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Abs t r ac t .  This paper describes a simple construction for building a 
combinatorial model of a smooth manifold-solid from a labeled figure 
representing its occluding contour. The motivation is twofold. First, de- 
riving the combinatorial model is an essential intermediate step in the 
visual reconstruction of solid-shape from image contours. A description of 
solid-shape consists of a metric and a topological component. Both are 
necessary: the metric component specifies how the topological compo- 
nent is embedded in three-dimensional space. The paneling construction 
described in this paper is a procedure for generating the topological com- 
ponent from a labeled figure representing an occluding contour. Second, 
the existence of this construction establishes the sufficiency of a label- 
ing scheme for line-drawings of smooth solid-objects originally proposed 
by tIuffman[5]. By sufficiency, it is meant that every set of closed plane- 
curves satisfying this labeling scheme is shown to correspond to a generic 
view of a manifold-solid. Together with the Whitney theorem[12], this 
confirms that Huffman's labeling scheme correctly distinguishes possible 
from impossible solid-objects. 

1 I n t r o d u c t i o n  

The larger problem which initiated the research described in this paper  is the 
reconstruction of solid-shape from image contours, a topic at the heart of com- 
puter  vision. Broadly speaking, it is proposed tha t  the Hnffman labeling scheme 
for smooth  solid-objects[5] can function as a two-dimensional intermediate rep- 
resentation, bridging the gap between image contours and three-dimensional 
solid-objects. While Huffman's  influential paper  "Impossible Objects as Non- 
sense Sentences" is widely cited as one source of the Huffman-Clowes junction 
catalog for trihedral scenes, the last few pages of Huffman's  paper  is devoted to 
a labeling scheme for smooth objects (see Figure 1). t tuffman's  labeling scheme 
differs f rom the labeling scheme proposed by Malik[8] in two impor tan t  ways. 
First, Malik assumes piecewise smooth surfaces without boundary, while t tuffman 
assumes smooth surfaces with and without boundary. Second, like other contour 
labeling work in computer  vision (e.g. [3, 6, 11]), Malik considers only visible 
contours, while gu f fman  explicitly considers both  visible and occluded contours. 

A smooth  surface embedded in three-space generates a set of image contours 
which can be classified as either: 1) the image of boundaries; or 2) occluding 
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contours. Boundaries are the image of points with neighborhoods topologically 
equivalent to half-discs (i.e. like the edge of a sheet of paper). Occluding con- 
tours are the image of points where the surface is tangent to the viewing direc- 
tion (i.e. the image of the contour generator). Because the surface which forms 
the boundary of a smooth manifold-solid is closed, its image will contain no 
boundaries--only occluding contours. Therefore, in this paper, we only consider 
a subset of the Huffman labeling scheme (i.e. (c) through (f) in Figure 1). 

A solid-shape description contains two components. The first is topological, 
and specifies a set of neighborhoods (i.e. a topology). The second component 
describes how those neighborhoods are embedded in three-dimensional space. 
The neighborhoods of the surface which forms the boundary of a manifold- 
solid can be explicitly represented by means of a combinatorial model called a 
paneling. The term "paneling" is used by Griffiths[4] in his informal but very 
accessible account of the topology of surfaces. Roughly speaking, a paneling is a 
set of paper panels taped together in prescribed ways. The paneling is produced 
by applying a straightforward procedure called the paneling construction to a 
labeled figure representing the occluding contours comprising the image of a 
smooth manifold-solid. 

1.1 Sol id-Shape f rom Image  Contours  

Terzopolous, Kass and Witkin[10] have demonstrated reconstruction of simple 
solid-shapes from silhouettes under strong assumptions which determine the 
topology of the solid-shape a priori. Basically, they assume that the topology can 
be described by a tube centered on a user-specified medial-axis. The embedding 
of the tube in space minimizes an energy functional which combines membrane 
and thin-plate terms with terms derived from image brightness. 

In contrast, it is proposed here that a description of solid-shape can be com- 
puted from image contours (or a line-drawing) by means of the three-stage pro- 
cess depicted in Figure 2(a). The first stage is figural completion, which is the 
process of inferring a set of interpolating curves, or completions, satisfying the 
Huffman labeling scheme. The author's recent Ph.D. thesis[13] describes a sys- 
tem which solves figural completion problems in the anterior scene domain (i.e. 
Figure l(a) and (b)). An anterior scene is a set of smooth surfaces with boundary 
embedded in three-dimensional space such that the surface normals everywhere 
have a positive component in the viewing direction. These results, while prelim- 
inary, suggest that similiar methods may succeed in the more complex domain 
of smooth manifold-solids. 

