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Abstract A new algorithm is described for refining the pose of a model of a rigid 
object, to conform more accurately to the image structure. Elemental 3D forces 
are considered to act on the model These are derived from directional derivatives 
of the image local to the projected model features. The convergence properties of 
the algorithm is investigated and compared to a previous technique. Its use in a 
video sequence of a cluttered outdoor traffic scene is also illustrated and assessed. 

1 Introduct ion  

We report a new approach to the problem of recovering an accurate estimate of the pose 
of a rigid object, given an initial coarse estimate. The method uses an "active" model of 
the object, the pose of which is successively updated according to "forces" derived by 
examining local peaks of directional derivatives of the image, under the control of the 
current estimate. Unlike previous methods using active models [5, 8, 10, 16], we derive 
a set of elemental forces acting in 3D (rather than in the 2D image). These elemental 
forces can readily be resolved in the object coordinate frame, so that any object-centred 
constraints on possible movements are easy to impose. In particular, rigidity constraints 
are maintained automatically, and environmental constraints restricting the freedom of 
movement of the object can be imposed directly. 

The algorithm was developed as an alternative to the existing "passive" method 
used in the recently completed VIEWS (Esprit P2157) system for the visual interpreta- 
tion of traffic scenes. Its main role in the system is to update the position and orientation 
of models of vehicles in video sequences of images. With each image, we assume an 
initial estimate of pose and vehicle type; this may be the result either of initial analysis 
of lines detected by knowledge-free processing of the image [ 19], or of a kinematic fil- 
ter based on the prior tracking history [17]. Using update rates of about 5Hz, we typi- 
cally fred that the pose of a tracked vehicle can be predicted to within an accuracy of 

_+0.5m and +10 ~ . The pose-refinement algorithm seeks to obtain the position of the 
model which best explains the image data, local to the initial pose estimate. This be- 
comes an observation which is fed into the kinematic filter, and the process iterates. 

2 The VIEWS system 

The pose refinement stage of the existing VIEWS system uses a potential-maximization 
method first described in [3] (see also [4]). A scalar "evaluation score" for an object 
pose is defined, based on the local strengths of image derivatives predicted by the model 
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lines (see [17] or [1] for recent overviews). A local search is then carried out in the con- 
figuration space of the pose to maximize the score. A number of search algorithms have 
been investigated, with the Simplex algorithm [15] providing a good compromise be- 
tween efficiency and accuracy. Though model-based, this scheme is "passive", in that 
the value at a single pose gives no indication of the movement of the model most likely 
to improve the score. 

A major advantage of the VIEWS system is that, once started, it allows objects to 
be tracked through time in an entirely "top-down" way, using purely local image evi- 
dence - n o  knowledge-free early processing is required. This allows computational re- 
sources to be devoted entirely to the evolving perceptual interpretation, and completely 
obviates the need to search for higher level image features (such as straight lines, cor- 
ners, etc.). This paradigm is retained in the present work, but here the model is "active". 
Instead of passively defining a potential function to be optimised, each pose allows el- 
emental forces to be computed and aggregated over the whole model. These then ac- 
tively pull the model towards a better fit with the image. The forces we derive act in 3D 
on the rigid model, and can therefore be aggregated in a way that is independent of the 
perspective transformation used to obtain the image. 

The 3D forces also allow object-centred constraints (such as the groundplane con- 
straint - GPC [17, 18]) to be included naturally and easily. In the passive method, the 
GPC was exploited by restricting the search of pose space to the 3 degrees of freedom 
of a vehicle on a known road surface (x,y on the ground and 0, the rotation of the model 
about an axis normal to the ground). In the active method we simply resolve the elemen- 
tal forces along the three freedoms, to give forces in the directions of x and y, and a 
torque about the vertical axis (0), and ignore any other residual forces. 

This paper gives details of the implementation, and comments on the main parame- 
ters of the method. An experimental study is then reported which shows that the new 
algorithm greatly improves the performance of the VIEWS system - in particular, it lo- 
cates the pose more precisely and it converges successfully more often from errors in- 
troduced arbitrarily in the initial pose estimate. 

