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Abs t rac t .  This contribution investigates local differential techniques 
for estimating optical flow and its derivatives based on the brightness 
change constraint. By using the tensor calculus representation we build 
the Taylor expansion of the gray-value derivatives as well as of the optical 
flow in a spatiotemporal neighborhood. Such a formulation simplifies 
a unifying framework for all existing local differential approaches and 
allows to derive new systems of equations to estimate the optical flow alld 
its derivatives. We also tested various optical flow estimation approaches 
on real image sequences recorded by a calibrated camera fixed on the 
arm of a robot. By moving the arm of the robot along a precisely defined 
trajectory we can determine the true displacement rate of scene surface 
elements projected into the image plane and compare it quantitatively 
with the results of different optical flow estimators. 

1 I n t r o d u c t i o n  

Estimation of optical flow and its derivatives is an important  task in the area 
of computer vision. [Koenderink & van Doorn 76] studied the role of differential 
invariants of optical flow with respect to 3D-interpretation of image sequences. 
Specific 3D-tasks like obstacle detection ([Subbarao 90]) and computation of 
bounds for t ime to collision ([Nelson & Aloirnonos 88; CipoIla & Blake 92]) may 
be solved based only on 0 th and i st order properties of optical flow. Further- 
more, first-order properties, [Baraldi et al. 89; Girosi et al. 89; Negahdaripour 
& Lee 92], can be used as features for the classification of image patches into 
regions corresponding to independently moving objects. 

[Nagel 92] proposed an approach to estimate spatiotemporal derivatives of 
the optical flow, whereas [Werkhoven ~ Koenderink 90] limited their approach to 
compute only spatial ones. All of them use at least second order derivatives of the 
gray-value pat tern in order to capture the variation of optical flow in the neigh- 
borhood of the point under consideration. These differential approaches are to 
be distinguished from 'neighborhood-sampling' approaches which use the actual 
values of the gray-value gradient at every point of the observed neighborhood 
like [Nagel 85; Kearney et al. 87; Campani ~ Verri 90]. Regarding the above 
mentioned approaches to estimate optical flow and its derivatives, we have been 
able to build a common framework to derive all local differential methods based 
on the brightness change constraint and to present a method which combines 
differential with neighborhood-sampling techniques. Furthermore, within this 
framework we show that  if one refers strictly to the assumptions of [Werkhoven 

Koenderink 90], it will turn out that  their approach is equal to the optical 
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flow estimation technique presented by [Nagel 87]. 
Most publications presenting a new optical flow estimator discuss their results 

only qualitatively. A remarkably broad comparison has been presented by [Bar- 
ron et al. 92], who implemented various optical flow estimation techniques and 
tested them quantitatively on several synthetic and quasi-synthetic (i.e. one real 
image with simulated camera motion) image sequences. Their comparison with 
real image sequences as input data has been limited to a qualitative judgement, 
since the true displacement rate fields of their image sequences are unknown. 

In this contribution we use an image sequence recorded with a calibrated 
camera fixed on the arm of a robot which moves along a precisely defined 3D- 
trajectory. The calibration data as well as the known trajectory allow us to 
compute the true displacement rate field which is compared with results obtained 
by the new optical flow estimation approaches presented in this paper and with 
some of the estimators mentioned above. 

2 E s t i m a t i o n  o f  o p t i c a l  f l ow  a n d  o f  i t s  d e r i v a t i v e s  

Optical flow is defined as the apparent velocity of gray-value structures. Assum- 
ing temporal constancy of a moving gray-value structure g(x ,  y, t) results in the 
well known Optical Flow Constraint Equation (OFCE) postulated by [Horn & 
Schunck 81]: 

d g ( x ,  y, t) = = gxUl + gyU2 n u gt -- (1) V g W u  0 

with u = (Ul, u2, 1) w. This equation does only allow to estimate a linear combi- 
nation of the components Ul and u2 of the optical flow. It has to be supplemented, 
therefore, by additional assumptions. 

[Srinivasan 90; Chen el al. 93; Weber & Malik 93] estimate the gray-value 
gradient with a set of spatiotemporal filters to obtain two or more constraint 
equations. Unfortunately, this kind of estimating optical flow must fail the more, 
the better the estimated partial derivatives approximate the real derivatives, 
because in this case, the equations tends to become linearly dependent. 