The second stage in the reconstruction of a smooth manifold-solid from image 
contours is the topic of this paper--the paneling construction. The paneling 
construction translates the labeled figure (which is the product of the figural 
completion process) into a combinatorial model of an orientable surface without 
boundary. Stated differently, it makes explicit the topology of the solid-shape 
implicit in the labeled figure. This is a prerequisite for the final stage--computing 
a smooth embedding of the paneling in three-dimensional space. For this purpose, 
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F i g .  1. Huffman's labeling scheme for smooth objects. Single arrows represent bound- 
aries and double arrows represent occluding contours. Numbers are depth indices and 
direction of arrows indicate sign of occlusion. (a) and (b) Boundary crossing junctions 
are sufficient to represent the domain of anterior scenes[13]. An anterior scene is a 
set of smooth surfaces with boundary embedded in three-dimensional space such that  
the surface normals everywhere have a positive component in the viewing direction. 
(c) through (f) Occluding contour crossing junctions and cusp junctions together de- 
fine the domain of smooth manifold-solids. (g) through (1) Additional junction types 
required for arbi t rary smooth surfaces. 
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Fig.  2. (a) It is proposed that sets of closed plane-curves satisfying the Huffman labeling 
scheme can function as a two-dimensional intermediate representation, bridging the 
gap between image contours and three-dimensional solid-objects. (b) Venn diagram 
showing relationship of problem domains. (c) For any given problem domain, necessary 
constraints on depth indices and sign of occlusion define a contour labeling scheme. 
For each labeling scheme, there is an associated completion problem and a paneling 
construction. The existence of a paneling construction for a given labeling scheme 
establishes its sufficiency as a surface representation. (d) Labeled figure representing 
Tyrannosaurus rex solid [Note: Adapted from figure by Gregory S. Paul[9]]. Figural 
completion is the problem of deriving the complete labeled figure from the the visible 
portion (shown thick). 
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a relaxation process similiar to that  employed by Terzopolous et al.[10] would 
likely suffice. 

1.2 Poss ib l e  a n d  I m p o s s i b l e  S m o o t h  So l id -Ob jec t s  

The other source of motivation for this work is theoretical. The existence of the 
paneling construction establishes the sufficiency of Huffman's labeling scheme 
for line-drawings of smooth solid-objects. By sufficiency, it is meant that  every 
set of closed plane-curves satisfying this labeling scheme is shown to correspond 
to a generic view of a smooth manifold-solid. If the view of the manifold-solid 
is generic, then the crossings will be the only points of multiplicity two in the 
projection of the contour generator onto the plane: 

Defn .  generic view - an image of a smooth manifold-solid where: 1) the 
multiplicity of the image of the contour generator is one everywhere except at a 
finite number of points where it is two; and 2) the number of multiplicity two 
points is invariant to small changes in viewing direction. 

In an influential paper, Koenderink and van Doorn[7] describe the singu- 
larities of the visual mapping of a smooth manifold-solid onto the image plane 
under parallel projection. Largely through this paper, researchers in computer 
vision have become aware of a theorem due to Whitney which holds that  the 
only generic singularities of mappings of smooth surfaces onto the plane are folds 
and cusps (see [12, 1]). 

Let 5 c be the space of figures satisfying the ttuffman labeling scheme for 
smooth solid-objects and let G be the space of generic views of smooth manifold- 
solids. Then the Whitney theorem tells us that  G C 5 c, that  is, that  there are no 
generic views of smooth manifold-solids that  do not have corresponding labeled 
figures. In contrast, the paneling construction described in this paper makes it 
possible to prove the converse (i.e. 5 c C_ ~): 

T h e o r e m  Every set of closed plane curves satisfying the labeling scheme 
illustrated below represents a generic view of a manifold-solid. 

O~< n~ < m 

@rn n 

>> >> 

~m+2 
I 

O .< m .< n 

n+2 n ---->>-- >> 

"%./ 
/ n+l n+1 \ ! n 

V 

Fig. 3. Huffman labeling scheme for smooth solid-objects. 

Together, this confirms that  the labeling scheme consisting of (c) through (f) 
in Figure 1 correctly distinguishes possible from impossible smooth solid-objects 
(i.e. ~ -- 5r). 
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2 S u f f i c i e n c y  o f  L a b e l i n g  S c h e m e  

Unfortunately, it is not possible to present a complete proof of this theorem 
within the allowed space. Instead, we describe the paneling construction in detail 
and briefly sketch the remainder of the proof. 

