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A b s t r a c t .  This paper presents a new algorithm for structure from mo- 
tion from an arbitrary number of tracked features over an arbitrary num- 
ber of images, which possesses several advantages over previous formula- 
tions. First, it is recursive, so the time complexity is independent of the 
number of images. The complexity is linear with the number of tracked 
features. The algorithm allows newly appeared features to be included, 
stale features to be discarded, and missing data to be handled naturally. 
Dynamic outlier elimination is achieved without recourse to heuristic seg- 
mentation strategies. Lastly, the algorithm can employ different kinds of 
tracked features, e.g. edges and corners, in the same framework. 
The actual structure from motion recovered is affine, which assumes lim- 
ited depth variation within the field of view, but the recovery is based 
on a more general recursive estimation algorithm, known as the variable 
state dimension filter (VSDF), which we devised and applied earlier to 
active camera calibration. 
Results are presented for real image sequences, and timings for the algo- 
rithm demonstrate the feasibility for real-time implementation. 

K e y w o r d s :  Structure  f rom motion,  affine invariance, recnrsive filter. 

1 I n t r o d u c t i o n  

Recent  developments  in the computa t ion  of  s t ructure  f rom mot ion  have demon- 
s t ra ted  the clear advantages  of, first, considering s t ructure  in an object centred 
reference f rame ra ther  than  as a set of  depths [4, 12, 2]; and, secondly, using 
extended sequences of  closely-spaced views of  an object  in order to alleviate 
correspondence problems but  at the same t ime to provide a large baseline for 
the s t ructure  computa t ion  [16, 15]. This paper  draws on these two ideas, on our  
previous work on active fixation in dynamic  scenes [10, 13, 1], and on our devel- 
opment  of  a recursive filter with variable state-dimension,  to devise a sys tem for 
a u t o m a t e d  acquisit ion of  three-dimensional  models of  objects which are t racked 
over extended periods. 

The  work described here differs f rom other  recent work in the same area in 
a number  of  fundamenta l  ways: 
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- the algorithm is recursive, meaning that  the solution for frame k + 1 is 
determined f rom the solution at frame k and the data  at f rame k + 1, with 
no overhead as more frames are added - -  in this respect it has a distinct 
advantage over "batch" approaches such as [16]; 

- the t ime complexity of the recursive update  is linear with the number  of 
currently tracked features, making the algorithm scale benignly; 

- the method allows newly appeared features to be included, old features to 
be discarded, and temporari ly occluded or otherwise missing features to be 
treated naturally; 

- dynamic outlier detection and elimination are achieved without recourse to 
heuristic segmentation strategies; 

- there is no reliance on a reference or basis set of features as in [4, 17, 18], 
the choice of which can bias results drastically, part icularly if one of these 
chosen points is erroneous. All valid features contribute to the structure and 
motion estimation, improving its stability. 

- the method can simultaneously embed different kinds of tracked features, 
such as edges and corners, within the one esimation process. 

These improvements are achieved by posing structure from motion as a pa- 
rameter  est imation problem. The typically non-linear measurement  equation re- 
lating scene structure, motion and image feature position is linearised about  the 
latest estimates of structure and motion, in an analogous way to the extended 
Ka lman  filter. This allows the use of a recursive least-squares est imation al- 
gor i thm known as the variable state dimension filter (VSDF) which we devised 
earlier and have previously applied to active camera calibration [7, 6]. Any struc- 
ture f rom motion problem that  can be encapsulated as a measurement  equation 
(the projection from scene to image) can be solved using the VSDF. 

2 T h e  V a r i a b l e  S t a t e  D i m e n s i o n  F i l t e r  ( V S D F )  

The VSDF is a general way of using a set of features zi( j )  observed at t imestep 
j to estimate a global state vector x, associated with all the features, along with 
local state vectors y~ associated with individual features. The different state 
vectors are coupled by linearisable measurement equations. 