[Schunck 84; Aisbett 89; Negahdaripour & Yu 93] use a generalized form of 
the OFCE by assuming intensity changes due to shading or due to changes of the 
surface orientation with respect to light sources. [Verri & Poggio 89] argue that 
different biological visual systems do compute different optical flows. In biological 
visual systems it suffices to comply with the qualitative properties of the motion 
field as good candidates for subsequent analyzing cells. In this connection it must 
be allowed to define different "optical flows", since they have to be considered as 
an approximation of the true displacement rate field. In this contribution we use 
the OFCE as a basic constraint, since it allows to estimate shifts of gray-value 
patterns without any specific assumptions about surface properties or about the 
direction of light sources. 

2.1 C o m m o n  basis for local gradient based est imators  

Apart from partially occluded objects or some artificial image sequences, the 
image of projected scene surfaces does not change abruptly with time in general, 
if the relative movement between camera and scenery is not too large or, more 
precisely, if the temporal sampling rate is high enough. 
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Thus, the OFCE can be considered valid not only as an approximation for a 
pixel position (x, y, t) but also for some local environment (x + 5x, y + 5y, t + St) 
of the actual position. This assumption allows us to write the OFCE in form of: 

0 = VgT(~ + 6x)u(~ + 5~).  (2) 

If we take the optical flow to vary at most linearly, we can substitute the term 
u(x + 5~) by a first order Taylor expansion 

0 = v g ~ ( ~  + 6~)[u(x)  + v u T ( ~ ) 6 ~ ] .  (3) 
We distinguish optical flow estimation approaches based on equation (3) into 

two groups, namely neighborhood-sampling and gray-value gradient Taylor ex- 
pansion estimation approaches, depending on a description for VgT(m + 5m). 

2.2 Neighborhood-sampling approaches 

If we consider a (spatial) region of n • n pixels around the actual point x, we can 
sample the gray-value gradient at n 2 positions which yields an overconstrained 
system of n 2 equations. This method is used by [Nagel 85; Kearney et al. 87] 
to estimate the optical flow itself and by [Campani & Verri 90] to estimate the 
optical flow and in addition its linear spatial variation: 

0 = g~(x0, y0)ul + g~(~0, ~ 0 ) ~  + g~(~0, y0) 
0 : gx(Xl ,  y l ) (Ul  --~ ~tl• -- X0) "~ ~tly(Yl -- Y0)) 

-~gy(Xl,  Yl)(tt2 + U2x(Xl -- X0) + U2y(Yl -- Y0)) "~ g t (Xl ,  Yl) - (4) 

[Campani 8~ Verri 90] used a region of between 10 • 10 and 70 x 70 pixels to 
achieve acceptable results. Obviously, this method can be extended to estimate 
not only the spatial variation of the optical flow but also its linear variation with 
time. In this case, the gray-value gradient has to be sampled in the temporal 
as well as in the spatial domain. Theoretically one can choose a similar region 
of up to 70•215 pixels which yields a system of 343,000(!) equations for 
eight unknowns, which is not practical in general. For our implementation we 
restricted the region to a 5z5• neighborhood. 

2.3 Gray-value  g rad ien t  Taylor  expans ion  approaches 

Instead of sampling the gray-value gradient in a small neighborhood, the gray- 
value gradient can be described as a Taylor series. In order to obtain a compact 
presentation, we write g instead of g(x) and we use the Einstein summation 
convention for a three dimensional space: 

~ := ~ = (~, y, t)  T, ~" := u = (~1, ~2 ,1)  T, r ~ := ~ = (6x, 6y, 6t) ~, 
g n  : :  Vg o_~ o_~ Og-~W 0 v _ T  rn A o u T (5) 

= ( O ~ ' O y ,  O t J  , g n m =  H - ~  ~ g , u n ~ . 

Using this notation, equ. (3) can be replaced by Taylor series for both VgW(x + 
6x) and u(x  + 6x): 

1 
0 = (g~ + g~mrm + 2 g~mkrmrk + O((r~)3))(u, + u2 ~, + O((r,)2)) (6) 

Supposing an at most linearly varying optical flow and neglecting gray-value 
derivatives of order four and higher, we obtain the Basic Optical Flow Equation 
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(BOFE2,1) of third order 3: 
1 0=g.  +g. m)r (7) 

We can now postulate three conditions for which the polynomial vanishes: 

1. Rigorous  condi t ion  (RC) : The polynomial vanishes identically, i.e. that 
all coefficients of the polynomial must be zero. This method was introduced 
by [Nagel 87]. 

