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Abs t rac t .  In this work, we present results from a new formulation for 
determining image velocities from a time-sequence of X-ray projection 
images of flowing fluid. Starting with the conservation of mass principle, 
aald physics of X-ray projection, we derive a motion constraint equation 
for projection imaging, a practical special case of which is shown to be 
the Horn and Schunck's optical flow constraint. We are interested in the 
study of non-rigid motion of blood which is an incompressible fluid, and 
as such have developed a formulation for optical flow which is applicable 
to such media. The formulation is particularly efficient, as the flow field 
is obtained from a 90 degrees rotation applied to the gradient of a scalar 
function. It is shown that if specific criteria are met, in addition to normal 
flow which is commonly recoverable, the tangential component of the flow 
field is also recoverable, bypassing the aperture problem. An algorithm 
is presented to illustrate this. Preliminary results from the optical flow 
formulation applied to synthetic images, as well as contrast-injected X- 
ray images of flowing fluid, in a cylindrical fluid phantom are presented. 

1 Introduct ion  

In the past, much of the work in image sequence processing has dealt with motion 
analysis of rigidly moving objects [1]. Non-rigidity however occurs abundantly in 
motion of both solids and fluids: motion of trees, muscular motion of faces, and 
non-rigid movement and pumping motion of the left-ventricle (LV) of the heart,  
as well as blood motion are all non-rigid. To date, however, most of the work in 
non-rigid motion has dealt with motion analysis of solid objects [10, 7, 3, 4, 12, 
15, 14]. In this paper, we discuss a new framework for optical flow, and apply 
it to non-rigid motion analysis of blood from a sequence of X-ray projection 
images. 1 In case of fluids, such as the blood, the clear direction to take is to 
develop methods capable of estimating the velocity field at all points within the 
fluid body. Previous work on measurement of optical flow from image sequences 
may be categorized into four subgroups: (1) differential techniques [9, 11, 13], 
(2) phase-based techniques [6], (3) region-based technique [5, 16], and (4) spatio- 
temporal  energy techniques [8]. The scalar function formulation for optical flow 
may be categorized as a differential technique. 

1 We are interested in the potential diagnostic utility of our optical flow methods in 
characterizing velocity field disturbaalces in vessels due to atherosclerotic disease. 
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The paper is organized into two parts. In the first part, a general motion con- 
straint equation for X-ray projection imagery is derived. To derive this equation, 
the conservation of mass principle is applied to flowing blood and the injected 
contrast medium, which attenuates the X-rays, in order to obtain an equation 
relating partial derivatives of a sequence of X-ray projection pictures with image 
velocities. Horn and Schunck's optical flow constraint is found to be a practical 
special case of this constraint. In the second part, the scalar function formulation 
for optical flow is presented. 

2 Motion Constraint Equation for X-ray Imaging 

We start by applying the conservation of mass principle to flowing blood in a 
non-branching vessel. We will refer to density of blood as pb, and assume that 
pb is constant, the requirement for an incompressible fluid. Then, in any given 
region of interest, the rate of change of amount of blood mass must be the same 
as the amount of flux of blood mass across the boundary of that region, so that 
we have: 

where v is the blood velocity, n is normal to the boundary of the region dA, and 
ds is the differential of length element along the boundary of region. The second 
integral along dA is the blood mass flux. Upon invoking Gauss's theorem, we 
have the continuity equation involving blood density and blood velocity: 

with pb constant, the above equation simplifies to 

which is the condition for incompressibility of blood, the divergence-free con- 
straint. In X-ray imaging, blood will not be visible in itself, and a contrast 
material must be injected in to the blood stream, resulting in attenuation of the 
X-rays. The contrast velocity will obey blood velocity, v ,  

Since the divergence of blood velocity must be zero, the above equation reduces 
to 

