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Abs t r ac t .  The location of objects in images is difficult owing to the view 
variance of geometric features but can be determined by developing view- 
insensitive descriptions of the intensities local to image points. View- 
insensitive descriptions are achieved in this work by describing points in 
terms of the responses of steerable filters at multiple scales. Owing to 
the use of multiple scales, the vector for each point is, for all practical 
purposes, unique, and thus can be easily matched to other instances of 
the point in other images. We show that this method can be extended 
to handle the case where the area near a point of interest is partially 
occluded. The method uses a description of the occluder in the form of 
a template that can be obtained easily via active vision systems using a 
method such as disparity filtering. 

1 I n t r o d u c t i o n  

Object  recognition is a central problem of computer  vision. Owing to its im- 
por tance there have been a very large number of different approaches taken 
to solve it, which can be grouped into three different classes. The approach of 
one class is to find a projective invariant. This is a feature tha t  remains invari- 
ant under imaging. For example, one such invariant is the cross-ratio, defined 
on four model points. Projective invariance reaches for view-insensitivity. Tha t  
is, the feature variants would be a boon but  for the problem of segmenting 
the object from the background. In a natural  situation, it is extremely difficult 
to identify appropr ia te  constituent points. A second main tack is to confront 
the view variation directly by modeling the view parameters  explicitly. This 
results in a search process, whereby possible model-image feature correspon- 
dences are constrained to have a consistent set of viewing parameters .  Exam-  
ples of such approaches are Hough transforms and geometric hashing. A third 
class of approaches, which we are pursuing, compromises on view invariance. 
Instead,  image features are required to be only relatively insensitive to varia- 
tions in the view. Such a feature is color. Image color as a measure of surface 
albedo is insensitive to variations in viewing direction. Swain used color for ob- 
ject recognition problems by exploiting properties of the color his togram [Swa90; 
SB91]. 
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Previously w e h a v e  shown tha t  geometric features can be found that  behave 
like color [BW93]. These are the steerable filters [FA91; JM92; MP89]. Such filters 
are a way of describing the intensities near a given point. The filters depend on 
the choice of the coordinate system; however, there is a normalization procedure 
tha t  makes them invariant to rotations about  the view vector. This means tha t  
an index can be constructed tha t  almost uniquely describes the local intensity 
variations about  a point. This description is in the form of a 45 element vector 
or zip-code of filter responses at different scales. In the two-dimensional case, 
for all practical  purposes, this vector is unique and its location can be recovered 
by the process of backprojection, or comparing a model response vector to the 
response vectors of all image locations. 

For rotations about  axes other than  the viewing axis, the success of the 
descriptors depends on their view insensitivity. Our experiments using backpro- 
jection showed tha t  the filters are insensitive to three-dimensional rotat ions of 
up to 45 ~ . 

In this paper,  we show tha t  this method can be extended to handle the 
case where the area near the point is partially occluded. The method uses a 
description of the occluder in the form of a template.  This can be obtained via 
active vision systems. 

2 S t e e r a b l e  F i l t e r s  

Steerable filters are a set of oriented basis filters with the important  proper ty  tha t  
the response of a filter at an arbi t rary orientation can be synthesized from linear 
combinations of the basis filters. As shown by Freeman and Adelson [FA91], 
s tart ing from a symmetr ic  Gaussian function in Cartesian coordinates: 

G(x, y) = e -(x2+y2) 

it is possible to define basis filters G~" as: 

~ G ( x , y ) , n  = 1,2,3,0n = 0 , . . . , k l r / ( n  + 1),k = 1 , . . . , n .  

Figure 1 shows these functions for a particular value of s tandard deviation a. 

2.1 T h e  I n t e r p o l a t i o n  F u n c t i o n s  

As Freeman and Adelson [FA91] have also shown, different order filters are steered 
with different interpolation functions. The number  of the interpolation functions 
tha t  are needed for the steering is one more than  the filter order. So, for example,  
the first-order filters can be steered with two interpolation functions given basis 
measurements  at 0 ~ and 90 ~ the second-order filters can be steered with three 
functions given basis measurements  at 0 ~ 60 ~ and 120 ~ and the third-order 
filters can be steered with four functions oriented at 0 ~ 45 ~ 90 ~ and 135 ~ 
Tha t  is, 

c j  (0) = (e), 
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Fig. 1. The nine different filters that comprise the steerable filters up to third-order 
for ~ = 6.5. (a) Gt; (b) a2; (c) G3. 

where the first-order interpolants are given by j = 1, 

k~l(0) = ~ [ c o s ( e -  0~)],i -- 1,2. 

