version of ML. Their combination provides just

enough power to program objects in a
exible and elegant way. The two main

extensions are polymorphic records and existential types. Recursive types are

also added and record types are enriched to projective types. Finally, a simple

form of universal types are added, imitating existential type, so that messages

can be �rst class citizens.

In this section we brie
y and informally describe the language ML-ART. A

complete de�nition of the language is given in the appendices.

2.1 The core language

The core language is ML, with a call-by-value semantics. Programs are given by

the following grammar:

a ::= x j c j fun x! a j a

1

a

2

j let x = a

1

in a

2

j (ref a

1

) j (!a

1

) j (a

1

:= a

2

)

and are taken modulo renaming of bound variables. The conditionals and pairs

may be provided as syntactic sugar and new constants (ranged over by c).

For convenience, we also use simultaneous \let" bindings with the construc-

tion let x

1

= a

1

and : : : x

n

= a

n

in a

0

that can be expanded into cascades of

lets after renaming of bound variables.

Typing rules are usual Damas-Milner ones, restricting however, polymor-

phism to values for safety of mutable operations [Wri93].

2.2 Extensible records

Monomorphic records, such as those of Sml [HMT91] or Caml-Light [LM92], are

not su�cient to program objects. The basic operation on objects is message

passing. It is commonly implemented as an access to the appropriate method,

through a record carried by the object itself. The same message often needs to

be passed to objects of di�erent classes, i.e. objects that can receive di�erent

sets of messages. Thus, access to the record of methods must be polymorphic.

Record extension is not absolutely required for simulating objects. For in-

stance, in [PT93], classes are de�ned at top-level. Consequently, when one class

inherits another, all methods of the super class are known and can be explicitly

copied into the new record of methods. However, writing all coercion functions

quickly becomes a burden and some syntactic sugar is required to automatically

generate them. Non-polymorphic record extension can be useful to avoid syn-

tactic sugar, but classes cannot yet be �rst-class citizens [Hen91b]. Polymorphic

extension enables both multiple inheritance and classes as �rst-class citizens.

The extensible records are those

1

described in [R�em93b]. We assume that a

denumerable collection of labels L is given. Instead of introducing new syntax for

records, we extend the set of constants with the empty record fg and two families

of primitives (:`) and (k f` = g) for all labels `. These implement respectively

the access to �eld ` and extension on �eld `. For convenience, we also write (a k

f`

1

= a

1

; : : : `

n

= a

n

g) as a short hand for (: : : (a k f`

1

= a

1

g) : : : jjf`

n

= a

n

g)

and we omit a k when a is an empty record. As in Sml, we use the abusive but

very convenient convention that (a k fxg) stands for (a k f`

x

= xg), where `

x

is

the label that has the same name as variable x.

ML types are enriched with record types:

� ::= : : : j f�g j �:� j abs j pre j (` : � ; �) ` 2 L

The formation of record types is restricted by sorts. Types are also taken modulo

equations in order to re-arrange �elds. For instance, the types f`

1

: �

1

; (`

2

:

�

2

; �

3

)g and f`

2

: �

2

; (`

1

: �

1

; �

3

)g are equal. The types that are shown to the user

can be put in the canonical form f`

1

: �

1

; : : :`

n

: �

n

; �

0

g where:

{ each �

i

is either a variable or of the form �

0

i

:�

00

i

.

{ �

0

i

is either a variable or one of the two symbols pre and abs; it manifests

the presence of the corresponding �eld,

{ �

00

i

provides the type of the corresponding �eld if present,

{ �

0

is called the template; it identi�es the presence and the types of all �elds

but `

1

, : : : `

n

. To accomplish this, the template can be replaced by (`

n+1

:

�

0

0

; �

00

0

) at any time, but consistently in all record types, where �

0

0

and �

00

0

are

two copies of �

0

. This operation is called expansion.

{ variables that appear in the template, called template variables, may only

occur in another template that is preceded by the same set of �elds. In par-

ticular, they cannot occur outside of a template and, consequently, outside

of a record type.

For instance, the record fa = 2; b = trueg has type

fa : pre.true; b : pre.bool; abs. 'ag;

which says that �elds a and b are present with types int and true, and all other

�elds are absent with any type; by expansion, the record also has type:

fa : pre.true; b : pre.bool; c : abs. 'b; abs. 'cg:

See [R�em93b] or the appendices for a detailed treatment of sorts and record

types.

1

In fact, in [R�em93b] two variants of record types are described, both in section 3.3.

Here, we use the second one, but with the weaker type assumptions of the �rst one.

There are no special typing rules for records; the primitives simply come with

the following principal types:

fg : 8�: fabs:�g

(:l) : 8�

0

; �

1

: fl : pre:�

0

;�

1

g ! �

0

(k f` = g) : 8�

0

; �

1

; �

2

: fl : �

0

;�

1

g ! �

2

! fl : pre:�

2

;�

1

g

2.3 Projective types

As concluded in section 1, it should be possible to write the type of records of

functions that have the same domain but di�erent codomains. Simple record

types enable types in templates. For instance, the type f�

2

:�

0

! �

1

g describes

records whose �elds always carry functions. It is impossible, however, to write

such type as �

0

� f�

2

:�

0

! �

1

g since �

0

is used both in templates and outside

of them.

Projective types solve this problem by introducing a new symbol [] used to

coerce standard types to templates. It prevents the type � from being copied

when [�] is expanded. The above type can be written �

0

� f�

2

:[�

0

]! �

1

g. By

expansion, a value of this type also has type �

0

� f` : �

0

2

:�

0

! �

0

1

; �

00

2

:[�

0

] !

�

00

1

g. Thus �

0

� f�:[�

0

]! �

1

g is the type of pairs composed of a value of type �

0

and a record whose �elds are functions of domains �

0

and of codomains described

by �

1

, i.e. the type of objects with exposed state �

0

.

Projective types are described in more details in the appendix B. They are

fully formalized in [R�em93a] and also introduced more intuitively in [R�em92b].

In [R�em92b] projective types are used to type more powerful primitives. In

ML-ART they essentially de�ne more precise types such as the type of objects.

2.4 Recursive types

Recursive types are only provided through data-type declarations in ML. Since

objects must be able to send messages to themselves, either the objects or the

functions that send messages to objects have recursive types. In order to avoid

type declaration of objects in ML-ART, we allow implicit recursive types. Adding

implicit recursive types to ML is quite easy since type inference reduces to �rst

order uni�cation, and there are well-known uni�cation algorithms for recursive

types [MM82, Hue76].

