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A b s t r a c t .  In the general case, a trilinear relationship between three 
perspective views is shown to exist. The trilinearity result is shown to 
be of much practical use in visual recognition by alignment - -  yielding 
a direct method superior to the conventional epipolar line intersection 
method. The proof of the central result may be of further interest as it 
demonstrates certain regularities across homographies of the plane. 

1 I n t r o d u c t i o n  

We establish a general result about  algebraic connections across three perspec- 
tive views of a 3D scene and demonstrate  its application to visual recognition via 
alignment. We show that ,  in general, three perspective views of a scene satisfy 
a pair of trilinear functions of image coordinates. In the limiting case, when all 
three views are orthographic, these functions become linear and reduce to the 
form discovered by [11]. Using the trilinear result one can manipula te  views of 
an object (such as generate novel views from two model views) without recover- 
ing scene structure (metric or non-metric),  camera transformation,  or even the 
epipolar geometry. 

The central theorem and a complete proof is presented in this paper.  The 
proof itself may  be of interest on its own because it reveals certain regularities 
across homographies of the plane. The trilinear result is demonstrated on real 
images with a comparison to other methods for achieving the same task (epipolar 
intersection and the linear combination of views methods).  For more details on 
theoretical and practical aspects of this work, the reader is referred to [7]. 

2 T h e  Tri l inear Form 

We consider object space to be the three-dimensional projective space 7 )3 , and 
image space to be the two-dimensional projective space 7)2. Let ~5 C 7)3  be a set 
of points standing for a 3D object, and let r C 7)2 denote views (arbi trary) ,  
indexed by i, of ~. Since we will be working with at most  three views at a 
time, we denote the relevant epipoles as follows: let v E r and v ~ C r be 
the corresponding epipoles between views r r and let 9 E r and v/t C r 
the corresponding epipoles between views r r Planes will be denoted by 7ri, 
indexed by i, and just  ~r if only one plane is discussed. All planes are assumed to 
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be arbitrary and distinct from one another. The symbol --- denotes equality up 
to a scale, GL,~ stands for the group of n • n matrices, and PGL,~ is the group 
defined up to a scale. 

T h e o r e m  1 ( T r i l i n e a r i t y ) .  Let r r r be three arbitrary perspective views 
of some object, modeled by a set of points in 3D, undergoing at most a 3D affine 
transformation between views. The image coordinates (x ,y)  E r (x', y') E r 
and (x ' ,  y ' )  E r of three corresponding points across three views satisfy a pair 
of trilinear equations of the following form: 

x " ( ~ l x + . ~ y + . 3 ) + x " x ' ( . , ~ + . ~ y + . 0 ) + ~ ' ( ~ + ~ y + ~ o ) + . ~ 0 ~ + ~ y + ~  = 0, 

y"(Z~x + ~ y +  Z~) + y"x'(Z,~ + Z~y + Z~) + x ' (Z~ + Z~y + 5~) +Z~0~ + Z~y + Zl~ = 0, 

where the coefficients ~j,  flj, j = 1, ..., 12, are fixed for all points, are uniquely 
defined up to an overall scale, and a i =/3j ,  j = 1, . . , 6 .  

L e m m a  2 ( A u x i l l a r y  - E x i s t e n c e ) .  Let A E PGLa be the projective mapping 
(homography) r ~-~ r due to some plane 7r. Let A be scaled to satisfy P~o TM 

Apo + v', where Po E r and P~o E r are corresponding points coming from an 
arbitrary point Po ~ 7r. Then, for any corresponding pair p E r and p' E r 
coming from an arbitrary point P E 7 )3, we have p' ~- Ap + kv I. The coefficient 
k is independent ofr i.e., is invariant to the choice of the second view. 

The lemma, its proof and its theoretical and practical implications are dis- 
cussed in detail in [9]. Note that  the particular case where the homography A is 
affine, and the epipole v' is on the line at infinity, corresponds to the construction 
of affine structure from two orthographic views [3]. 

D e f i n i t i o n 3 .  Homographies Ai E PGL3 from r ~-~ r due to the same plane 
~r, are said to be scale-compatible if they are scaled to satisfy Lemma 2, i.e., for 
any point P E ~ projecting onto p E r and pi E r  there exists a scalar k that  
satisfies pi ~_ Aip + kv i, for any view r where v i E r  is the epipole with r 
(scaled arbitrarily). 

L e m m a 4  ( A u x i l i a r y  - -  U n i q u e n e s s ) .  Let A, A' E PGLu be two homogra- 
phies of r ~-+ r due to planes zO, zr2, respectively. Then, there exists a scalar s, 
that satisfies the equation A - sA' = lay',/3 vl, Vvq, for some coefficients a,/3, 7. 