2. I n t e g r a t e d  condi t ion  (IC): The integral of the polynomial over a small 
region must vanish. It is used to rederive the approach of [Werkhoven 
Koenderink 90]. 

3. Sampl ing  condi t ion  (SC): The SC merges the proposed neighborhood- 
sampling method with the gray-value gradient Taylor expansion method by 
choosing appropriate values 5x, 5y, 5t to express the neighboring points at 
which the BOFE is postulated to be valid. This method is new. 

Solu t ion  u n d e r  t he  Rigorous  Cond i t ion  (RC) The RC demands that the 
polynomial should vanish identically in the neighborhood. As a consequence, all 
coefficients of the polynomial in equ. (7) must be zero. This leads to the following 
system of 20 equations for 8 unknowns: 

gx 0 0 0 gy 0 0 0 
gxx gx 0 0 gxy gy 0 0 

gxy 0 gx 0 gyy 0 gy 0 

gxt 0 0 gx gyt 0 0 gy 
1 

�89 gxxx gxx 0 0 ~ gxxy gxy 0 0 
gxxy gxy gxx 0 gxyy gyy gxy 0 
gxxt gxt 0 gxx gxyt gyt 0 gxy 

�89 gxyy 0 gxy 0 1 gyyy 0 gyy 0 

gxyt 0 gxt gxy gyyt 0 gyt gyy 
1 1 gxtt 0 0 gxt ~ gytt 0 0 gyt 

1 1 0 ~ gxxx 0 0 0 ~ gxxy 0 0 
1 1 

0 gxxy ~ gxxx 0 0 gxyy ~ gxxy 0 
1 1 0 gxxt 0 ~ gxxx 0 gxyt 0 ~ gxxy 

1 1 0 ~ gxyy gxxy 0 0 ~ gyyy gxyy 0 
0 gxyt gxxt gxxy 0 gyyt gxyt gxyy 

1 1 0 ~ gxtt 0 gxxt 0 ~ gytt 0 gxyt 
0 0 1 1 gxyy 0 0 0 0 gYYY 

1 1 0 0 gxyt ~ gxyy 0 0 gyyt ~ gyyy 
1 1 

0 0 ~ gxtt gxyt 0 0 ~ gytt gyyt 
0 0 0 �89 gxtt 0 0 0 1 gy t t /  

Ulx 
Uly 
Ult 
U2 

U2x 
U2y 

~t 

xt 
yt 
tt 

Ixxt 
;yt 
ct t  

/yyt 

~tt  

~ttt 
0 
0 
0 
0 
0 
0 
0 
0 
0 

\ o 

(8) 

3 The two indices of the BOFE depends on the order of the Taylor expansion of the 
gray-value gradient and of the optical flow. The order of the BOFE itself is defined as 
the order of the resulting polynomial with respect to r '~ (=  sum of the two indices). 

In general the solution under the RC of the BOFEmm (denoted as RC~,m) results 
into a system of (n+m+3~ equations. The system of 35 equations derived from 

\ 3 ] 
the BOFE3,1 can be found in [Otte 94]. 

If one neglects all third order partial gray-value derivatives corresponding to 
the RCI,1, one obtains exactly the system of equations presented by [Nagel 92]. 
Assuming in addition constancy of the optical flow with time, one can eliminate 
the fourth and last column as well as the fourth, seventh and ninth to last row of 
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the resulting system of equations which is equal to those presented by [Nagel 87]. 
[Nagel 87; Nagel 92] pointed out that the respective systems of equations do not 
have full rank. In contrast to the RCI#, the RC2,1 has full rank in general which 
indicates that third order derivatives of the gray-value pattern are important to 
estimate first order derivatives of the optical flow. 