An important advantage of the active method (over the passive method) is that fewer 
iterations are needed. Since the computational complexity is comparable, this is likely 
to lead to a significant improvement in real-time performance, though the system has 
not yet been implemented with sufficient attention to efficiency to assess and compare 
final performance. 

The method has similarities with other recent work using active models, but differs 
in many essential respects. A comparison with previous work is deferred to the Discus- 
sion section. 

3 Method 

The central idea of the new algorithm is conveniently explained in terms of springs act- 
ing on smooth rods. One rod represents a linear feature of the model, the other repre- 
sents the ray from the centre of projection to an edge feature found in the image near 
the projected model. The two rods are attached by a zero-length spring. Since the rods 
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are smooth, the spring slides along the rods to line up with the mutual perpendicular be- 
tween the two. 

Given an initial estimate of the pose of a rigid object, we search the image for evi- 
dence of nearby edges. The object is modelled by a polyhedral facet model, which al- 
lows all visible faces to be computed, together with the projections into the image of the 
boundary lines. Facet boundary lines are commonly associated with discontinuities of 
grey-level in the image, in a direction approximately perpendicular to the line. To find 
local evidence about the pose, we simply search a short direction along the normals to 
each projected boundary line and compute the image derivative in that direction. 

In our earlier "passive" system, an evaluation score for a single line was given by 
the strength of the derivative at, or close to, the corresponding line in the image. This 
was then converted into an estimate of the probability that such a score would arise by 
chance (using empirical probability tables derived off-line). The probability scores of 
all visible boundary lines were then pooled to derive a single scalar representing the 
"goodness-of-fit" in the image of the model in that pose. 

The new scheme uses a similar approach, but sets up elemental forces which act on 
each (3D) boundary line according to maxima of the image derivatives close to the pro- 
jetted line. In short, we allow a sharp discontinuity in the image (an image edge point) 
to "pull" any model line which projects near to it in the image. The key novelty in our 
approach concerns how such forces should act. Because of the perspective projection, 
an image edge point provides NO information about movement of the model line along 
the ray at that point. Likewise, a force acting on a model line (in 3D) should have NO 
action along the model line. We therefore consider the force to act along the mutual per- 
pendicular between the model line and the ray to the image edge point - hence the 
springs and smooth rods analogy. 

A number of schemes for determining the elemental forces have been tried. The 
simplest, illustrated here, is to weight the image derivative along the normals by a tri- 
angle fianction falling to zero at a fLxed distance from the projected model line (this re- 
stricts consideration to image evidence near the projected model line). We then identify 
the strongest weighted derivative, and the ray through this point becomes one of the 
rods. This rod carries a spring of zero length, which is connected to the (3D) model line. 
Simple geometry is then used to determine the mutual perpendicular between the rods, 
so that the elemental force on the model due to the spring is specified in 3D. 1 

A number of alternative methods for deriving the elemental forces have been exam- 
ined, including weighting the springs by the strength of the image derivative, or aggre- 
gating all derivatives along the normal to account for distributed forces. However, these 
are more costly, and have not yet proved to have any advantage in practice. 

A set of elemental forces acting on the model are computed, by sampling along the 
projections of all boundary lines of the model (in the given pose). Each force is resolved 
along the three degrees of freedom allowed under the GPC, and aggregated to give lin- 
ear forces in the x & y directions of the model-centred coordinate system, and a torque 

1. An improved algorithm has been implemented that pre-computes the direction of the springs 
attached to each model line (assuming weak perspective), so that image derivatives can be com- 
puted in the required direction and pooled more efficiently. Space precludes a fuller description. 



344 

Fig. 1. (a) Image of toy test scene, (b) Close up of the car, with the "true" pose superimposed, 
(c) Starting pose (here displaced from (b) by 0.5m, 0.5m, 12.5~ 

about the vertical. With suitable values chosen for mass, inertia, spring constant, and 
time step (see below), we allow the forces to displace the model from a stationary state 
to a new pose, and the process is iterated until some stopping condition is met. 