Assuming monochromatic X-ray beams, for X-ray projection imaging, 
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where E = E(fl(1)) is the image intensity that  results when one follows the actual 
path of an X-ray beam up to the point/3(l) = (x(l), y(l), z(l)), u parametrizes 
the X-ray beam path through the vessel, E0 denotes the unattenuated X-rays, #c 
is the mass attenuation coefficient of contrast material and L(l) is the length of 
path traversed by the beam. B is used to denote the combined attenuation effects 
in the absence of contrast material. Given this relationship, one can obtain the 
actual contrast material density at a point, assuming the X-ray beam travel a 
straight path from a source point, (x s, ys, Zs): 

Pc(x'Y'z)  = l { @ ~ - }  " ~(x 'y ' z )  - #c (7) 

where #(x, y, z) is a unit vector pointing from the source towards a point with 
coordinates (x, y, z). The above equation may be substituted back into (5) to 
result i n  a general equation in terms of E, and the components of the vector in 
the direction of the X-ray beam emanating from the source at (x~, y~, zs). If the 
source can be assumed to emanate parallel beams, pc(z, y, z] = - J -  ~ B + -~-}, 

x J / l  c t 2 / ;  

resulting in the following equation of continuity for the intensity in terms of 
blood velocities: 

E,  Et - EEz ,  + ( E : E ,  - EE=,)u + 

(EvEs - EEy~)V + (E2~ - E E z , ) w  = 0 (8) 

where partial derivatives are taken with respect to x, y, z, t; all subscripted ac- 
cordingly. In addition, u,v, and w are each functions representing the x, y, and 
z components of v at a point. 

With a 2D flow approximation of 3D blood flow, w --- 0. Furthermore, if we 
assume that  on the average, the distribution of contrast mass can be described 
by a 2D function, pc(z, y, z) = pc(z, y). The following equation is then obtained 
as a special case of equation (8): 

E, + uE~ + vEy = 0 (9) 

describing the components of blood velocities in terms of partial derivatives of 
contrast-injected pictures. Note that  the above equation is the well-known Horn 
and Schunck's optical flow constraint and relates the partial derivatives of a 
sequence of images at a point, with the velocity of points on a moving object [9]. 
Here, we have shown a general form of this equation for X-ray images starting 
from the conservation of mass principle, and derived (9) as a practical special 
case for our application. In passing, we note that  the natural extension of (9) to 
3-space may be directly applied to 3D imaging methods. 

3 S c a l a r  F u n c t i o n  F o r m u l a t i o n  

The formulation is based on computing a scalar function that  approximately 
enforces a constraint of the form given in equation (9) for the velocity field, and 
at the same time the divergence-free condition is readily and exactly satisfied. 
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In 2D, one can always define a scalar function ~ such that  the velocity field is 
expressed as 

v = 2 • ~Tg' (10) 

where 2 is a unit vector perpendicular to the image plane. It can easily be checked 
t h a t  this vector field satisfies the divergence-free property. We will refer to such 
a function as a stream function. In 3D, a similar function may be defined for 
axi-symmetric motion. 

Note that  in the dual problem one determines a curl-free velocity field. Paral- 
lel to the definition of stream function gr, which provides divergence-free velocity 
fields, we can define a velocity potential  ~, with 

v = v ~  (11) 

The curl of v, ~7 • ~7~ = 0. This formulation will be suitable for s tudy of 
irrotational flow fields. 

Substitution of components of (10) into equation (9) results in the following 
hyperbolic PDE: 

(12) 

which is a first order equation whose characteristics [2] are the level curves of 
the projection pictures, E.  

We can perform the following integration along a curve C in order to invert 
equation (12): 

f 
(=,y) 

V~' .  tds 
�9 "(=, y) = ~o + J(~0,yo) 

(13) 

where !P0 is the value of k~ at (x0, y0) and t is the tangent to C. If C is a level 
curve of E ,  the above integral provides an algorithm for determining the mass 
flux: 

f(~'Y) - E t  ds (14) 
~(~' Y) = ~~ + J(~o,~o) I v r~---~ 

Along level curves which wrap around, the integral sum in (14) must vanish. 2 
As this is very much data  dependent, in general such curves will give rise to 
singularities in the numerical solution. 