Equality for recursive types, de�ned in appendix B, is standard [AC91], but

recursive types need to be considered more carefully in the presence of equations.

To understand recursive types intuitively, one should think of them as regular

trees. In order to de�ne them we add the syntax rec � in � , where � is neither a

variable nor another (rec in) type.

With recursive types, the call-by-value �x-point combinator

let Y F = (fun f x ! F (f f) x) (fun f x ! F (f f) x);;

can be de�ned. Recursive de�nition of functions let rec f = a

1

in a

2

is allowed

as syntactic sugar for let f = Y (fun f ! a

1

) in a

2

. Recursively let-bound vari-

ables become lambda-bound in the expanded form, which provides the usual

monomorphic typing rules for recursion. The type of Y forces a

1

to have a func-

tional type. Consequently, it does not allow the construction of non-functional

recursive values.

2.5 Existential types

Existential types are the basic tool for de�ning objects with type abstraction. An

extension of ML with existential types has been proposed by K. L�aufer and M.

Odersky in [LO92]. In ML-ART we take a slightly simpler version of existential

types by separating them from variant types. We brie
y and informally introduce

them here. They are formalized in the appendix and more thoroughly described

in [LO92, L�au92]. Existential types are introduced by type declarations similar

to data-type declarations:

type �(�

0

) = K of Exist (~�) �

1

However such a declaration di�ers in two ways:

{ Some variables of the body �

1

of the de�nition may not occur inside the

argument �

0

of the new type symbol �. Those variables must be listed in ~�.

{ There is only one summand.

The intuition behind such a type de�nition lies in the fact that the type �(�

0

)

abbreviates the higher order existential type 9 ~�: �

1

. The term �

0

could be re-

stricted to be a tuple of variables, as in ML. The more general form avoids

complicated sort constraints. It was already used in the language LCS [Ber93].

For example,

type 'a freeze = Freeze of Exist ('u) ('u ! 'a) * ('u * 'u);;

The syntax of the language is extended with existential introduction and elimi-

nation constructs

a ::= : : : j K a j let K x = a

1

in a

2

They tell when to pack values as abstract values and when to open them. An

abstract value is created in the same maner as a value of a concrete data struc-

tures:

let ice = Freeze (succ, (0,1));;

Roughtly speaking, when opening an existential value a

1

of type �(�

0

) as K x in

a

2

, variable x is assigned type �

1

where variables ~� have been replaced by new

type symbols

~

 that must not occur in the type of a

2

(see typing rules in the

appendix). For instance, one can write

let (Freeze (f,(x,y))) = ice in f x;;

since (f,(x,y)) is given type (U ! int) * (U * U) where U is a new symbol and

f \@ x can be typed with int. However, the program

ih

ih

let apply g ice = let (Freeze (f,p)) = ice in f (g p) in apply fst ice;;

fails to type, since type symbol U is transmitted to the type of apply through

variable g.

2.6 Universal types

Opening an abstract type introduces new type symbols with restricted scope.

These symbols are quickly propagated by uni�cation outside of their scope. The

above example is not type-correct since the argument g is monomorphic and

captures the abstract type symbol U in the type of its argument. A solution is

to pass g polymorphically and then to take an instance inside the scope of the

de-structuring let expression.

Universal types are simpler than existential types since they do not require

the introduction of new type symbols. They are de�ned as the existential types

with the same restrictions and manipulated with the same syntactic construct:

type �(�

0

) = K of All (~�) �

1

However, the creation of a universal value K a

1

may fail to type if the type of

the expression a

1

is not as general as the expected type scheme 8 (~�): �

1

. When

opening a universal value a

1

of type �(�

0

) as K x in a

2

, variable x is assigned

type �

1

where variables ~� are replaced by fresh variables (see typing rules in the

appendix). For instance, we may de�ne:

type projection = Projection of All ('a, 'b) 'a * 'b ! 'a;;

and type the combined example:

let apply G ice =

let (Freeze (f,x)) = ice in let (Projection g) = G in f (g x) in

apply (Projection fst) ice;;

� : int = 1

Here, the abstract type symbol U that appears in types of f and x is commu-

nicated to the type 'a1 * 'b1 ! 'a1 of g which is only an instance of the type

scheme projection of G that abbreviates 8 ('a, 'b). 'a * 'b ! 'a. Therefore, U does

not appear in the type of apply any longer.

3 Objects and Inheritance

With the rich type system of ML-ART we can now attempt to de�ne the types

of objects. In this section we show how to program objects and inheritance with

type abstraction.

All examples are run in a prototype implementation of ML-ART, that has

been implemented from the Caml-Light system [LM92]. The language ML-ART

is strongly typed and provides type inference. However, objects have anonymous,

long, and often recursive types that describe all methods that the object can

receive. Thus, we usually do not show the inferred types of programs in order

to emphasize object and inheritance encodings rather than typechecking details.

This is quite in the spirit of ML where type information is optional and is mainly

used for documentation or in module interfaces. Except when trying top-level

examples, or debugging, the user does not often wish to see the inferred types

of his programs in a batch compiler. When printed, the output of top-level

evaluation is indicated with a marginal \" sign. Counter-examples, which fail to

type, are marked with barbed wires \

ih

ih

" and the typing failure is explained in

English rather than in machine-spoken language.

3.1 A �rst attempt at programming objects

In section 2.3, we have seen that �

0

� f�:[�

0

] ! �

1

g is the type of objects with

exposed state �

0

. Thus we de�ne the type of objects by abstracting the state:

type (f'presence.'methodsg) object =

Object of Exist ('R) 'R * f'presence. ['R] ! 'methodsg;;

An object point could be de�ned as follows. We �rst de�ne its representation,

then its method vector, last we combine the two:

let pointR v = fx = vg;;

let pointM =

let getx R = R.x in

let print R = print int (getx R) in

fgetx; printg;;

let point v = Object (pointR v, pointM);;

The print method of points explicitly uses the method getx that has been de�ned

simultaneously. If the getx method is later rede�ned in some other kind of points,

for instance,

let anti pointM = let getx R x = �R.x in pointM jj fgetxg;;

then the print method of anti-points still uses the method getx of pointM. The

correct de�nition of print must take getx from the methods of the object it-

self rather than from a previously de�ned record of methods. The well-known

solution is to pass the self methods M as a parameter to the de�nition of pointM:

let pointM M =

let getx R = R.x

and print R = print int (M.getx R)

in fgetx; printg;;

However, the creation of points has to build the record of methods recursively

as follows:

ih

ih

let point v = let rec M = pointM M in Object (pointR v, M);;

This kind of recursive de�nition is not allowed. The example could be compiled

correctly, but the general case is unsafe. It should be veri�ed that the expression

pointM M does not access �elds of M before they are �lled. This is obvious here

because pointM is a record of values, but the general case requires some non

trivial analysis.