4 Performance 

The method is illustrated in Figure 1, which shows an 768*576 pixel image of the toy 
traffic scene used as a test-bed in VIEWS. We concentrate on the car near the centre, 
which subtends approximately 50*70 pixels. 

A convenient way of assessing the performance of a pose refinement algorithm is to 
determine which poses become attracted to the correct pose [1]. For a given image of a 
vehicle we first identify by hand the "true" pose of the model, and this acts as the centre 
of coordinates in the configuration space (Figure 1 (b)). We then perturb the pose by giv- 
en amounts in the model configuration space (x, y and 0) to form a starting pose (e.g. 
Figure 1(c)). 

The algorithm then runs for a number of iterations and the resulting pose is deter- 
mined. Figure 2 shows typical results. The configuration space was sampled regularly 
around the origin at eleven points (per parameter), giving a total of 1331 starting poses, 
spaced at 200ram and 5 ~ The total range of starting poses therefore spanned + lm and 
405 ~ relative to the "true" pose. 

Poses are shown in Figure 2 as short vectors ("needles"), whose positions corre- 
spond to the (x,y) values of the origin of the object coordinate frame, and whose direc- 
tions correspond to the orientation of the model (0). To assist visualization, an overhead 
view of the model in the "true" pose is shown superimposed on the map of starting pos- 
es in Figure 2. 
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Starting poses 2nd iteration 4th iteration 8th iteration 

16th iteration 32nd iteration 64th iteration 128th iteration 

Fig. 2. Starting poses (top left) with the "true" pose superimposed, and poses obtained following 
successive iterations. Each box represents 4m*4m on the ground. 

As the iterations proceed we see a rapid attraction of the needles towards the true 
pose (centred in the Figures and oriented appropriately). Note that identical poses over- 
write each other in these needle Figures, so they only appear to occur once. After as few 
as 16 iterations, very few stable poses remain, and nearly all activity has ceased by the 
32rid iteration. The great majority of trials converge correctly, although some small at- 
tractors exist away from the "true" pose. These usually correspond to obvious aliases, 
such as where the top of the windscreen of the model aligns with the bottom of the wind- 
screen in the image. 

However, these local traps are very small, and usually account for very few of the 
results. This is made clearer in Figure 3, which show data from the same experiment 
represented in a different way. Here the poses are collected into a histograms in (x,y), 
and orientation is ignored. The starting poses are equally distributed within a 2m*2m 
square; they rapidly converge to distinct positions, comprising the "true" pose and a few 
aliases (the main ones of which correspond to confusions between the horizontal struc- 
tures at the front of the car). 

5 Control parameters of the algorithm 

There are several free parameters of the algorithm, which greatly affect performance. 
The experiment shown in Figures 2 and 3 used values set by informal experiment. This 
section considers the effects of changes from these values. 

5.1 Dynamics 

The major factor in the dynamic behaviour of the system is the relationship between 
the spring constant (K), the "mass" of the model (M) and the time step used between 
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Starting poses (11) 2nd iteration (29) 4th iteration (59) 8th iteration (115) 

16th iteration (240) 32nd iteration (428) 64th iteration (490) 128th iteration (499) 

Fig. 3. Alternative representation of the data of Figure 2, showing the number of poses falling 
into bins centred at the starting poses. The number in the peak is shown as (99). 

iterations (&); these influence the system as: 

-Xi + 1 -~ -Xi "1" ( K/M) 5 t2Ei 

A similar expression involving "moments of inertia" is involved in the computation 
of rotations. To explore the dependency on these terms, it is therefore sufficient to ex- 
amine the effect of & alone. 

Increasing & by a factor of 2 the convergence is initially faster, but the final results 
are less precise. The time-step is too large; the system therefore overshoots and then os- 
cillates around the main attractors. Decreasing 5t by a factor of 2 the convergence is 
very much slower, and iteration 125 seems comparable to iteration 16 of Figure 2. There 
may also be some increased sensitivity to small aliases. 

We conclude that the system is fairly sensitive to the choice of time step, but that 
our default values perform reasonably well in this case. 