In [7] we applied the method to camera calibration of an active camera sys- 
tem, in which the global state x is the calibration parameter  vector and is con- 
stant over time, and the yi relate to points observed in the scene. 

In structure from motion applications we again identify the y~ with individ- 
ual points so tha t  y~ relates to the structure, whereas x describes the motion.  
However, we also allow x to be t ime-varying and so the independent value of x 
at f rame j is written as x( j ) .  

A non-linear measurement  for each feature i then has the form 

z~(j) = h i ( j ; x ( j ) ,  yi)  + w~(j) 

where hi is a vector-valued function (which may change over time) and w~ (j) is 
a zero-mean Gaussian distributed vector with covariance/~i( j) .  The local s tate  
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vectors Yi are taken to be constant over time. zi(j) will typically be the projected 
position of feature i in image j.  Note that  each measurement depends on the 
global state vector x(j)  and one local state vector Yi- It is this restriction, that  
the local state vectors are not directly coupled by the measurement equations, 
that  allows the state vector estimation problem to be solved in linear time with 
the number of tracked features (local states). 

Let us consider n features i = 1 , . . . ,  n as they are tracked over k frames. Let 
x(1), the value of the global state vector at the first frame, be set arbitrarily. 
This serves to fix an initial frame of reference. Each Yi is provided with an initial 
estimate ~i(0) and covariance Ti0. The maximum likelihood estimators at time 
step k for x(k) and Y l , . . . ,  Y~ given a zero-confidence estimate ~* (k) of x(k) and 
previous estimates P i ( k  - 1) of Yi,  obtained by expanding hi(k) to first order 
about the ~* and :~i(k - 1), are [8]: 

x(1) for k = 1 
~ ( k )  = ~r + [A - Ei~=l B i C g l B T )  -1  

x ~ i ~ = l ( D i ( k )  T - B i C ~ l E i ( k ) T ) R i ( k ) - l ( z i ( k )  - hi(k)] for k > 1 

:~i(k) = y i ( k  - 1) + C ; l ( E i ( k ) T R i ( k ) - l ( z i ( k )  - hi(k)) - B T ( ~ ( k )  - x*(k))) (1) 

where Di(k), E i ( k )  are the Jacobian matrices for each feature 

Ohi(k) Ei(k)- Ohi(k) 
D i ( k )  = cOx(k) ' Oyi 

with hi(k), D~(k) ,  E i ( k )  being evaluated at x*(k), ~ i ( k -  1). Matrices A,  B i ,  Ci  
are defined by: 

n A = E i = l  D i ( k ) T R i ( k ) - l D i ( k )  , Bi  = E i : l  D i ( k ) T R 4 ( k ) - l E i ( k )  , 

j=l  E i ( j ) T  R i ( j ) - I  E i ( J )  �9 (2) 

Missing measurements for local states are incorporated by simply ignoring the 
corresponding terms in the above formulae. Note that  all the above update rules 
have computation time proportional to n. 

2.1 Obtaining the Global State Est imate  

The simplest algorithm for generating 2*(k) is to set it to 2 ( k - 1 ) .  However x(k) 
may change markedly between time steps k, giving rise to linearisation error in 
the update equation 1. One way around this problem would be to iterate the 
global state vector update part of equation 1. There is a short cut, however. Let 
us consider fitting • to the observations at time step k independently of the 
Yi. To achieve this we minimise 

n 

J = E ( z i ( k )  - hi(k; x*(k), y i ( k  - 1 ) ) ) T R i ( k ) - l ( z i ( k )  - hi(k; ~*(k), Y i ( k  - 1))) 
i = 1  

(3) 
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over ~* (k). The first-order update formula that  achieves the minimisation is 

n 

~*(k) = x(k - 1) + A(k) -1 Z D~(k)TRi(k)-l(zi(k) - hi(k)) . 
i=1 

Here hi(k), Di(k) (and hence A(k)) are evaluated at x ( k -  1), y(k - 1), Outliers 
are removed at this stage by testing the residual J using a )/2 residual test. If 
the X 2 test is failed, points with highest contribution to the residual are removed 
until the test is passed. Recursive formulae for updating ~* and J when a point 
is removed are given in [8]. Calculating ~*(k) in this way is much quicker than 
using equation 1 and removes most of the error in a single step. 