Solut ion  u n d e r  the  I n t e g r a t e d  Cond i t ion  (IC) In case of the IC, we as- 
sume temporal constancy of the average gray-value over a small region, i.e. the 
integral of the polynomial (7) over a spatiotemporal region 7~ must vanish. Be- 
fore we determine the IC2,1, we want to rederive the approach of [Werkhoven 
Koenderink 90]. Since they describe variations of gray-value derivatives by first 
order Taylor expansions, we have to derive a solution for the BOFEI,I: 

/ - U n ~r rn 0 = (g u n +(anmu" + g .  m) +9nmu r T )dr ' (9) 

Let the region 7~ be a spatiotemporal sphere symmetrically centered around the 
origin with radius o.v/'5. Dividing equ. (9) through fT~ dr~ yields: 

0 g n u  n + o.2 n~rnk o .2 u n , (10) gnmUle 0 ~ g n u n  ~ g n m  m 

where 5 mk represents the Kronecker delta. Since the OFCE (1) is considered as 
a constraint at all pixel positions, the partial derivatives of equ. (1) must vanish. 
Executing the same steps for the partial derivatives of equ. (1) as for equ. (9) 
and (10) yields 

0 , n 2 n "  - u n -  u'~--o. 2 u n ( l la)  
01 = ~ ( g n u  +o .  g n m U m )  = yn l  t g n  t "1- g n m l  m 

02 
- -  gn ls  -}-gnlU s -I-gnsU l -[- O" gnml sUrn .  0~ bx,~x, (gnu" +o.2gnmu~) = u n  n n 2 n ( 1 1 b )  

If we consider variations only in the spatial domain as [Werkhoven ~c Koen- 
derink 90] did, equ. ( l la)  and (l lb)  have to be differentiated only with respect 
to x and y which leads to five equations. Together with equ. (10) we obtain a 
system of six equations for six unknowns, which represents the same system for 
optical flow estimation as that derived by [Werkhoven & Koenderink 90] 4. 

Considering the steps we presented in order to derive the system of equations 
of [Werkhoven & Koenderink 90], one can establish an inconsistency in the as- 
sumptions underlying their approach. First of all we started with the BOFEI,1 
which implies that all gray-value derivatives higher than second order can be 
neglected. In the final result (10) - (llb), however, we keep third and fourth or- 
der spatiotemporal derivatives of the gray-value pattern. An equivalent inconsis- 
tency can be found in [Werkhoven & Koenderink 90]. They introduce coefficients 
ln,,~ as the correlation of gray-values g ( x ,  y )  with a receptive field grn,m which 
is the (n + m) th order derivative of a two-dimensional Gaussian, scaled with 
the (n + m) th power of its standard deviation. In their equ. (18) they express 
a receptive field in terms of a linear Taylor expansion regardless of its order. 
Although they use receptive fields of up to fourth order, they neglect third and 
higher order terms when approximating a first order receptive field through a 
linear Taylor expansion. 

4 Apart from the fact that the C matrix of [Werkhoven & Koenderink 90] is multiplied 
by -1 due to a mistake in the sign in their equation (18). 



56 

We derive now the solution under the IC starting with the BOFE2,1. Integra- 
tion of the polynomial (7) over a region 7~ yields under the same assumptions 
as for equ. (10): 0-2 

0 g n  u n  ~ 0 -2 U n U n = g . . , . ,  + . ( 1 2 )  

Since we considered gray-value derivatives of up to third order in this deriva- 
tion, we can formulate appropriate conditions analogous to equ. ( l l a )  to (11b). 
If we neglect all gray-value derivatives of higher than third order and all sec- 
ond order derivatives of the optical flow in accordance with the assumptions 
underlying the BOFE2,1, we obtain: 0-2 

Ot g . l u  '~ + g,~u'~ + 0-2 u,~ u n = g,~m~ m + -~g,~m.~ I (13a) 

Ols = g,~l~u '~ + g,~lu'~ + gn~u'~ (13b) 

Olsr = g,1su~ + g ,  lru~ + g ,~ru~  . (13c) 

The equations with l = s in (13b) and (13c) allow to eliminate the gray-value 
variations scaled with 0-2 in equ. (12) and (13a). The resulting system of equa- 
tions is exactly the same result as the RC2,1 (8). Neglecting all third order gray- 
value derivatives corresponding to the BOFEI,1, and assuming constancy of the 
optical flow with time as [Werkhoven & Koenderink 90] did, one obtains the 
same approach as [Nagel 87]. 

S o l u t i o n  u n d e r  t h e  S a m p l i n g  C o n d i t i o n  (SC) The solution under the SC 
combines the neighborhood-sampling method with the gray-value gradient Tay- 
lor expansion method. Disadvantage of the neighborhood-sampling method is 
the large number of equations usually used ([Campani & Verri 90] consider up 
to 4900 points, i.e. up to 4900 equations). As we showed, the RC2,1 and RC3,1 
need only 20 or 35 equations but one has to estimate at least third order deriva- 
tives of the gray-value distribution. 