3.2 Objects without recursive values

There are several ways to realize recursion on some non-functional values. They

are discussed in section 3.7. However, we can take advantage of the fact that

there is no subtyping on objects to implement a simpler solution. Anyway, all

examples of this section can be adapted to the previous representation of objects

if one prefers to keep objects as recursive records.

Going from objects with value abstraction to objects with type abstraction,

we have moved the abstraction on state from outside the record of methods into

each method. Similarly, we can move abstraction on M into methods themselves.

For instance, the method print can be de�ned as:

let print (R,M) = print int (M.getx (R,M));;

Each method should now take the record of methods together with the state as

argument. This forces methods to have recursive types, and unsurprisingly, the

type of objects must be rede�ned to:

type (f'presence.'methodsg) object =

Object of Exist ('R) rec 'RM in 'R * f'presence. ['RM] ! 'methodsg;;

The new implementation of pointM is

let pointM =

let getx (R,M) = R.x

and print (R,M) = print int (M.getx (R,M)) in

fgetx; printg;;

let point v = Object (pointR v, pointM);;

Then anti pointM can be de�ned by re-using methods from pointM and have the

expected behavior.

The simplest way to send objects messages is to de�ne a send function for

each message:

let send getx P = let (Object (R, M)) = P in M.getx (R,M);;

Another option is to view messages as �eld extractors,

let getx = fun z ! z.getx;;

and de�ne a unique send function. Unfortunately, the following function fails to

type:

ih

ih

let send extractor P =

ih

ih

let (Object (R, M)) = P in extractor M (R,M);;

The abstract type of (R,M) propagates to the type send through variable extractor,

and the scope of the abstraction is violated. As in the example of section 2.6,

the solution is to make extractors polymorphic on the representation, so that

the abstract representation is not exported through the extractor.

type (f'presence.'methodsg, 'a) extractor = Extractor of

All ('R,'M)

f'presence. (['R] * 'M) ! 'methodsg !

('R * f'presence. (['R] * 'M) ! 'methodsg) ! 'a;;

let getx = Extractor (fun z ! z.getx);;

let print = Extractor (fun z ! z.print);;

let send extractor P =

let (Object (R,M)) = P in let (Extractor x) = extractor in x M (R,M);;

All extractors appearing in the remaining of this section are assumed to have

been de�ned as above.

Since Object is only a constructor, it is possible to rebuild the self object

inside a method. This enables a method to return the object itself, or to send

messages to itself rather than to select the right method by hand:

let self (R,M) = Object (R,M);;

let print (R,M) = print int (send getx (Object (R,M))); Object (R,M);;

If a points is moved, a new point must be de�ned with another coordinate. The

only way to do this without imperative features is to return another point object

with a modi�ed state. A method move can be de�ned as:

let move (R,M) dx = Object (R jj fx = R.x + dxg, M);;

The message getx could have been sent to the object instead of directly accessing

the state, but this would not work correctly for anti-points.

Inheritance is basically sharing of methods. Most of the examples above,

already illustrate some inheritance by reusing the methods pointM to build dif-

ferent variants of points. The following examples do this in a more systematic

way.

3.3 Simple inheritance

Extending points with color points requires the extension of the state as well.

For sake of simplicity, the color is represented by a boolean. The representation

of points must be extended as follows:

let colorR superR (c) = superR jj fcg;;

let color pointR (x,c) = colorR (pointR x) c;;

Color points should have a new method getc that returns the color. The method

print had better be rede�ned to print the color as well. For instance, it can �rst

print the point as before reusing the print method of points, then print the color.

However, it is better to abstract on methods of points, called the super class, so

that anti points can be extended with color as well (and be printed correctly).

let colorM superM =

let getc (R,M) = R.c

and print (R,M) =

print string (if send getc (Object (R,M)) then "Black" else "White");

superM.print (R,M) in

superM jj fgetc; printg;;

let color pointM() = colorM pointM;;

let color anti pointM() = colorM anti pointM;;

We have to abstract color pointM because of the polymorphism-on-values re-

striction for correct typing of references [Wri93]. We exhibit here one irritating

example of this restriction! If we did not allow mutable objects in the language

or if we chose the original ML typing of references the abstraction would not be

required.

Points and anti-points themselves might have been de�ned from abstract

points, which, for instance, would have a move method and a default print

method. Therefore, points should also have been de�ned by abstracting the

methods of their super class. For sake of uniformity, we rewrite all de�nitions of

method vectors by abstracting the super-class methods. Similarly, all represen-

tations should abstract over the super representation.

let abstract pointM superM = : : :

let pointR superR v = superR jj fx = vg;;

let pointM superM =

let getx (R,M) = R.x

in abstract pointM superM jj fgetxg;;

The representations and methods of objects can be recovered anytime by apply-

ing the representation and method generators to empty records:

type null = Null;;

let emptyM = (fg: fabs.'a ! nullg) and emptyR = (fg: fabs.nullg);;

let point v = Object (pointR emptyR v, pointM emptyM);;

Inheritance is essentially a structured method sharing. Classes are just a way

of structuring inheritance. Both generator components of objects are grouped

together to form a class. For convenience, we also de�ne a null class:

type 'a class = Class of 'a;;

let pointC = Class (pointR, pointM);;

let nullR superR () = superR and nullM super = super;;

let nullC = Class (nullR, nullM);;

An object is an instance of a class with the appropriate parameters, it can be

obtained shortly using the function:

let new (Class (classR, classM)) = let M = classM emptyM in

fun v ! Object (classR emptyR v, M);;

let point v = new pointC v;;

Simple inheritance can be generated in a systematic way by de�ning:

let inherits (Class (R1, M1)) (Class (R2, M2)) =

let R superR (v1,v2) = R2 (R1 superR v1) v2 in

let M super = M2 (M1 super) in

Class (R, M);;

3.4 Multiple inheritance

Our classes are called wrappers in [Hen91b]. Each component of a class is a

function that, given a record (state or methods), wraps around it its own �elds

(private variables or new methods). The function inherits composes the compo-

nents and the function new applies the components to empty records. Lifting

classes to wrappers is basically the same as lifting records to records with con-

catenation as done in [R�em93c]; it provides multiple inheritance for free.