3 A f f i n e  S t r u c t u r e  f r o m  M o t i o n  

An afflne projection from scene to image at frame j is described by the following 
projection equation [9]: 

zi(j)  = M( j )Xi  + t ( j )  (4) 

where Xi = (Xi, ~ ,  Zi) T, i = 1. . .  n are the 3D positions of n scene points and 
zi(j)  = (xi(j), yi(j)) T is the projected position of the ith point in the jth frame. 
M(j) is a 2 x 3 matrix and t( j )  is a 2 x 1 translation vector in the image. This 
projection equation is valid for a small field of view and limited variation in scene 
depth. The object then is to estimate Xi, M(j) and t ( j )  given measurements 
zi(j),  i = 1 . . . n ,  j = 1 . . . k  of the n points in k frames. We consider isolated 
points for now, located in the image using a corner detector, but show how line 
segments may be incorporated in [8]. 

Koenderink and van Doorn [4] have shown that  M(j) and t ( j )  may be de- 
termined by labelling four arbitrary points to define a set of basis vectors. This 
method was used in [13] to define a fixation point for redirecting gaze onto a 
moving target during tracking. In practice, for the purpose of determining 3D 
structure this method is problematic since the four chosen points fix the frame 
for determining the structure of all the other points, and so any errors in the 
four points will be amplified in the others. A better method  is to optimise the 
choice of M(j) and t ( j )  by using all the points, and this is achieved by the VSDF 
algorithm. The feature positions zi(j) are considered as measurements of state 
vectors M(j), t ( j )  and Xi. Let us bundle up the state vectors as follows: 

x( j)  = ( M n ( j )  M12(j) M13(j) M21(j) M22(j) M23(j) t l ( j )  t2(j)) T 
Yi = (Xi  gi Zi)  T (5) 

We now substitute the affine camera projection equation 4 into the VSDF for- 
mulae using the definitions 5, obtaining 

hi( j ;  x(j) ,  Yi) = i ( j ) X i  + t ( j )  

D(j;x( j ) ,y i )= ( X i Y i Z i  0 0 0 101) 
o o x~Y~Zio ' 

( M l l ( j )  M12(j) M13(j)'~ (6) 
E(j; x(j) ,  Yi) = ~,, M21(j) M22(j) M~a(j) ] ' 
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Fig. 1. Feature matching for an image sequence of a rotating box. a) Corner matching. 
The latest corner positions are shown as white blobs, the trajectory of the corner from 
the start of its "history" in grey. b) Line segment matching, the latest position being 
shown in white and a line between the previous and current midpoints in grey. 

The measurement  covariance R/( j )  is determined from the properties of the fea- 
ture detector. The Plessey corner detector that  we have used in our experi- 
ments [3] does not have sub-pixel precision, and we have estimated the corner 
position error s tandard deviation ~r = 0.7 pixels, independent in the x and y 
directions. Thus Ri(j) is diagonal with entries ~2. With R, D and E derived, 
we can evaluate A, B and C and hence perform the update  cycle. To obtain 
the initial motion and structure x(1) and ~r(0) we use the method of Tomasi  
and Kanade [16], a batch algorithm that  we apply over a small number of initial 
frames. See below for comparison of the two algorithms when applied over a 
complete image sequence. 

4 R e s u l t s  

In Fig. 1 we show the trajectories of corner and line features tracked through a 
sequence of 20 images of a rotat ing box, the projection of the rotat ion axis being 
aligned with the image y-axis. The corner/line feature detectors and matchers 
are described in [8]. 