For j=2,  we have 

k,2(0) = �89 + 2cos(2(O-Oi))],i = 1,2,3, 

and for j=3,  

112cos(0-8i) + 2cos(3(0-8~))] i= 1,2,3,4.  k~3(O) = ~ 

3 The  Mult iple-Scale  Index or Zip-Code 

Our goal is to create a vector that  uniquely describes each point. Such a de- 
scription would allow the straightforward algorithms for matching models seen 
as collections of points. 

Combining the responses from all the filters from different orders provides 
nine independent measures at each image point. This can be augmented further 
by using the filters at different image scales. To handle variations in scale, it is 
best to make the scales sufficiently close together so as to be able to interpolate 
between scales. In practice, this means choosing image domains that  are multi- 
ples of two in area, or two in linear dimension. Since there are nine measurements 
per scale, there are 9 • (the number of scales) total measurements. For the ex- 
periments, five different scales are used, for a total of forty-five measurements 
per point. 
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The different responses at different scales are sensitive to the width of the 
templates, so the responses, to be comparable across scales, have to be normal- 
ized. The easiest way to do this is to divide by the filter energy defined as: 

e~ = f f  G ~  = 1,2,3. 

Now define the normalized response of a set of filters to the area surrounding 
a specific point in the image as the vector 

r = ( r i , j , ~ ) , i  = 1 ,2 ,3 ; j  = 1 , . . . , f ( i ) ; s  = s , ~ , . . . , s  . . . .  

where the index i denotes the order of the filter, j denotes the number of filters 
per order ( f ( i )  - -  i + 1), and s denotes the number of different scales. 

3.1 Normal i za t ion  

In two dimensions, the difference between an image point and a model point 
is limited to a rotation and scale. Assume that  the scale is fixed. To normalize 
for the rotation, one strategy is to select the orientation of the first-order filters 
as a reference. This is a good strategy for two reasons: (1) the orientation can 
be computed directly from the filter responses, and (2) the filter responses are 
usually the most stable. 

Thus the orientation is computed as 

o~ = t a n  - 1  (r] ,1 . . . . . . . . .  r l ,2  . . . . . .  ) 

and then the filter responses are rotated using the steering formulae, i.e., 

r~,j,s = Rot(s,  u,5,D. 

Note that  this normalization makes the matching process more powerful than 
that  produced with rotation invariant templates. The latter sacrifice variability 
in the angular direction. Instead the filters capture the variations in angle, and 
preserve it in their components. Another feature of the normalization process 
is that  it can be done without additional convolutions; the interpolation prop- 
erties of the existing filters allow it to be carried out with a single basis set of 
convolutions. 

No similar normalization strategy exists for scale. This is easy to understand, 
since the receptive fields of the smaller scales are correspondingly smaller, and 
thus image data  that  is covered by the larger field does not affect the smaller 
field. Nonetheless there is a weaker method for adjusting the scale parameter.  
This is to establish a correspondence between the two vectors by comparing the 
responses, which will usually vary smoothly between scales. 

In the three-dimensional case, the strategy for matching is essentially to rely 
on the two-dimensional match properties. Rotation about the view axis can be 
corrected for, leaving scale and rotations about axes in the image plane as the 
main difficulties. Scale can be handled by matching as in the two-dimensional 
case, but there is a more practical alternative in 3D. Since the approximate 
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distances are usually known by the perceiver, and the dimensions of the viewed 
object  are usually small compared to the viewing distance, the scale can be pre- 
adjusted prior to the matching process. Rotations about  an image plane axis are 
ameliorated in two ways. In the first place, the filter responses are dominated 
by a cosine envelope, so tha t  there is a useful range of rotations for which the 
responses will be effectively invariant. Second, the algorithms for identification 
and location work as long as there is a useful subset of filter responses. All the 
responses do not have to be correct. 

3.2 T h e  B a c k p r o j e c t i o n  A l g o r i t h m  

In order to describe the algorithm for location, we first need to describe the 
match  between two response vectors, one from an model point and one from an 

image point. Denote the vector from an image point as r i and tha t  from a model 
point as r m .  Then the distance between them is simply the Euclidean distance 
d~,~ -- IIr i - rmll .  