The RC requires that  all coefficients of the polynomial (7) must be zero. 
Instead of this rigorous condition we can choose appropriate values 5x,  5y, 5t 
to select a number of neighboring points. Since the BOFE2j  (7) represents a 
polynomial with respect to r n = (Sx ,  5y, St) ,  it can be written in the form ~ 

0 = c + c l r  1 + c2r 2 + C3 r a  

+ c n ( r l )  ~ + c l ~ r l r  2 + c13r l r  3 + c22(r2) 2 + c2sr2r  3 + c33(r3) 2 

- ~ - C l l l ( r l )  3 --[- C l l 2 ( r l ) 2 r  2 -~- C l l 3 ( r l ) 2 r  3 -~- c 1 2 2 r l ( r 2 )  2 + c 1 2 3 r l r 2 r  3 

+ + + + 04)  
Selecting all possible values for r 1, r 2, r 3 from the set {-1 ,  0, 1} which is related 
to the 3•215 neighborhood around the actual position leads to a system of 27 
equations: 

r I r 2 r 3 

0 0 0: 0 = c  
1 0 0: O = c + c l + c u + c n l  (15) 

- 1 - 1 - 1 :  0 = c  - Cl - c2 - c3 + cn  + c1~ + c13 + cu2 + c23 + c33 - c111 
--C112 --  C113 --  C122 - -  C123 - -  C133 - -  C222 --  C223 - -  C233 - -  C333, 

Note :  t h e  u p p e r  i n d e x  d e n o t e s  t h e  c o m p o n e n t ;  i f  a c o m p o n e n t  h a s  to  b e  r a i s ed  to  
s e c o n d  or  t h i r d  power ,  i t  is enc lo sed  by  p a r e n t h e s e s .  
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which can be reduced to a system of 17 equations. This system of equations is 
similar to the RC2,1 (8). The 11 ~h, 17 th, and 20 ~h equation of the RC~,I is a 
summand  in the 2 nd to 4 th row of the SC result. Exploiting this observation 
reduces the number  of equations by 3. The SC3,1 reduces the number  of 35 
equations in case of the RC3,1 to only 23 [Otte 94]. 

To sum up the three approaches - RC, IC and SC - ,  one has to consider 
at least third order gray-value derivatives to be able to est imate first order 
derivatives of the optical flow. Another impor tan t  result is the fact tha t  the IC 
leads to the same result as the RC does, if one applies the initial assumptions 
consistently. Last but not least, with the proposed SC we presented a new method 
which reduces the number  of equations f rom 20 and 35 of the RC2,1, and RC3,1 
to 17 and 23, respectively. 

3 C o m p a r i s o n  b e t w e e n  o p t i c a l  f l o w  e s t i m a t o r s  

[Barton et al. 92] compared quantitat ively the deviation of est imated optical 
flow vectors of various approaches with respect to the true displacement rate 
field. However, the image sequences used in their comparison were generated 
synthetically. In contrast,  we record real image sequences prepared with a camera 
mounted  on the moving arm of a robot.  Fig. 1 shows two frames of such an image 
sequence. The camera moves with pure 3D-translation towards the depicted 
scene which is s ta t ionary with the exception of the marbled light block, which 
translates to the left. 

F ig .  1.  7 th, and 50 TM flame of an image sequence recorded with a camera mounted on 
a robot arm moving with pure translation toward the scene. In addition to the camera 
displacement, the marbled block translates to the left. ~ght :  ~ u e  displacement rates 
of the 5ttle ground surface section marked in the left image. 

I f  one considers a region with a homogeneous displacement - for example 
a par t  of the ground surface - one expects a robust est imation of optical flow 
vectors since there are no discontinuities. Fig. 1 (right) shows the true displace- 
ment  rates correspond to the clipping of the ground surface marked in the left 
image of Fig. 1. In Fig. 2 one can see in the upper row the optical flow vectors 
est imated by the approach of [Werkhoven ~ Koenderink 90], by the SC2,1 and 
by the neighborhood-sampling method.  In the lower row, the resulting difference 
vectors between est imated and true displacement rate are shown. 
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The gray-value derivatives were computed by a convolution of the images 
with trivariate spatiotemporal  derivatives of a Gaussian with a standard devia- 
tion of 1.5 in the spatial and 1.0 in the temporal  domain. Optical flow vectors are 
only shown if the smallest singular value of the corresponding coefficient matr ix  
exceeds a chosen threshold. 