Assume that a name wrapper is de�ned as the color one, but where color has

been replaced by name of type string.

let colorC = Class (colorR, colorM) and nameC = : : :

Named color points can be de�ned by wrapping points with either color, then

name or name then color.

let name color pointC() = inherits pointC (inherits colorC nameC);;

let color name pointC() = inherits pointC (inherits nameC colorC);;

The two versions are not equivalent. For instance, the last one will print the

color before the name:

let p1 = new (color name pointC()) (1, ("Board", true)) in send print p1;;

BlackBoard1� : unit = ()

Wrappers have replaced multiple inheritance by single inheritance. Assuming

that name pointC and color pointC classes have been de�ned �rst, one could

think of de�ning named color-points by inheriting from both classes. Although

this is possible, it does not make much sense, since the resulting class creates

two instances of points and one would overwrite the other.

3.5 Mutable objects

Objects can be programmed in the purely functional subset of ML-ART, and

quite e�ciently, since the record of methods can always be shared between all

objects of the same class. However, movable objects must create new points each

time they are moved. Clearly, there are situations when the old object becomes

useless after it is moved. In this case, the object's state should be modi�ed

instead. It is quite straightforward to implement mutable objects in ML-ART

using reference cells in the state of objects. For instance, mutable points could

be implemented as follows:

let mutable pointC =

let pointR super x = super jj fx = ref xg

and pointM super =

let getx (R,M) = !R.x

and move (R,M) dx = R.x := !R.x + dx; Object (R,M)

and print (R,M) = print int (send getx (Object (R,M)))

in super jj fgetx; move; printg

in Class (pointR, pointM);;

3.6 An advanced example

In all examples we have treated so far, a class B can inherit from a class A only

after B is de�ned. However, it may happen that some method of the super class

has to create objects of an inherited class. Such a situation arises with object

implementations of data types. For instance, two classes B and C have the same

interface but di�erent behaviors, while they share many methods. Thus B and

C are naturally de�ned as inheriting from an abstract class A composed of the

common methods to B and C.

However, we cannot recursively de�ne the function that creates new objects of

class B and C and the class A, since this would be an unsafe recursive de�nition.

The simplest solution to this problem is to cut the recursion by taking some of

the creation functions and putting them inside the state of objects.

For example, an abstract class listC should de�ne all commonmethods to the

classes nilC and consC.

let listC =

let listM super =

let map (R,M) f = let P = Object (R,M) in

if send null P then R.new.nil ()

else R.new.cons (f (send hd P), send map (send tl P) f)

and print RM = let P = Object RM in

if send null P then () else

(send print (send hd P); send print (send tl P))

in super jj fmap; printg

in Class (nullR, listM);;

Then, the two classes nilC and consC inherits from class listC to which their own

behaviors are added:

let nilC() =

let nilM super =

let null = true in let hd = raise (Failure "hd") in let tl = hd

in super jj fnull; hd; tlg

in inherits listC (Class (nullR, nilM));;

let consC() =

let consR super (h,t) = super jj fh; tg

and consM super =

let null RM = false and hd (R,M) = R.h and tl (R,M) = R.t

in super jj fnull; hd; tlg

in inherits listC (Class (consR, consM));;

Last, the creators for the classes nilC and consC are recursively de�ned and

passed to themselves. We previously de�ne a library function new with new that

initialize the state with a record of object creators rather than with the empty

record.

let new with new (Class (classR, classM)) = let M = classM emptyM in

fun new v ! Object (classR (emptyR jj fnewg) v, M);;

let cons nil() =

let new nil = new with new (nilC())

and new cons = new with new (consC()) in

let rec cons nil = fnil; consg

and nil () = new nil cons nil ((),())

and cons v = new cons cons nil ((),v) in

cons nil;;

Finally we can test most programs of this section at once:

let fcons; nilg = cons nil() in

let p = point 9 in

let q = send move p 75 in

let points = cons (p, cons (q, nil())) in

send print (send map points (fun x ! send move x 10));;

1994� : unit = ()

3.7 Discussion

We have shown how to program most object constructions. Unfortunately, ob-

jects have no interface subtyping. That is, the ability to implicitly forget methods

is lacking and objects cannot be coerced to their counterparts in super classes.

The same message print can be sent to points and color points. However, both

of them have incompatible types and can never be stored in the same list. Some

languages with sub-typing allow this set-up. They would take the common inter-

face of all objects that are mixed in the list as the interface of any single object

of the list.

In order to be able to forget �elds in ML-ART, it would be necessary to give

the more general type f` : �

0

;�

1

g ! �

2

! f` : �

3

:�

2

;�

1

g to the extension

primitive (k f` = g). This typing is sound, but it does not provide enough

polymorphism yet, because of the recursion involved in either object creation or

message passing. With recursive objects (section 3.1), the record of methods is

built as a �x-point and can only be assigned a monomorphic type. Non recursive

objects (section 3.2) are simpler, a priori. However, forgetting any method would

result in the failure to send any message to the object, since the �x-point has

not been created yet.

In order to allow implicit coercions of objects to their super classes, some

other kind of polymorphismmust be used. Adding sub-typing could be one solu-

tion. Type-checking with non structural sub-types may �nd a solution along the

lines of [Aik93]. Objects with type inference and subtyping but top-level class

de�nitions have also been studied in [Chi93]. However, classes cannot be param-

eterized. Another interesting investigation, and probably the most promising,

are type isomorphisms of Di Cosmo [DC92, DC93]. It can be expected that they

would allow to turn some present
ags into
ag variables after the recursive

objects have been created.

None of these extensions could work with non-recursive objects, which reveal

too much information. That is, they disclose what messages are recursively called

by other methods, which makes their types anti-monotonic in the method part.

Conversely, this information is hidden in recursive objects. After the �x-point

has been taken, the method part of the type only appears in positive occur-

rences. This is an argument in favor of recursive objects. All examples that have

been treated with non-recursive objects can very easily be adapted to recursive

objects, provided some �x-points of non values can be de�ned.