The location algorithm crucially depends on the fact that  only a single model 
is matched to an image at any instant. Let us denote this model as 

M = { r m , r n  = 1 , . . . , m ~ a x } .  

For each model point m, create a backprojected distance image Im defined by 

Im (x, y) = rain [Imox - 0] 

where/~ is a suitably chosen constant. 

3.3 R e s u l t s  o f  Using Basic Backprojection 

The experiments use pre-chosen model points to represent each object. These 
points were chosen by hand and an image containing a slide projector  was used. 
The  slide projector  was imaged at two views of comparable scale tha t  were 22.5 ~ 
apart .  

V i e w  I n s e n s i t i v i t y .  A measure of the algori thm's capability in the presence 
of three-dimensional distortion can be appreciated from the response of the al- 
gor i thm to image skew. Skew can be reported in terms of the three-dimensional 
rota t ion tha t  produces it, as is done here. 

Points were selected from an image of a slide projector used as a model. 
These were then backprojected onto a second test image that was taken with 
a view vector rotated 22.5 ~ from the model view vector. In the example shown 
in Figure 2, three points were selected on the slide projector. Two points were 
correctly located by the algorithm while one was located slightly off its actual 
position. Figure 3 shows the responses for a different point on the projector; it 
can be seen that the filter responses for the same point in the original image and 
the skewed image are nearly identical, thereby enabling our algorithm to usually 
succeed when the distortion is relatively small. 
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Fig. 2. The test of the localization algorithm in 3-D. Points from the model (a), shown 
by crosses, axe backprojected onto the rotated image (b). Two points were correctly 
identified while one was slightly off the mark. 

In a separate experiment we checked for scale sensitivity. As expected, the 
algorithm is very sensitive to scale variations. Based on similar experiments, the 
method tolerates about 10% variations in scale. However, we think this is not 
a huge factor, as in many cases scale will be known a priori. Also, there is the 
possibility of scale matching discussed earlier. 

T h e  I m p o r t a n c e  o f  M u l t i p l e  Scales.  To evaluate the uniqueness of the 
match, we tested the match values of corresponding points in the 2D rotated 
and unrotated images as a function of the number of scales used. Table 1 shows 
these results. With less than three scales, the matching point is not the best 

Number of Filters Rank of Matching Point Difference in Distance 
9 18.3 -8.1 
18 4.3 -6.3 
27 1.3 1.0 
36 1 5.6 
45 1 10.8 

Table 1. Sensitivity of the match value to the length of the vector (= number of 
scales used • nine). The figures shown are the average of the results for three pairs of 
corresponding points. 

point selected. However, with three or more scales it is ranked the best. The 
third column compares the distance measures used in the match of the best and 
second-best point in the case where the matching point is ranked first. In the 
case where the matching point is not the best the distance is that  of the best mi- 
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Fig. 3. A demonstration of view insensitivity. (a) A point on the original image; (b) 
the same point correctly located by the Mgorithm in a second image with a 22.5 ~ 3-D 
rotation; (c) an unrelated point in the rotated image for the purpose of comparison; 
(d) the 45 filter responses for the point in (a) (top), the point in (b) (middle) and the 
point in (c) (bottom). 

nus that  of the matching point. This column shows that  even after the matching 
point is the best, its perspicuity continues to improve with additional scales. 

4 Deal ing  wi th  Occlusion 

The basic backprojection algorithm compares the filter responses with every 
point with those of a prototype. This algorithm will fail when the prototype 
is occluded if nothing is done as the occluder will distort the filter responses. 
Interestingly, humans have a similar problem. Figure 4 from Nal~yama et al. 
[NS90] shows the experimental setup designed to test subjects' ability to identify 
faces in the presence of positive occlusion cues. In one instance the face is painted 
on a picket fence; in the other it is behind the picket fence. The results show 
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Fig. 4. Nakayama's demonstration that recognition performance depends on whether 
or not the occluded is positive. 

that  identification is improved in the latter case. This observation forms the 
inspiration for our solution. 

Suppose that  an active imaging system is used. As a consequence we can 
assume that  the occluder can be detected by a method such as disparity filtering 
[CB92]. Disparity filtering is a way of creating a filter that  only passes image 
energy in the horopter. Ideally one can create a template T(x,y) such that  
T(x, y) = 1 for material in the horopter and T(x, y) = 0 otherwise. We assume 
the existence of such a template for our subsequent calculations. 