Three orthographic views of the recovered 3D structure are shown in Fig. 2. 
Both corner and line segment matches have contributed to the computat ion.  Note 
the projective distortion of the structure: lines that  should be parallel appear  
to converge towards a vanishing point. Since affine transformations preserve 
parallelism, this is not an affine distortion, and occurs because the box covers 
most  of the field of view of the camera (25~ stretching the validity of the affine 
approximation.  For foveal images in our active vision applications this problem 
will be greatly reduced. In order to demonstrate  that  3D structure has been 
recovered, ~ the last image is back-projected onto the structure. Figure 3 shows 
the same views of the structure as Fig. 2 rendered in this manner.  
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Fig. 2. Three views of the 3D structure obtained by the VSDF algorithm, a) From the 
left hand side. b) From the right hand side. c) Top view. 

Fig. 3. The same three views of the 3D structure, this time rendered by back-projecting 
the final image onto the structure. 

We have also obtained results on simulated data  tha t  demonstrate  the eff• 
ciency improvement that  the VSDF over the measurement mat r ix  factorisation 
(SVD) method of Tomasi  and Kanade [16]. We do not consider here the ap- 
proach of Szeliski and Kang [15], since the Levenberg-Marquardt  minimisat ion 
algori thm they used [11] is a slow batch process when a realistic number of images 
and features are used. In our experiments using 50 or so frames (only 2 seconds 
worth of video rate data),  each iteration of their algorithm required many  min- 
utes. The method of Tomasi and Kanade has a number of drawbacks: it too is a 
batch algorithm, and requires a completely full measurement  matrix,  i.e. with no 
missing data  2. Furthermore the SVD algorithm has complexity O(n2(k + n)) as 
opposed to O(n) for the VSDF. Such questions as the relative efficiency and ac- 
curacy of different algorithms can be satisfactorily investigated using simulated 
data.  Figure 4 shows results for a set of thirty randomly generated points lying 
inside the unit sphere, and projected parallel to the Z axis onto the unit circle 
on the image plane, with additive Gaussian noise of s tandard deviation 0.005. 
Between each frame a rotat ion of five degrees was performed around an oblique 

2 The "hallucination" approach that Tomasi and Kanade describe for filling in missing 
data from the surrounding data dilutes the main benefit of the algorithm - -  that it 
is optimal for the case of affine projection. 
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Fig. 4. Comparison of the VSDF and SVD algorithms, a) Measure of accuracy of 
structure computation over time. b) Timings. The results for the SVD are indicated 
by the solid line, those for the VSDF by the dotted line. 

axis. The SVD was performed at each frame k on all data up to frame k, in order 
to provide the optimal structure and motion at each time step, to compare with 
the VSDF. The error is measured by calculating the affine transformation that  
takes the computed structure closest to the known true structure, as measured 
in the frame of the new structure. The SVD provides the best possible struc- 
ture and motion computation on this data, but the difference between the two 
methods is negligible. We have been unable to create data which causes the two 
algorithms to diverge. On the other hand, the timings for the two algorithms (on 
a Sparc-2) demonstrate the efficiency advantage of the VSDF, which is especially 
marked for longer sequences and/or  more points. 

5 C o n c l u s i o n s  

We have demonstrated the accuracy and efficiency of the VSDF affine structure 
motion motion algorithm in a number of experiments including direct compar- 
ison another method. Both corner and edge token data have been successfully 
incorporated. Contrary to a recent claim by Weng et al. [19] that  recursive meth- 
ods are inherently unstable, the experiments demonstrate stability in both the 
structure and motion computations, a result facilitated greatly by the natural  
identification and treatment of outliers within the framework. Furthermore the 
algorithm is currently being ported to our real-time motion detection and track- 
ing architecture Yorick/Horatio [14, 5]. When this is complete we will be well 
placed to explore many of the problems which present themselves when consid- 
ering allocation of attention in dynamic scenes. The VSDF software is available 
as part of the Horatio vision libraries [5]. 
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