Proof. Let q E r be any point in the first view. There exists a scalar sq that  
satisfies v' TM Aq - sqXq. Let H = A - sqA', and we have Hq ~- v ~. But, 
as shown in [10], Av ~ v' for any homography r ~-* r due to any plane. 
Therefore, Hv TM v' as well. The mapping of two distinct points q, v onto the 
same point v' could happen only if Hp ~ v' for all p E r and sq is a fixed 
scalar s. This, in turn, implies that  H is a matr ix  whose columns are multiples 

of v'. 

L e m m a  5 ( A u x i l i a r y  fo r  L e m m a  6). Let A, A' E PGL3 be homographies from 
r ~+ r due to distinct planes 7rl, Ir2, respectively, and B, B'  E PGLa be ho- 
mographies from r ~ Ca due to ~r~, ~ru, respectively. Then, A' = A T  for some 
T ~ PGLa, and B = B C T C  -~, where Cv TM ~. 
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Proof. Let A = A ~ I A 1 ,  where A 1 , A 2  are homographies from r r onto 7rl, 
respectively. Similarly B = B ~ I B 1 ,  where B1, B2 are homographies from r r 
onto 7rl, respectively. Let AI~ = (cl, c2, ca) T,  and let C ~ A71diag(c1,  c2, c3)A1. 
Then,  B1 ~- A 1 C  -1,  and thus, we have B ~- B ~ I A 1 C  -1.  Note that  the only 
difference between A1 and B1 is due to the different location of the epipoles 
v, ~, which is compensated by C (Cv  TM ~). Let E1 E P G L 3  be the homography 
from r to ~r2, and E2 E P G L 3  the homography from ~r2 to 7rl. Then with 
proper scaling of E1 and Eu we have A' = A ~ I E 2 E 1  = AA-~IE2E1 = A T ,  and 
with proper scaling of C we have, B ~ = B ~ I E ~ E I C  -1 = B C A 1 1 E 2 E 1 C  -1 = 
B C T C  -1.  

L e m m a  6 ( A u x i l i a r y  - -  U n i q u e n e s s ) .  For scale-compatible homographies, the 
scalars s, a,  fl, 7 of  L e m m a  ~ are invariants  indexed by r ~1, ~r2. That is, given 
an arbitrary third view r let B ,  B ~ be the homographies f rom ~1 ~'~ r due to 
~1, ~r2, respectively. Let B be scale-compatible with A,  and B ~ be scale-compatible 
with .41. Then, B - s B  t = [(~v', f l y ' ,  ~/v']. 

Proof. We show first tha t  s is invariant, i.e., that  B - s B  ~ is a mat r ix  whose 
columns are multiples of v ' .  Let H be a mat r ix  whose columns are multiples of 
v ~. From L e m m a  4, and L e m m a  5 we have I - s T  = A - 1 H ,  for some scalar s, and 
where A ~ = A T .  After multiplying both sides by B C ,  and then pre-multiplying 
by C -1 we obtain B - s B C T C  -1 = B C A - 1 H C  -1.  From L e m m a  5, we have 
B ~ -- B C T C - 1 .  The mat r ix  A-1 H has columns which are multiples of v (because 
A - i v  ~ ~- v), C A - 1 H  is a mat r ix  whose columns are multiple of ~, and B C A - 1 H  
is a mat r ix  whose columns are multiples of v ' .  Pre-multiplying B C A - 1  H by C - 1  
does not change its form because every column of B C A -  1 H C -  1 is s imply a linear 
combination of the columns of B C A - 1 H .  As a result, B - s B  ~ is a mat r ix  whose 
columns are multiples of v ' .  

Let H = A -  s A  I and fJ  = B -  s B  ~. Since the homographies are scale 
compatible,  we have from Lemma  2 the existence of invariants k, k ~ associated 
with an arbi t rary p E r where k is due to r and k ~ is due to 7r2: p~ 
A p  + k v  I ~- Alp + k tv  I and p" ~- B p  + k v "  ~- B~p + k % ' .  Then from L e m m a  4 
we have H p  = (sk '  - k ) v  I a n d / t p  = (sk '  - k ) v ' .  Since p is arbitrary, this could 
happen only if the coefficients of the multiples of v I in H and the coefficients of 
the multiples of v" i n / t ,  coincide. 

P r o o f  o f  T h e o r e m :  Lemma 2 provides the existence part  of theorem, as 
follows. Since L e m m a  2 holds for any plane, choose a plane 1rl and let A, B be 
the scale-compatible homographies r ~-* r and r ~-+ r respectively. Then,  
for every point p E r with corresponding points p' E r  E r there exists 
a scalar k tha t  satisfies: pt ~ A p  + i v  ~, and p" ~-- B p  + k v ' .  By isolating k f rom 
both  equations, and following some simple re-arrangements we obtain: 

I I z  I ~  I !  \ T  - -  I I  I i  11 I ~  \ T  - -  I /  I .  I t  ~ T  - - i  I I  x (vlo3--v3a~) p-t-x x (v3a3--v303) p t x ( v 3 o l - - v l a 3 )  p- t - (v lal - -v~bl)Tp=O, (1) 

where bl ,b2,b3 and a l , a 2 , a 3  are the row vectors of A and B and v I = 
I / l I I  I I  I I  (vl, v2, v3) , v" = (vl, v~, v 3). In a similar fashion, following a different re-arrangement, 

we obtain: 
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I I [  I ~ I I  \ T  - -  l !  l /  I I  I ~, "~T  __  I !  ! 7 I !  ~ ,T  - - /  I I  ! T y I.VlO3--v3al) p-VY xtv3as--v303) p-l-x I v3o2--v2a3 ) p.-t-Lv2al-vlb2 ) p = O .  (2) 

Both equations are of the desired form, with the first six coefficients identical 
across both equations. 