. . . . .  ~:  ~ . . . .  
. . . . . .  t t  

Fig.  2. Difference vectors (lower row) between the true displacement rates and esti- 
mated optical flow vectors (upper row) estimated by the approach of [Werkhoven & 
Koenderink 90] (left), by the SC~,~ (center), and by the neighborhood-sampling method 
including a spatiotempora] neighborhood of 5 x 5 • 5 pixels (right). 

3 .1  Q u a n t i t a t i v e  c o m p a r i s o n  

[Barton et hi. 92] use an angular measure of error for their quantitative com- 
parisons. The optical flow as well as the true displacement vectors are extended 
to 3D vectors with an arbitrarily selected value of 1 as third component in or- 
der not to overrate relative differences of short vectors. Let u = ( u l , u 2 ,  1) T be 
the true displacement rate and ~t - (ul ,  u2, 1) w be the estimated optical flow. 
The angular error is then defined as ~ -= a r c c o s ( u W ~ t / H u l l  II~tll). The problem 
of this error measure is that  differences of large vectors correspond to relatively 
small angular errors. In addition, symmetrical deviations of estimated vectors 
from the true value result in different angular errors: let u = (1.5, 0, 1) w be the 
true displacement rate, / t l  -- (2.0, 0, 1) T, and u2 -- (1.0, 0, 1) w two estimated 
optical flow vectors. The two angular errors in this example are ~ 1  -- 7 .12~ and 
r -- 11.3~ To avoid this effect, we use the absolute magnitude of difference 
vectors as an error measure 

= I lu  - a l l ,  ( 1 6 )  

which prevents the above described effects and expresses the individually illus- 
t rated difference vectors of Fig. 2 as average values. 

Table i shows a quantitative comparison between our implemented local opti- 
cal flow estimation approaches. The left hand side shows the results with selected 
singular value thresholds used in the preceding Fig. 2. In the right hand side of 
Table 1, the thresholds were chosen to obtain exactly 50.000 optical flow vectors. 
The magnitude of the true displacement rate vary between 0.471 and 2.571 pixel 
per frame with an average magnitude of 1.371 pixel per frame. 
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Approach SV # comp.] gA a~ a SV # comp. gA a~,, 
Thresh. vectors I[pixel] [pixel] Thresh. vectors [pixel] [pixel] 

Werk.'90 0.15 97742 0.369 0.46 0.424 50000 0.228 0.24 
RC2,1 0.8 113362 0.139 0.18 2.332 50000 0.104 0.09 
SC2,1 0.8 103675 0.134 0.17 1.985 50000 0.106 0.09 
RC3,1 0.8 113195 0.127 0.16 2.342 50000 0.097 0.08 
SC3,1 0.8 115029 0.128 0.17 2.475 5 0 0 0 0  0.100 0.07 
NA (5x5• 100 115208 0.107 0.15 902.1 5 0 0 0 0  0.087 0.05 

Table 1. Quantitative comparison between local optical flow estimation approaches. 
The compared estimation approaches are [Werkhoven & Koenderink 90] (Werk'90), 
the solution under the RC and SC of the BOFE2,1, and BOFE3,a, and the neighbor- 
hood-sampling (NS) method including a spatiotemporal neighborhood of 5 x 5 x 5 pixels 
related to the approach of [Campani & Verri 90]. The next four columns contain the 
selected threshold of the smallest singular value and the remaining number of thresh- 
olded vectors, the average difference vector magnitude and its standard deviation. For 
the first four columns, the singular value threshold has been selected as for Fig. 2. 
In contrast to this, the four right columns show the analogous results where a fixed 
number of optical flow vectors has been compared. 

Although the approach of [Werkhoven ~r Koenderink 90] includes up to 4 th 
order partial derivatives of the gray-value structure, the obtained estimates differ 
strongly from the true displacement rate. The solutions under the RC and SC of 
the BOFE2,1 and BOFE3,1 as well as the neighborhood-sampling method allow 
comparable optical flow estimation, whereas the last one gives slightly better  
results. But one has to keep in mind, that  the performance of the NS approach 
is based on 125 equations for 8 unknowns, whereas the approach of [Werkhoven 
&; Koenderink 90] uses only 6 equations for 6 unknowns. It thus does not exploit 
the advantages of an overdetermined system of equations for the estimation of 
the optical flow and its derivatives as the other approaches. 
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