4.1 Occlusion Algorithm 

The filter responses are the responses for a set of basis functions. As a conse- 
quence the image intensities near every point can be reconstructed by appro- 
priately combining the responses and filter functions. As the functions are not 
orthogonal, a pseudo-inverse must be used to do this [JM92]. This ability to 
reconstruct the local intensities allows the stored prototype to be made compa- 
rable to the occluded image responses. For every point, the reconstructed image 
intensities are appropriately masked using the occluding template. A similar 
process is done to the incoming image. Thus the masked reconstructed image 
and the masked input image are now in the same coordinate system and can be 
compared by differencing their filter responses. This is formalized in the follow- 
ing algorithm: 

Occlusion Algori thm 

i. Use the basis functions to reconstruct the local image intensities, 

I'(x,y) for an appropriate local domain D near a point (xo,yo). 
2. For every point (x,y) in the image do 

Compute I"(x,y) = T(x,y)I(x,y) for all (x,y) in D. 
Compute new filter responses f" from I". 
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Compare those with the filter responses f computed from 
I'(x,y)T(x,y) to compute d(x',y'). 

The sought after point is given by argmin d(x',y'). 

4.2  R e s u l t s  

To demonstrate the occlusion algorithm, we have created a face image similar 
to that of Figure 4. Figure 5 shows the original face and the results of picking a 
specific point in that image. The filter responses of the chosen point are computed 

Fig.  5. A test of the occlusion algorithm. (a) The original image; (b) the occluded 
image; (c) the reconstructed patch of the left eye (unmasked); (d) the distance image 
showing the left eye correctly located by using responses from the masked eye patch; (e) 
the result of directly comparing the unoccluded responses from (c) with the responses 
from the occluded image. 
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for the unoccluded image and stored. Next the occlusion template for the image is 
computed. Finally we apply the rest of the steps of the occlusion algorithm. This 
shows that the best matching point is the correct one, as shown in Figure 5(d). 
Just to make the obvious point, if these operations are not done and instead 
the raw filter responses in the occluded image are compared to the previous 
point, then, as they are not comparable, the best match is not correct. This 
computation is shown in Figure 5(e). 

Sensitivity to degree  of  occlusion.  In order to test the sensitivity of the 
algorithm to the size and relative location of the occluder with respect to a point 
of interest, we ran the algorithm on a simple tabletop scene in the presence of 
increasing occlusion with a point near the end of the spatula's handle as the test 
point. As expected, recognition performance deteriorates due to the distortions 
in the responses as the size of the occluder increases in the area near the test 
point (Figure 6). 

5 D i s c u s s i o n  a n d  C o n c l u s i o n s  

The demands of an object location method as a model of human performance 
and for robotic applications are that (a) it be fast and (b) it deal with varying 
views. Recently there has been renewed interest in correlation algorithms owing 
to the development of real-time signal processing hardware. However, correla- 
tion algorithms have been global, and have been sensitive to view parameters. 
Our algorithm succeeds owing to three principal features. First, the problem is 
divided into location and identification. Second, the steerability of our features 
allows for correction of rotations about the view vector. Third, we exploit the 
favorable matching properties of very long vectors. 

The algorithm can deal with occlusions by using an active vision strategy 
[Ba191]. If one assumes that an occluding template can be obtained, then that 
template can be used to make the code for a stored prototype comparable to that 
of the image at every point. This allows the pseudo-occluded prototype to be 
compared to that of the occluded responses at every point as in the unoccluded 
case. Thus the use of the template can be seen as merely an extension of the 
steps in the backprojection algorithm. 

The idea of basis functions makes it suitable for instantaneously acquiring 
new points. This makes it different than principal components methods [MN93]. 
But most important, as the principal components do not have an inverse, the 
occlusion strategy described herein could not be used. The filters method has a 
further advantage over such methods in that the long feature vector formed by 
the steerable filter responses is robust to noise in some filter channels. 

The occlusion strategy could be used in a more complicated graph-matching 
strategy such as that of [WvdM92], which also uses multi-resolution filters, but 
that would require additional computational machinery. 

The multi-resolution structure of the filters has the additional advantage 
that the low-resolution components can be used in a variable resolution imaging 
system similar to the human retina. 
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Fig. 6. Sensitivity to degree of occlusion. (a) Partially occluded scene and distance 
image showing the test point correctly located. (b) and (c) Recognition performance 
gradually decreases as the degree of occlusion a the test point is increased. 
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