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Abs t r ac t .  This paper is devoted to an analytical study of extrema cur- 
vature evolution through scale-space. Our analytical study allows to get 
results which show that, from a qualitative point of view, corner evolu- 
tion in scale-space has the same behavior for planar curves or surfaces. 
In particular, this analysis, performed with different corner-shape mod- 
els, shows that, for a two-corner shape, two curvature maxima exist and 
merge at a certain scale er0, depending on the shape. For a two-corner 
grey-level surface, the evolution of the determinant of hessian (DET) 
shows a merging point for a certain a0 independently of contrast, and 
the evolution of Ganssian Curvature presents the same characteristic but 
this point evolves with contrast. 

1 I n t r o d u c t i o n  

Over the last few years [11], the multiscale approach for image analysis has 
become very popular.  A lot of works have been done on curves [1, 8, 6] and 
on surfaces [4, 5] to propose a theory of Curvature-based Shape representation. 
Mokhtarian and Mackworth [7, 8] analyse the zero crossing evolution of the 
curvature, defining the curvature scale space image. From some results, they 
show that  arc length evolution does not change the physical interpretation of 
planar curves as object boundaries. 

Recently, Rat tarangsi  and Chin [9] have proposed a scale-space curvature 
ex t rema analysis for different corner models on planar curve. Their results show 
tha t  a planar curve of a square has 4 curvature m a x i m a  for any ~r. As we show 
below, due to the approximation of the curvature expression, their results are in 
contraction with the Mokhtar ian 's  results. 

In this paper,  we present an analytical s tudy of curvature ext rema in scale 
space. This theoritical analysis is performed on exact curvature of planar curve 
and on Gaussian Curvature and DET m a x i m a  of surfaces. DET is the determi- 
nant  of hessian, introduced by Beaudet [2] and used in [3] to detect corners. 

Our analytical study, performed with different corner-shape models, allows 
to bet ter  understand the evolution and the behavior of these ex t rema in scale- 
space. From a qualitative point of view, our results show that  corner evolution 
in scale-space has the same behavior for planar curves or surfaces. The study 
shows that ,  for a two-corner shape, two curvature m a x i m a  exist and merge at a 
certain scale ~0, depending on the shape. These results are right for Curvature 
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on planar curves and for Gaussian Curvature and DET on surfaces. For the 
surface analysis with the DET, the merging point contrast independant and we 
compute the exact cry. With  the Gaussi~n Curvature, we show that  this point 
evoluates with contrast. The  reader may find a more complete developpement 
in [10]. 

2 P l a n a r  C u r v e s  

Rattarangsi and Chin propose in [9] a method to detect corners of planar curves. 
The curve is smoothed at various scales, using a gaussian kernel convolution on 
the coordinates. Corners are detected at a low resolution and followed along the 
scale space to their localization at a high resolution. The definition for a corner 
is that it is a curvature extrema. The authors study models of isolated corner 
and of groups of two corners. They present the evolution of curvature extrema 
reported to the curvilinear abscissa of the original curve and the smoothing 
parameter.  

Given a parametric curve (x(s), y(s)), Rattarangsi and Chin compute a smoo- 
thed version of it (X(s, or), Y(s, o)), and detect its curvature maxima as the zeros 
of J/~; - ]~:~, where the dots represent the derivatives in s~ This comes from the 
derivation of a simplified version of the curvature C(X, Y) = X Y  - YX .  The 
expression is legal when s is a curvilenear abscissa for the curve, but  false as 
soon as ~ > O. 

Figure 1 revisits some of the results obtained in [9]. It shows that for a two 
convex corners curve, the curvature extrema merge at a finite ~, whatever the 
value of the corner angle is. See in particular the right-angle END model (second 
curve in Fig. 1), relate it to [7, 8] and oppose it to [9]. 

3 S u r f a c e s  

It is possible to obtain shape information on real images (grey level images) 
without performing a prior segmentation. This has been shown in [3], where 
the authors study the evolution of the DET maxima around a single corner. 
Our purpose in this section is to extend this result to a pat tern of two corners, 
in a similar manner that  it has been done in the planar curve case. We will 
study the behavior of two second-order differential measures: DET and gaussian 
curvature. 

T h e  m o d e l .  Our model for a pair of corners in a surface is the elevation of a 
right-angle END model. Given an arbitrary contrast A, the surface is defined as 
a function of the plane coordinates (x, y) to be z ~ A when x and y are inside 
the right-angle END, and to be z = 0 when x and y are outside the right-angle 
END. More precisely: 

{ z = g  if x e [ - 1 . . . 1 ]  and y e] - ~ . . . 0 ]  
z = 0 otherwise 
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Fig.  1. Evolution of curvature for a few two-corners curves 

The  surface is smoothed  by a convolut ion wi th  a two-dimensional  gauss ian  kernel 
of pa ramete r  or. 