The question of uniqueness arises because Lemma 2 holds for any plane. If 
we choose a different plane, say ~r2, with homographies A t, B ~, then we must 
show that  the new homographies give rise to the same coefficients (up to an 
overall scale). The parenthesized terms in Equations 1 and 2 have the general 
form: v~bi =l= v~aj ,  for some i and j .  Thus, we need to show that  there exists a 

scalar s that  satisfies v~'(aj - sa~ . )  = v~ ( b i -  sb~i). This, however, follows directly 
from Lemmas 4 and 6. 

The direct implication of the theorem is that  one can generate a novel view 
(r by simply combining two model views (r r The coefficients (~j and ~j 
of the combination can be recovered together as a solution of a linear system of 
17 equations (24 - 6 - 1) given nine corresponding points across the three views 
(more than nine points can be used for a least-squares solution). 

Taken together, the process of generating a novel view can be easily accom- 
plished without the need to explicitly recover structure, camera transformation, 
or just the epipolar geometry. The process described here is fundamentally dif- 
ferent from intersecting epipolar lines [6, 1, 8, 5, 2] in the following ways: first, we 
use the three views together, instead of pairs of views separately; second, there 
is no process of line intersection, i.e., the x and y coordinates of r are obtained 
separately as a solution of a single equation in coordinates of the other two views; 
and thirdly, the process is well defined in cases where intersecting epipolar lines 
becomes singular (e.g., when the three camera centers are collinear). Further- 
more, by avoiding the need to recover the epipolar geometry (e.g., the epipoles 
v, v~,v" or the matrices /'13 and /723 satisfying p ' F l s p  = 0, and p'F2uP' = 0, 
respectively), we obtain a significant practical advantage, since the epipolar ge- 
ometry is the most error-sensitive component when working with perspective 
views. 

The connection between the general result of trilinear functions of views to 
the "linear combination of views" result [11] for orthographic views, can easily 
be seen by setting A and B to be affine in 7 )2, and v~ = v~ ~ = 0. For example, 
Equation 1 reduces to v l x "  - v~ltx ~ + (v~l~al . p  - v lb l  �9 p) = 0, which is of the 
form ~ l x "  + ~2x t + ~3x + ~4y + ~5 = 0. In the case where all three views are 
orthographic, then x" is expressed as a linear combination of image coordinates 
of the two other views - -  as discovered by [11]. 

3 E x p e r i m e n t a l  D a t a  

Figure 1 demonstrates re-projection using the trilinear result on a triple of three 
real images. The re-projection result was also compared with the methods of 
epipolar intersection and the linear combination of views (which, as shown here, 
is a limiting case of the trilinear result). The epipolar intersection was obtained in 
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F i g .  1. Top Row: Two model  views, r on the left and r on the right. The  overlayed 
squares i l lustrate the corresponding points (34 points). Middle Row: Re-project ion onto 
r using the tril inear result. The  overlayed squares i l lustrate the t rue  location of the 
corresponding points (p"),  and the crosses i l lustrate the es t imated locations. On the  
left only nine points were used; the average pixel error between the t rue an es t imated  
locations is 1.4, and the maximal  error is 5.7. On the right 12 points  were used in a 
least squares fit; average error is 0.4 and maximal  error is 1.4. Bottom Row: On the  
left the epipolar intersection me thod  was applied (using all 34 points);  average error 
is 9.58 and maximal  error is 43.4. On the right the linear combinat ion me thod  was 
applied (using all 34 points);  average error is 5.03 and maximal  error is 29.4. 
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the standard way by recovering the matrices F13 and F2a satisfying p"F13p = 0, 
and pnF23pt  = O, respectively. Those matrices were recovered using all the avail- 
able points using the non-linear method (currently the state-of-the-art) proposed 
by [4] (code was kindly provided by T. Luong and L. Quan). Re-projection is 
obtained by p" -~ F13P • F23p t. 

Note that the situation depicted here is challenging because the re-projected 
view is not in-between the two model views. The trilinear result was first applied 
with the minimal number of points (nine) for solving for the coefficients, and 
then applied with twelve points using a linear least-squares solution. This is com- 
pared to using 34 points for the epipolar intersection and the linear combination 
methods. 
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