Observe that  a set of closed plane-curves partitions the plane into regions. 
The boundary of each planar region is a cycle of oriented edges separated by 
crossings and cusps. Every edge forms the side of exactly two planar regions, one 
lying to its right, the other to its left (where right and left are with respect to the 
edge's orientation). Note that  if an edge is the projection of an occluding contour, 
then the multiplicity of the projection of interior surface points onto image points 
is two greater on the right side of the edge than on the left. Furthermore, the 
multiplicity of the projection of interior surface points onto image points will be 
constant within a planar region. 

Let A and B be neighboring regions and let A lie to the right of B. If the 
labeled figures represents a manifold-solid, and if'fA and 7B are the multiplicities 
of the projection of interior surface points within regions A and B,  then "fA--"fB ----  

2. Observe that  the set of difference constraints among all neighboring planar 
regions form the node-edge incidence matrix of a network. 

Example  
Figure 4(b) illustrates a network constructed in this fashion for the planar 

partition depicted in Figure 4(a). The linear system of difference equations 
represented by this network appear below: 

[10  1:1] 
Recall that  a system of difference equations has a solution if and only if the 

sums of the weights of every cycle in its corresponding network equal zero (where 
the weight of an edge is k or - k  depending on the direction of traversal). In a 
longer version of this paper[14], we show not only that  a solution to this system 
of difference constraints always exists, but also that  a solution exists where the 
value of 7 for every planar region is greater than the largest depth index among 
all edges bordering that  region in the labeled figure. Fortunately, this second 
condition is easy to satisfy, since it is always the case that if {Xl, x2, ..., x~} is a 
solution to a system of difference equations, then {xl + c, x2 + c, ..., x,~ + c} is 
also a solution for any constant c. Clearly, a sufficiently large c can always be 
found, and it is sufficient to prove that  the sums of the weights around every 
closed cycle in a network constructed as described equal zero. 

2.1 P a n e l i n g  C o n s t r u c t i o n  

Since each region of the planar partition induced by the labeled figure is a 
topological disc, flat panels of the same shape and size can be cut out from 
a sheet of paper. Let us further assume that  the paper is white on one side and 
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Fig. 4. (a) A kidney bean shaped solid. The contour generator is the locus 
of surface points tangent to the viewing direction (i.e. the pre-image of the 
occluding contour). Cusps occur when the direction of the contour generator 
coincides with the viewing direction. Here the occluding contour contains two 
cusps which form a "swallowtail." [Note: This figure is adapted from a figure by 
Jim Callahan[2].] (b) The network representing the system of difference equations 
which must be solved as a precondition for the paneling construction. The labeled 
figure is shown dashed while network edges are shown solid. Here the solution is 
7.4 = 4 , 7 s : - 2 a n d T c = O .  
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Fig. 5. Paper panels stacked above region A and B in the plane. Following the ~den- 
tification scheme, all copies of regions A and B but A(n + 1) and A(n + 2) are glued 
along their m:ljacent sides. Copies A(n § 1) and A(n + 2) are glued to form a fold edge. 

black on the other side. For each region, R, create 7R copies of the paper panel, 
where 7n is a solution to the above system of difference equations. Let the copies 
of region R be R(1), R(2), ..., R(Tn) and let them be arranged in a stack above 
region R in the plane such that R(1) is the uppermost region and R(Tn) is the 
lowermost region. This is done so that the white side of each panel faces upward 
and the black side of each panel faces downward. 

Let A and B be neighboring regions and let n be the depth index of the 
edge separating them. Note that if A lies to the right of B then 7A -- 7B = 2. 
Unless n equals zero, identify the side (bordering B) of each panel (above region 
A) numbered 1 through n with the adjacent side of the corresponding copy of 
region B such that white is glued to white (i.e. A(1) ~--- B(1), ..., A(n) ~ B(n)). 
Then identify the side of A(n + 1) (adjacent to B) with the side of A(n § 2) (also 
adjacent to B) such that white and black meet (i.e. A(n + 1) ~ A(n + 2)). We 
call an edge where white and black meet a fold edge. Now, unless '~A equals n+2,  
identify the side (bordering B) of each panel (above region A) numbered n + 3 
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Fig. 6. (a) Flattened view of A(n + 1) =~ A(n + 2). (b) The/old edge which results. 