A standard technique for compiling recursive de�nitions requires knowledge

of the exact size of the top structure of the recursive value being de�ned. A

dummyvalue of that size is allocated before evaluation of the recursive de�nition,

whose result is used to patch the dummy value. Thus, at least the top structure

of the recursive value must be statically known. Moreover, the evaluation of

the recursive de�nition assumes that the dummy value is only passed to other

functions, stored inside closures, but never accessed before it is patched. This

analysis is very similar to verifying that the evaluation of some expression does

not create a reference. This problem has been widely addressed recently, but

has not yet found any satisfactory solution. It can be thought that any good

solution for detecting creation of references can be applied to the detection of

unsafe recursions as well.

In a language with references and variant types, it is possible to create re-

cursive values by programming the schema above. However, a pre-accessing test

should be performed to determine whether the value is de�ned. This rule should

be applied even if the value was successfully de�ned earlier. Moreover, because

of polymorphism restrictions due to the use of mutable features, this method

does not apply when the recursive value must be polymorphic.

Another approach is to remark that call-by-name �x-points are always safe

and not restricted to functions, and that call-by-name can be simulated with

call-by-value. That is, recursive values can be replaced by recursive abstrac-

tions on values, which can be safely de�ned. This solution has been proposed

in [Pie93]. However, extra abstractions stop evaluation. Consequently, method

vectors are rebuilt every time a message resends another message to itself. This

is too ine�cient. Moreover, call-by-value runtime errors (unsafe examples) have

been changed into call-by-name \safe" loops. Is this more satisfactory?

Other solutions could require annotations of the source code to help the static

analyzer. There are easy solutions that would automatically guarantee safety of

the above examples. All of them are still more or less ad hoc, therefore none of

them has been included into the language ML-ART.

If extending the type system to provide some inclusion is a prerequisite to

programming objects with interface subtyping, a clean and e�cient solution

should also extend �x-points to allow some restricted form of recursion on non-

values.

Conclusion

Programming objects with ML-ART is an interesting experiment, that primarily

helps to understand objects in several ways. The fundamental feature in object-

oriented programming is message passing. Polymorphic access is required and

it su�ces to model very simple objects. Subsequently, it is necessary to conceal

the internal state of objects, either by value or type abstraction. Although more

di�cult, type abstraction is much more e�cient and has proved to be feasible.

The concept of inheritance is essentially structured method sharing. Polymorphic

record extension is su�cient for simple and multiple inheritance. Finally, we

determine that, classes are just a way of structuring inheritance.

As opposed to the encoding in F

!

<:

that requires a lot of systematic, but still

necessary, type information, all examples could be written in a natural ML style.

This allows us to assert that no syntactic construct is needed for programming

objects in ML-ART. Programmable objects are easier to understand than prim-

itive objects: there is no need to learn a new language. Instead, object-oriented

programming can be discovered progressively.

We have presented one programming style for objects but other interesting

ones can certainly be found. Some of them could be o�ered in libraries to allow

the user the choice of object complexity, that is consistent with the level of his

problem. A beginner would probably adopt a style from the library while an

expert would de�ne his own.

The language ML-ART is a powerful extension to ML. Record types make

declarations of record data structures optional. Although recursive types may

be quite useful in a few other circumstances, existential and universal types,

through type declarations, seem to possess the degree of higher-orderness needed

in practice. Type information, carried by constructors, keeps the language very

close to ML and makes it as easy to use.

The main limitation of our objects is their inability to be coerced to corre-

sponding objects of super classes. Improvements of the type system should be

made to address this problem, upon �nding a satisfactory solution to the second

problem of non-functional recursive values. Both of these issues are interesting

and worth further investigation.

Acknowledgments

I am indebted to Benjamin Pierce for convincing me that abstract types were the

correct approach to objects, and for generating many fruitful discussions. This

work evolved during a two-month visit to Bell Labs, through seminar discussions

on objects. An earliest version of objects was also written during this visit. I am

also thankful to Martin Abadi, Luca Cardelli and Lucky Chillan whose comments

were very helpful.

References

[AC91] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. In Pro-

ceedings of the Eighteenth ACM Symposium on Principles of Programming

Languages, pages 104{118, Orlando, FL, January 1991. Also available as

DEC Systems Research Center Research Report number 62, August 1990.

[AC94] Martin Abadi and Luca Cardelli. A theory of primitive objects. In Interna-

tional Symposium on Theoretical Aspects of Computer Software, April 1994.

[Aik93] Alexander Aiken. Type inclusion constraints and type inference. In Con-

ference on Functional Programming Languages and Computer Architecture,

pages 31{41. ACM press, 1993.

[Ber93] Bernard Berthomieu. Programming with behaviors in an ML framework,

the syntax and semantics of LCS. Research Report 93-133, LAAS-CNRS, 7,

Avenue du Colonnel Roche, 31077 Toulouse, France, March 1993.

[Bru93] Kim B. Bruce. Safe type checking in a statically typed object-oriented pro-

gramming language. In Proceedings of the Twentieth ACM Symposium on

Principles of Programming Languages, January 1993.

[Car84] Luca Cardelli. A semantics of multiple inheritance. In Semantics of Data

Types, volume 173 of Lecture Notes in Computer Science, pages 51{68.

Springer Verlag, 1984. Also in Information and Computation, 1988.

[Chi93] Lucky Chillan. Une extension de ML avec des aspects orient�es objets. Th�ese

de doctorat, Universit�e de Paris 7, Place Jussieu, Paris, France, 1993. Forth-

coming.

[CM89] Luca Cardelli and John C. Mitchell. Operations on records. In Fifth Interna-

tional Conference on Mathematical Foundations of Programming Semantics,

1989.

[DC92] Roberto Di Cosmo. Deciding type isomorphisms in a type assignment frame-

work. Journal of Functional Programming, 1992. To appear in the Special

Issue on ML.

[DC93] Roberto Di Cosmo. Isomorphisms of Types. Tesi di dottorato, Dipartimento

di Informatica, Universit�a di Pisa, 40, Corso Italia - 56100 Pisa - Italy, Jan-

uary 1993.

[GRR93] Carl Gunter, Didier R�emy, and John Riecke. Syntactic type soundness with

prompt, callcc and state. Manuscript, 1993.

[Hen91a] Andreas V. Hense. An O'small interpreter based on denotational semantics.

Technical Report A 07/91, Universit�at des Saarlandes, Fachbereich 14, 1991.

[Hen91b] Andreas V. Hense. Wrapper semantics of an object oriented programming

language with state. Theoretical Aspects of Computer Science, Lecture notes

in Computer Science(526), September 1991.

[HMT91] Robert Harper, Robin Milner, and Mads Tofte. The de�nition of Standard

ML. The MIT Press, 1991.