5.2 Evidence Range  

A second major parameter affecting the algorithm is the lengths of the normals con- 
sidered in searching for local evidence. We use as default (Figure 2) normal lengths of 
+4 pixels, giving a total of 7 image derivatives, centred on the projected model line. 
(Note: the image differentiation was carried out with a difference interval of 1 pixel, us- 
ing bi-linear interpolation of grey values). 

We have investigated the effect of increasing and decreasing the length of the nor- 
reals by a factor of 2. Since the spring lengths will now vary (on average) by the same 
factor and this will affect convergence rates, the spring constants were also changed to 
compensate. Performance is fairly robust to such changes, though larger normal lengths 
lead to fewer, stronger attractors - this may or may not be desirable, depending on the 
application. It is interesting to note that the pattern of aliases changes, and also that the 
attractors appear more diffuse for larger normals probably indicating oscillation. 
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Fig. 4. Comparison between Active (left) and Passive (right) methods, using 30 iterations or sim- 
plex search (see text). 

We conclude that the system is relatively insensitive to the search range, and that 
the default values are reasonable. 

6 Comparison between Passive and Active methods 

The algorithm was developed as a direct replacement for the passive system for 
model-based pose-refinement used in the VIEWS traffic tracking system (see e.g. 
[1,17]). In this use we need also to supply a stopping criterion for the search algorithm. 
With the passive search, using the Simplex algorithm~ we terminate when either: (i) the 
4 positions considered at one time (1 + the number of dimensions of the configuration 
space) differ by less than some threshold value, or (ii) after 100 iterations. In either case 
the resulting pose is that with the highest evaluation score found in the search. 

The choice of stopping criterion in the active algorithm is less obvious. We have ex- 
plored continuing until the movement in a single time step is smaller than some thresh- 
old, but this falls if  the pose oscillates, and also may fall prematurely if convergence 
starts off slowly. In the current implementation it is a very small additional cost to eval- 
uated the vehicle at each new pose, and this suggests an alternative approach. We refine 
the pose for 30 iterations of the active algorithm, but then use as our result the pose hav- 
hag the highest evaluation score encountered in the search - usually this occurs very near 
the end of the search. 

Informal experiments have shown that the new algorithm appears to perform at least 
as well as the old. Figure 4 shows the two methods applied to the image of Figure 1, 
using a similar experimental technique as that in the previous experiments, but with the 
11"11"11 search space spanning _+0.5m, _+0.5m and +/12.5 ~ Figure4 is therefore 
drawn with twice the resolution. Note that performance in Figure 4 (left) differs from 
(say) Figure 2 (32rid iteration), because here the pose with the best evaluation score en- 
countered in the search is retained, whereas before we showed the final pose. 

In comparison to the new algorithm, the passive technique shows far more uncer- 
tainty in the results. It is likely that this is due to the fact that the evaluation function has 
a fairly flat plateau near its peak, so that noise in the system leads to spurious local 
peaks. This fact would also account for the increased spread observed in the results for 
the active system (Figure 4, left), since here we show the pose with the best evaluation 
score. One oddity is the conspicuous alias in the active results, which is not present in 
the passive system. This remains to be investigated. 
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Fig. 5. Three sub-images from test sequence (from frames numbered 5, 64 and 85). 

To compare performance between the two algorithms in a more complex outdoor 
scene, we took one particular sequence from a video of a cluttered traffic scene that has 
previously caused difficulties for the passive system. These problems have been as- 
cribed to two main causes: (i) the model used is an indifferent fit to the vehicle, and (ii) 
several items of street furniture obscure the vehicle and provide spurious image detail 
which may disrupt tracking. 

The results are illustrated in Figure 5, which shows three sub-images from the se- 
quence, as the vehicle, initially stationary as in Figure 5 (left) moves from extreme left 
in the image to extreme right. A model was instantiated in the first image of the se- 
quence approximately, by eye, and the pose was refined as described above. This pose 
became the starting pose for a search in the next image in the sequence (taken at 25Hz). 
After 8 images were treated in this way (during wtfich the vehicle was stationary), a Ka- 
lman filter was invoked to model the kinematics of the car, and this generated new pre- 
dictions in each remaining image. Three examples are shown in Figure 5 corresponding 
to frames 5, 64 and 85 after the first. Tracking using active models seems excellent. 