through 7A with the adj acent side of the copy of region B numbered n +  1 through 
7A -- 2 such that  white is glued to white (i.e. A(n + 3) ~ B(n + 1), :.., A(TA ) 
B(TA -- 2)). We refer to this implicitly defined set of edge identifications as 
the identification scheme. The effect of the identification scheme is to create n 
interior edges above and ~fA - -  n - -  2 interior edges beneath a fold edge in the 
paneling. The set of identifications can be divided into three subranges, the first 
and last of which are potentially empty: 

(a) A(1) ~- B(1), ...,A(n) ~- B(n) 
(b) A(u + 1) ::~ A(n + 2) 
(c) A(n + 3) ,~- B(n + 1), ..., A('~A) = B(TA -- 2) 

By everywhere gluing along the edges specified by the identification scheme, 
a paneling is created. However, we still must show that  this paneling represents 
a manifold-solid. This can be done by demonstrating that the neighborhood of 
every point of the paneling resembles an interior surface point (i.e. is homeo- 
morphic to a disc). Towards this end, we observe that  points of the paneling 
can be divided into the following categories: 1) Points interior to a panel; 2) 
Points lying on a panel edge; 3) Vertices originating in crossings; and 4) Vertices 
originating in cusps. The first two cases are trivial. First, it is clear that  a point 
interior to a panel forms an interior point of the surface. Second, the nature of 
the identification scheme ensures that  every panel edge is identified with one and 
only one other edge. Pairs of identified panel edges therefore form interior edges 
of the paneling. 

This leaves only the last two cases (i.e. paneling vertices). These are points 
where the corners of two or more panels meet and are created when the construc- 
tion is applied to the edges incident to a crossing or cusp in the labeled figure. 
In a longer version of this paper[14], we show (by enumeration) that  the neigh- 
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Fig.  7. Paneling produced by the construction for the kidney bean solid. Edges 
which are adjacent are identified. Additional identifications are indicated by 
lowercase letters. Construction with scissors and tape yields a paper model of 
the surface which forms the boundary of the kidney bean. 
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(a) (b) (c) 

Fig. S. (a) Tuck in a smooth surface with cusp superimposed. (b) Folded embedding of 
disc produced by the paneling construction when applied to edges incident at a cusp. 
(c) Unfolded embedding of disc. 

borhoods of all paneling vertices produced by the construction are homemorphic 
to discs. In lieu of this, in Figure 8, we show how the construction translates 
a cusp in the labeled figure to a tuck in the paneling. By unfolding the tuck, it 
becomes clear that the neighborhood of the paneling vertex is homeomorphic to 
a disc. 

2.2 All  Pane l ings  Form Boundar ies  of  Manifo ld-Sol ids  

Because the neighborhood of every point of a paneling produced by the con- 
struction is homeomorphic to a disc, it follows that all such panelings represent 
surfaces without boundary. Furthermore, because the construction guarantees 
that the panelings can be embedded in three-dimensional space without self- 
intersection, the surfaces without boundary must be orientable. We therefore 
conclude that all panelings generated by the construction represent the bound- 
aries of manifold-solids. 

We now show that the image of the surface without boundary produced by 
the construction corresponds to the labeled figure in every respect and that the 
view is generic. First, the definition of the construction guarantees that each 
edge in the labeled figure produces exactly one fold edge in the paneling. The 
multiplicity of the projection of the fold is therefore equal to one everywhere 
except at crossings. Furthermore, at crossings the multiplicity of the projection of 
the fold is two, since exactly two fold edges are produced in the paneling when the 
construction is applied to the edges incident at a crossing. It follows that the view 
is generic. Second, the definition of the construction guarantees that the image 
of the manifold-solid everywhere lies to the right of the occluding contour so 
that the sign of occlusion is respected. Finally, the definition of the construction 
guarantees that the depth of a fold edge everywhere matches the depth index of 
the labeled figure, since exactly n interior panel edges are assembled above each 
fold edge. 
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3 Conclusion 

This paper  describes a simple construction for building a combinatorial  model 
of a smooth manifold-solid from a labeled figure representing its occluding con- 
tour. This is an essential (and previously unaddressed) intermediate step in the 
reconstrucfion of solid-shape from image contours. In addition, this paper estab- 
lishes the sufficiency of the Huffman labeling scheme for smooth solid-objects 
as a surface representation, and as a source of grouping constraints for image 
contours. 
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