[HP90] Robert W. Harper and Benjamin C. Pierce. Extensible records without sub-

sumption. Technical Report CMU-CS-90-102, Carnegie Mellon University,

Pittsburg, Pensylvania, February 1990.

[HP92] Martin Hofmann and Benjamin Pierce. An abstract view of objects and sub-

typing (preliminary report). Technical Report ECS-LFCS-92-226, University

of Edinburgh, LFCS, 1992.

[Hue76] G�erard Huet. R�esolution d'�equations dans les langages d'ordre 1; 2; : : : ; !.

Th�ese de doctorat d'�etat, Universit�e Paris 7, 1976.

[JM88] Lalita A. Jategaonkar and John C. Mitchell. ML with extended pattern

matching and subtypes (preliminary version). In Proceedings of the ACM

Conference on Lisp and Functional Programming, pages 198{211, Snowbird,

Utah, July 1988.

[L�au92] Konstantin L�aufer. Polymorphic Type Inference and Abstract Data Types.

PhD thesis, New York University, 1992.

[LM92] Xavier Leroy and Michel Mauny. The caml light system, version 0.5. docu-

mentation and users' guide. Logiciel 3, INRIA-Rocquencourt, BP 105, F-78

153 Le Chesnay Cedex, 1992.

[LO92] Konstantin L�aufer and Martin Odersky. An extension of ML with �rst-class

abstract types. In Proceedings of the ACM SIGPLAN Workshop on ML and

its Applications, 1992.

[MHF93] John C. Mitchell, Furio Honsell, and Kathleen Fisher. A lambda calculus of

objects and method specialization. In 1993 IEEE Symposium on Logic in

Computer Science, June 1993.

[MM82] Alberto Martelli and Ugo Montanari. An e�cient uni�cation algorithm.

ACM Transactions on Programming Languages and Systems, 4(2):258{282,

1982.

[OB88] Atsushi Ohori and Peter Buneman. Type inference in a database langage.

In ACM Conference on LISP and Functional Programming, pages 174{183,

1988.

[Oho90] Atsushi Ohori. Extending ML polymorphism to record structure. Technical

report, University of Glasgow, 1990.

[Pie93] Benjamin C. Pierce. Mutable objects. Unpublished note, June 1993.

[PT93] Benjamin C. Pierce and David N. Turner. Object-oriented programming

without recursive types. In Proceedings of the Twentieth ACM Symposium

on Principles of Programming Languages, January 1993.

[R�em92a] Didier R�emy. Extending ML type system with a sorted equational theory.

Research Report 1766, Institut National de Recherche en Informatique, BP

105, F-78 153 Le Chesnay Cedex, 1992.

[R�em92b] Didier R�emy. Projective ML. In 1992 ACM Conference on Lisp and Func-

tional Programming, pages 66{75, New-York, 1992. ACM press.

[R�em93a] Didier R�emy. Syntactic theories and the algebra of record terms. Research

Report 1869, Institut National de Recherche en Informatique, BP 105, F-78

153 Le Chesnay Cedex, 1993.

[R�em93b] Didier R�emy. Type inference for records in a natural extension of ML. In

Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects Of Object-

Oriented Programming. Types, Semantics and Language Design. MIT Press,

1993. To appear.

[R�em93c] Didier R�emy. Typing record concatenation for free. In Carl A. Gunter and

John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Program-

ming. Types, Semantics and Language Design. MIT Press, 1993. To appear.

[Wan87] Mitchell Wand. Complete type inference for simple objects. In D. Gries,

editor, Second Symposium on Logic In Computer Science, pages 207{276,

Ithaca, New York, June 1987. IEEE Computer Society Press.

[WF91] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type

soundness. Technical Report TR91-160, Rice University, 1991.

[Wri93] Andrew K. Wright. Polymorphism for imperative languages without imper-

ative types. Technical Report 93-200, Rice University, February 1993.

De�nition of the language ML-ART

We describe an extended language with locations and record values so that we

can give a reduction semantics inside the language itself [WF91].

A Expressions

The syntax of expressions is given below. We assume given a denumerable set

of variables and a denumerable set of locations. Letter x ranges over variables

and letter l ranges over locations.

a ::= x j c j fun x! a j a

1

a

2

Expressions

j let K x = a

1

in a

2

j strip K of a j K a

j f

~

` = ~vg j loc l

c ::= c

s

j c

d

Constants

c

s

::= (k f` = g) j (:`) j (!) j (:=) j : : : Safe constants

c

d

::= ref Dangerous constants

v ::= c j fun x! a j f

~

` = ~vg j K v j loc l Values

b ::= x j c

s

~

b j c

d

j fun x! a Generalizable terms

j let K x = b in b j strip K of b

j K b j f

~

` =

~

bg

We consider expressions modulo renaming of bound variables. Record values are

�nite maps from labels to values, and are taken modulo reordering of �elds.

Record values, as well as locations, are added to the language to permit a re-

duction semantics. Otherwise, only the empty record fg would be given as a

constant. The extension primitive (k f` = g) can be used to de�ne records

that are not values. In the implementation of ML-ART, we allow f

~

` = ag in the

syntax but expand it immediately into a sequence of extensions when a is not a

value.

For convenience, we allow duplication of �elds in the notation, with priority

to the right. For instance, in f`

1

= a

1

; : : : `

n

= a

n

; ` = ag, label ` may be one of

the `

i

, but �eld ` is always mapped to a.

Generalizable terms extend values while preserving the property that their

evaluation will never create any location. They are used in the de�nition of

typing rules.

The ML polymorphic binding let x = a

1

in a

2

can be seen as syntactic sugar

for let K

0

x = K

0

a

1

in a

2

for some degenerated existential constructor K

0

.

The expression strip K of a is a simpler form of let Kx = Ka in x for universal

bindings. For sake of simplicity, type de�nitions can be considered as prede�ned

in the initial environment (see appendix 2).

B Sorts and types

Types are de�ned relatively to a set of K type symbols and a set of
 type

symbols. Their syntax is given below.