D E T  m a x i m a .  The  D E T  is defined on a surface S(x,  y) as follows: 

( 
D E T  - -  Ox------ ~ Oy----- ~ \OxayJ--'l 

It  is easy to see t ha t  the locat ions of the D E T  m a x i m a  do not  depend on the 

surface contrast :  mu l t i p ly ing  S by a cons tan t  factor k does not  affect the solut ions  
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of the equation a ~ T  = ODoET = O. This property makes the DET an interesting 
tool in means of shape analysis. For a single corner, the DET presents a single 
max imum which stays on the angle bisector, which is close to the corner when 

is small, and which goes to infinity as ~ tends to infinity as it has been shown 
in [3]. 

For two corners, the behavior is the following: 

- the DET presents two extrema which are close to the two corners when a is 
small; 

- as cr increases, but is still small enough for the interaction between the two 
corners to be negligeable, the two extrema go far away from the corners, 
following the two angle bisectors; 

- when ~r reaches a certain value e0 D, the two DET maxima merge in a single 
maxima; 

- for each value of a > ~r~, the DET presents a single maximum which goes 
to infinity along the symmetry axis as a tends to infinity. 

Figure 2 plots the DET maxima in the (x, y) plane as c~ varies. We know from [3] 

Fig. 2. DET maxima in (x, y) plane 

what happends precily around the corners at low ~r values, as the corners may 
D D be considered independent. We show in [10] that the merging point (x0,  Y~0, a0 ) 

can be found as the unique solution of Equ. 1. 

x = 0  
y _<0 
02 D ET  

c9x2 -- 0 (1) 
cg D ET  

= 0  3y 

G a u s s i a n  C u r v a t u r e  m a x i m a .  The gaussian curvature is defined on a surface 
S(x, y) as follows: 

C U R V =  D E T /  1+ ~ +-~y ] 
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The curvature ex t rema behavior is qualitatively the same as the DET ext rema 
behavior. When a < a0 c ,  the curvature presents two extrema. When a > a0 c ,  
the two curvature ex t rema merge in one extrema. The method  we have used to 
find out the value of a0 c is the same as for the DET: we detect the merging point 
as the point in the y-axis where the second derivative in x of the curvature and 
first derivative in y of the curvature simultaneously nullify. As the numerator  
of the gaussian curvature is a power of the expression 1 + (~s)2 + (~_~s)2, the 
derivatives of the gaussian curvature depend on the surface parameter  ~]. Thus, 
the location of the curvature m a x i m a  depend on the surface contrast. Let us just  

give plots of the implicit  curves defined by ocvRv  = 0 and o~cvRv 0 for two 
O y  O x  ~ - -  

arbitray values of  A (fig. 3). 

$ 

~ 

A = I  A =  10 

Fig. 3. The merging point in a (a, A = - y / a )  system of coordinates. The plain curve 
represents the second derivate in x of the curvature and the dotted curve represents 
the first derivative in y of the curvature. 

4 C o n c l u s i o n s  

This paper presents an analytical study of the evolution through the scale space 
of the corners location on planar curves and on elevation surfaces. Corners are 
defined on planar curves as curvature maxima,  and on elevation surfaces as DET 
m a x i m a  and gaussian curvature maxima.  The  work on planar curves revisits the 
analysis of Rat tarangsi  and Chin in [9], and shows tha t  in a shape, a pair of two 
adjacent and convex corners merge to a single one as scale increase, whatever 
the values of the corner angles are. 

This work is extended to the case of the elevation to a surface of a right-angle 
END model. Corners are detected as DET m a x i m a  or as gaussian curvature 
maxima.  The analysis shows tha t  the behavior of corners on surfaces is, f rom 
a qualitative point of view, the same as for the planar curves. We are able 
to compute the exact location of the merging point in the case of the DET 
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analysis, and we present examples that  show that the merging point depends on 
the surface contrast in the case of the gaussian curvature analysis. 

The two differential measures we have used, the DET and the gaussian cur- 
vature, present similarities and dissimilarities. The qualitative behavior of the 
corners is the same in the two cases. But the quantitative results are quite differ- 
ent. In particular, DET maxima measurements are contrast independent, while 
gaussian maxima measurements are not. This tends to show that the DET mea- 
surements may be used for surfaces for which just the planar projection is of 
interest, and the Gaussian Curvature measurements should be used for surfaces 
where the nature of elevation is also interesting. 

This paper is a contribution for a proposal of a shape formalism, shape in 
terms of planar curve or shape in picture, directly driven by corners through the 
scale space. 
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