To compare performance of the active and passive algorithms, we focus on the mid- 
die image in Figure 5. The pose recovered during tracking was regarded as the "true" 
pose, and exhaustive perturbation trials were carried out, as before, using errors up to 
-&-0.5m, _+0.5m and +12.5 ~ Figure 6 shows the results obtained for both algorithms, rep- 
resented as in Figure 4. The active algorithm performs far better: many more cases con- 
verge to the "true" pose, and there are fewer aliases. Furthermore, the active algorithna 
also required fewer iterations than the simplex algorithm, which typically used between 
50 and 100 iterations (compared with the 30 always used in the active case). 

7 Discussion 

We have described a new approach to pose-refinement in model-based object rec- 
oguition and tracking. The use of"active models" appears to provide a great improve- 
ment on our existing method which has used "passive models", though we have yet to 
optimise our implementation to compare the real-time performance of the two. 
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Fig. 6. Comparison between Active (left) and Passive (right) methods for the real traffic scene 
of Figure 5 using 30 iterations or simplex search (see text). 
As Figure 4, but the boxes show 2m*2m on the ground. 

7.1 Comparison with previous work on active models  

The method owes much to previous work on active models. Kass et al. [11] first 
used densely sampled active models ("snakes") in which control points are attracted to- 
wards image gradients. However, without global structttral constraints it is difficult to 
prevent clusters of control points becoming caught on local image detail. 

Several authors have developed methods based on local splines which impose local 
image smoothness and improve performance considerably [5, 7, 9]. These schemes 
still lack 3D knowledge of the object's form and consider the forces to act in the image 
plane. This makes it necessary to solve non-linear equations to discover object rota- 
tions. Recent variants of the methods have imposed a limited 3D rigidity by tracking 
affme-invariant structure [2], but this cannot cope with self-occlusion by the model, and 
has not been demonstrated in complex images. 

Also recently, Taylor and co-workers [6, 9] have developed a method for defining 
deformable objects (such as faces or hands) in terms of the principal components of data 
sampled by eye. The active search technique then generates forces which displace the 
model in its PCA configuration space. Once again though, the forces are computed in 
the image plane, and any 3D geometrical regularity must be captured implicitly by the 
PCA representation. 

Other workers have explicitly considered rigid objects. Lowe [13, 14] first demon- 
strated methods for inverting the perspective transformation, using a linearisation tech- 
nique, to minimise observed errors in the image between predicted and observed lines. 
Worrall [20] showed that the scheme could be represented as a minirnisation of 3D er- 
rors, and this parameterisation allows object-based constraints to be represented more 
easily. The important distinction between these techniques and "active models" is that 
they rely on matching extended linear features, and this requires (i) a prior stage of fea- 
ture analysis, and (ii) determination of image-to-object correspondences. The former is 
computationally expensive, and the latter is unreliable in natural scenes; however, the 
method has been used successfully to track vehicles in traffic scenes [12]. 

Stevens [16] used purely "top-down" methods to fred image evidence local to pre- 
dicted features, and pooled the error signals using an iterative form of the Hough trans- 
form to identify 3D movements which would minimise image displacement errors. 
Harris [10] used a very similar scheme, but updated the pose by linearising the rotation 
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equations around the current pose, and used linear-least-squares methods to solve the 
over-determined perspective inversion problem (see also [20]). Both methods only con- 
sidered first order terms in the rotation equations, and as with flexible models, both 
sought to minimise image-based errors of a sparse set of control points. 

The new technique differs from previous methods by the way in which the elemental 
forces computed from measurements in the 2D image are deemed to act in the 3D object 
space - using the smooth rods and springs analogy (see Methods). This has two impor- 
tant consequences: (i) the resultant effects of all elemental forces can be computed by 
using conventional mechanics, and this takes full account of the rigidity of the object, 
and (ii) forces (and torques) can easily be resolved along the axes of the configuration 
space to take into account any environmental constraint (such as the ground-plane con- 
straint). 
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