� ::= � j � ! � j �(�) j
(�) j rec�:� j f�g Types

j �:� j (` : � ; �) j [�] j abs j pre

& ::= Usual j Field j Flag Kind sorts

� ::= Type j Row (L) Power sorts

L ::= ; j `:L ` =2 L

The formation of types is restricted twice by kind sorts and power sorts. Kind

(respectively power) signatures are non empty sequences of kind (respectively

power) sorts, written ~&

i

) & or just & when ~&

i

is empty. Each type symbol comes

with both a kind signature and a power signature:

Symbols Kinds Powers

� Usual) Usual �) �

(!) (Usual;Usual)) Usual (�; �)) �

f g Field) Usual Row (;)) Type

: (Flag;Usual)) Field (�; �)) �

(` : ;) (&; &)) & (Type;Row (`:L))) Row (L)

abs; pre Flag �

[] &) & Type) Row (L)

Sort metavariables in signatures mean that all forms ranged over by this meta-

variable are possible. Thus a symbol may have several signatures. However, for

any term and any sort, there is at most one possible assignment of signatures to

symbol occurrences such that the term is well sorted. There is an algorithm that

tests whether such an assignment exists and if it does, that computes it. Thus,

it would be possible to decorate types so that they form a many-sorted algebra

in the usual meaning.

The
 type symbols are introduced without their signature, since they can

always be inferred unambiguously from the sorts of the existential variables that

they substitute.

The most signi�cant sorts are the kinds. They avoid using
ags in positions

of usual types. All types appearing in typing rules and in type environments have

the kind Usual and the power Type. Expressions of power Row (L) are templates

in record types and L enumerates all labels that the template must not de�ne.

This is used to avoid rede�nition of �elds in record types.

In fact, the above sorts allow such type expressions as f`

1

: abs:�

1

; (`

2

:

�

2

:abs):(�

3

! �

4

)g but types that the user can see utilize only the weaker kind

signature (Flag;Usual)) Field for the (` : ;) symbol, which forbids such types

as above.

We write f� �g the substitution that replaces free occurrences of � by � .

We often write ~� for tuples of variables.

Type equality is the smallest congruence that satis�es the equations of the

projective algebra and those for recursive types. Type equations of the projective

algebra are, for any type symbol f other than (` : ;), [], and f g, for any labels

`

1

, `

2

, and `,

(`

1

: �

1

; `

2

: �

2

;�

0

) = (`

2

: �

2

; `

1

: �

1

;�

0

)

f

�������!

(` : �

1

;�

2

) = (` : f(~�

1

); f(~�

2

)) [�] = (` : �; [�]) [f(~�)] = f

�!

[�]

The equational theory of projective types (without recursive types) is regular

and collapse-free, but not linear. It is studied and proved syntactic in [R�em93a].

The recursive type expression (rec �:�) is well formed only if both � and �

have the kind sort Usual and power sort Type and if � is neither a type variable,

nor another (rec :). This guarantees � is contractive in � and that rec�:� is

well-de�ned [AC91]. Equality for recursive types is taken from [AC91] (all types

are assumed to be well-sorted):

�

0

= �

1

=) rec�:�

0

= rec�:�

1

(Congruence)

rec�:� = �f� rec�:�g (Fold-Unfold)

�

1

= �f� �

1

g ^ �

2

= �f� �

2

g =) �

1

= �

2

(Contract)

Of course, rec : acts as a binder in the �rst argument and variable � is not free

in rec�:� .

The following property asserts that type equality does not identify too many

types. It is used in the proof of theorem 5 below.

Proposition1 type-consistency. Any type of kind Usual and power Type that

is equal to a type f(~�

1

) is syntactically equal to either f(~�

2

) or rec�:f(~�

2

) for

some terms ~�

2

.

C Typing rules

Type schemes and type assignment formulas are given in �gure 1. The following

type declarations are not expressions of the language:

type �(�

0

) = K of Exist (~�) � or type �(�

0

) = K of All (~�) �

They are replaced by type assignment:

K : 8 ~�

0

:Exist(~�) � �. �(�

0

) or K : 8 ~�

0

:All(~�) � �. �(�

0

) (1)

We say that type constructor K and type symbol � are paired in type assign-

ment (1). The expression Exist(~�) � �. �

0

and All(~�) � �. �

0

are well-formed

if

� ::= � j Exist(~�) �

1

�. �

2

j All(~�) �

1

�. �

2

Type schemes

j 8�: �

A ::= ; j A[l : �] j A[x : �] j A[c : �] Type environments

j A[K : �] j A[
]

� ::= A ` a : � j A ` K : � j A ` � Judgements

Fig. 1. Type assignment formulas

{ ~� is linear, i.e. no variable occurs twice,

{ variables ~� are not in �

0

,

{ all variables of � occur in either ~� or �

0

.

Type scheme 8�: � is well-formed if � is. We abbreviate sequences of quanti�ers

8�

1

: � � � 8�

n

: � by 8�

1

; � � ��

n

: � .

Well-formed type environments are recursively de�ned as follows. The empty

environment is well-formed. The environment A[
] is well-formed if A is well-

formed and does not introduce
. The environments A[: �] are well-formed

if A is and if all symbols of � are prede�ned or introduced in A. Last, type

assignment formula A ` : � is well-formed if the environment A[: �] is.

We assume that an initial environment A

0

assigns types schemes to constants

as given below and type schemes of the form (1) to type constructors such that

each type constructor K is paired with at most one type symbol � in A

0

.

(:`) : 8�

1

; �

2

: f` : pre:�

1

;�

2

g ! �

1

(k f` = g) : 8�

1

; �

2

; �

3

: f` : �

1

;�

2

g ! �

3

! f` : pre:�

3

;�

2

g

(ref) : 8�: �! ref (�)

(!) : 8�: ref (�)! �

(:=) : 8�: ref (�)! �! �

We write V(A) for all variables of A.

Typing rules are given in �gure 2. Variable z ranges over identi�ers x, c, and

K. Rule Exist and All should be seen as existential and universal introduc-

tion rules. The Strip rule is clearly the opposite of All and corresponds to

universal elimination. We can see the expression let K x = a

1

in a

2

that we

used in section 2.5 as syntactic sugar for let x = strip K of a

1

in a

2

. The same

simpli�cation cannot be used for existential elimination because the above trans-

formation would break the scope of the
's introduced by strip K of a

1

. Rule

Exist is a combination of existential elimination and generic binding. The ex-

pression let x = a

1

in a

2

is not in the language, but it can be added as syntactic

sugar for let K

0

x = K

0

a

1

in a

2

where type assignment K

0

: 8�:Exist()� �. �

is assumed to be in A

0

.

z : 8 ~�

j

: � 2 A

(Get)

A ` z : �f~�

j

 ~�

j

g

A ` b : � � =2 V(A)

(Gen)

A ` b : 8�: �

l : � 2 A

(Loc)

A ` loc l : ref (�)

A[x : �

0

] ` a : �

1

(Fun)