2 Note that the integrand is nothing but the familiaz normal flow. 
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3.1 R e g u l a r i z e d  S o l u t i o n  

Since it is difficult to predict the behavior of the level curves, a more stable 
numerical algorithm will involve a least-squares solution with an associated vari- 
ational principle for finding the stream function ~: 

(15) 

so that  J is minimized. The parameter  A controls the degree of smoothing, and 
in general is a non-negative function of x and y. Discretizing the above integral 
on the pixel grid, we obtain a sum with central difference approximations for 
partial derivatives of ~,  as well as partial  derivatives of E(x ,  y). Solution of the 
minimization problem at each pixel is obtained by SOR [2]. As ~ can only be 
determined up to an additive constant, we set g~ = 0 on the lower boundary and 

= F on the upper boundary. The latter quantity is the total mass flux in a 
given vessel with no branchings and may be determined using (14), or with a 
second variational principle involving F.  

3.2 E x p e r i m e n t a l  R e s u l t s  

We have performed simulations to validate the promise of the technique in com- 
puting velocity fields from X-ray angiograms. 

The following 2D simulation involved generating a sequence of images where 
all the models were identically satisfied. For generating synthetic data, we as- 
sumed, ~(x,  y) = y~F, with y e [0, Y] so that  v = ( - ~ ,  0). This would be the 
case for example, for inviscid flow. We also assumed, E(x ,  y) = - ~ - - x ( ~ -  Z ) ,  

with x E [0, X] so that  Et = - v .  ~7E = -2rE0Xy x ~-- ~ r  �9 Using central difference 
approximation, we then have, E(x,  y, t + At) = 2 A t E t  + E ( x ,  y, t - A t ) .  With 
E, as given, we generated the first few frames in the sequence with F = 128, 
E0 = 4, and X = Y - 128. Note that  in this case at x = x the image gradient 
vanishes. The results are shown in figure 1. 

We have just begun with our in vitro phantom experiments. The experimental 
model is a latex tube with an inner diameter of 1.27 cm. X-ray angiography is 
performed on a GE Advantx digital imaging system at the 6" image intensifier 
field, with 1024 • 1024 acquisitions at rapid frame rates. For the experiment 
shown in figure 2, a pump delivered 612 ml /min  of water continuously, and 
5 ml/sec of an iodine contrast agent was injected for 2 seconds. In order to 
assess the overall effectiveness of the methodology, soon we will be carrying out 
statistical testing of the velocity field measurements against known velocities and 
volumetric flow rates. Further in vitro validations of methods and integration 
with MR-based flow estimation techniques are also planned. 
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Fig. 1. Left: Sampled velocity field overlaid on the second picture of a simulated se- 
quence for left translating flow. Right: The computed stream function. 

Fig. 2. Left: cross-sectional velocity profiles computed from 3 frames in a phantom 
sequence, overlaid on the middle frame. Note that the picture is displayed in rever se  

video.  Right: The computed stream function from image frames. 

4 Conclusions 

In conclusions, we have presented results f rom a new formulat ion for optical flow. 
The formulat ion is computat ional ly  efficient, as one needs to compute a single 
scalar function. As a byproduct ,  the incompressibility condition on the result- 
ing vector field is automat ical ly  satisfied. In the dual problem, the vorticity of 
the resulting vector field will automatical ly  be zero. We also derived a general 
mot ion constraint equation for X-ray imaging start ing f rom the conservation of 
mass principle and X-ray physics, and derived the Horn and Schunck's optical 
flow constraint as a practical special case. I n  the numerical solution, we dis- 
cussed sources for instabilities, and linked such behavior with wrap around of 
level curves of E.  In fact, along well-behaved level curves, the normal  flow can 
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be integrated to yield the full flow field. Note that this statement has deeper 
implications: that is, in addition to the normal component of the velocity field, 
in the absence of bad characteristics, the tangential component is recoverable, 
bypassing the aperture problem. 
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