A ` fun x! a : �

0

! �

1

A ` a

1

: �

1

! �

0

A ` a

2

: �

1

(App)

A ` a

1

a

2

: �

0

A ` v

1

: �

1

: : : A ` v

n

: �

n

(Record)

A ` f`

1

= v

1

; : : : `

n

= v

n

g : f`

1

: pre:�

1

; : : : `

n

: �

n

; abs:�g

A ` a : �

0

A ` K : Exist(~�) �

0

�. �

1

(Exist)

A ` K a : �

1

A ` a : 8 ~�: �

0

A ` K : All(~�) �

0

�. �

1

(All)

A ` K a : �

1

A ` a

1

: �

1

A ` K : All(~�) �

0

�. �

1

(Strip)

A ` strip K of a

1

: �

0

A ` K : 8 ~�

1

; ~�

j

:Exist(~�

j

) �

0

�. �

1

A ` a

1

: 8 ~�

1

: �

1

A[

~

j

][x : 8 ~�

1

: �

0

f~�

j

~

j

(�

1

)g] ` a

2

: �

2

(Let)

A ` let K x = a

1

in a

2

: �

2

Fig. 2. Typing rules.

In a derivation of a typing judgement, Gen rules can only be used as the

last ones or before the left hand sides of Let and Forall rules, since these

are the only premises that allow type schemes. We write Gen* for a possibly

empty sequence of Gen rules. Moreover, we can always assume that it is used

as much as possible on the left hand sides of Let rules. We call such derivations

canonical.

In the next section we will use the following properties of typings.

Proposition2 Stability by substitution. If A ` a : � then �(A) ` a : �(�)

for any substitution � such that the formula is well-formed.

Proposition3 Extension of environment. If the type-assignement A and B

are identical everywhere except maybe on variables that are not free in a, then

A ` a : � is derivable if and only if B ` a : � is.

These properties are proved in [R�em92a] for core ML when types are taken

modulo a regular equational theory. A regular theory is one such that two equal

terms always have the same free variables. All equations for the projective algebra

and for recursive types are regular. The proofs of [R�em92a] easily extend to the

language ML-ART.

In [R�em92a] we also show that the language has principal typing if the equa-

tional theory has principal uni�ers. The proofs extend to all constructions of

ML-ART. It is proved in [R�em93a] that the equational theory of recursive types

has principal uni�ers. We have not veri�ed that the combination of the theories

of projective types and recursive types have principal types, but we conjecture

so. Thus, the algorithm for type inference without recursive types is sound with

recursive types but it may not be complete.

D Semantics

We give a call-by-value reduction semantics of ML-ART using the general for-

malism [WF91] and treating the store as in [GRR93]. We de�ne stores as �nite

mappings from locations to values. Call-by-value evaluation contexts are:

E ::= fg j let K x = E in a j K E j strip K of E j E a j v E

j ref E j !E j E := a j v := E j E k f` = ag j v k f` = Eg j E:`

The semantics is given by a step reduction relation �!:

(fun x! a) v=s �! afx vg=s Fun

let K x = K v in a=s �! afx vg=s Let

strip K of Kv=s �! v=s Strip

f

~

`

i

= ~v

i

g k f` = vg=s �! f

~

`

i

= ~v

i

; ` = vg=s With

f

~

`

i

= ~v

i

; ` = vg:`=s �! v=s Dot

If l =2 dom (s); ref v=s �! loc l=s[l 7! v] Ref

If l 2 dom (s); !(loc l)=s �! s(l)=s Deref

If l 2 dom (s); loc l := v=s �! v=s[l 7! v] Assign

If a

1

=s

1

�!

�

a

2

=s

2

; Efa

1

g=s

1

�! Efa

2

g=s

2

Context

We say that store s agrees with type environment A, and we write ` s : A if

both s and A have the same location domains, and for any location l of their

domain A ` s(l) : A(l). We call a store extension of A an extension of A with

any number of location type assignements l : � . We write a

1

=s

1

� a

2

=s

2

if

{ for any environment A

1

, any type � such that A

1

` a

1

: � and ` s

1

: A

1

,

there exists a store extension A

2

of A

1

such that A

2

` a

2

: � and ` s

2

: A

2

,

{ a

2

is generalizable whenever a

1

is and then A

2

may be chosen equal to A

1

.

The soundness of the semantics is formalized by the two following theorems:

Theorem4 Subject Reduction. If a

0

=s

0

�! a=s then a

0

=s

0

� a=s.

Theorem5 Normal forms. Let A be a store extension of the initial environ-

ment A

0

. If A ` a : � and ` s : A and a=s is in �!-normal form, then a is a

value.

Subject reduction is a straightforward combination of redex contraction and

context replacement lemmas.

Lemma6 Context replacement. For any one-hole context E, if a

1

=s

1

�

a

2

=s

2

then Efa

1

g=s

1

� Efa

2

g=s

2

.

By construction, the relation � is re
exive, transitive; context replacement says

that it is also increasing. The lemma is proved independently for each one-nod

context, then the general case follows by induction on the size of the context.

Lemma7 Redex contraction. If a

1

=s

1

�!

�

a

2

=s

2

then a

1

=s

1

� a

2

=s

2

.

The proof can be done independently for each redex. All cases are easy once we

have proven the right lemmas.

Lemma8 Term replacement. If the formulas A ` b : 8�

0

: �

0

and A[x :

8�

0

: �

0

] ` a : � are provable and if bound variables of a are not free in b,

then A ` afx bg : � is provable.

Lemma9 Existential elimination. If A[

j

][x : 8�

0

: �

1

f~�

j

~

j

(�

0

))g] ` a :

� , and ~�

j

are terms whose variables are also variables of �

0

then the formula

A[x : 8 ~�

0

: �

1

f�

j

 �

j

g] ` a : � is valid whenever it is well-formed.

The second theorem asserts that well-typed terms that cannot be reduced are

values, thus the evaluation is never \stuck." It is proved by structural induction

on the value using the following lemma (which itself uses the type-consistency

property 1).

Lemma10. Let A be a store extension of A

0

such that A ` v : � .

{ if � is a functional type then a is a function or a constant.

{ if � is a record type then v is a record; moreover, if � is of the shape f` :

pre:�

1

; �

2

g, �eld ` is de�ned.

{ if � is �(�

1

) then v is a value Kv

1

where K and � are paired in A.

{ if � is ref (�

1

) then v is a location.

This article was processed using the L

a

T

E

X macro package with LLNCS style

