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Abstract. This paper concerns the pose determination and recognition 
of vehicles in traffic scenes, which under normal conditions stand on 
the ground-plane. Novel linear and closed-form algorithms are 
described for pose determination from an arbitrary number of known 
line matches. A form of the generalised Hough transform is used in 
conjuction with explicit probability-based voting models to find 
consistent matches. The algorithms are fast and robust. They cope well 
with complex outdoor scenes. 

1 Introduction 

In many practical applications of computer vision, the objects to be recognised 
are constrained to be in contact with a known plane. In this paper we are concerned 
with the localization and recog0ition of vehicles in traffic scenes from 
monochromatic image sequences recorded by one or more stationary calibrated 
cameras, where under normal conditions vehicles stand on the ground-plane (GP). 
Although our primary interest is in traffic scene analysis, other similar applications 
such as the recognition of objects on a table, or parts on a conveyor belt, are 
commonplace. The ground-plane constraint (GPC) reduces the number of degrees 
of freedom of a rigid object from 6 to 3; these are most simply parameterised as the 
position (X, Y) on the GP and the orientation (0) about the vertical axis. 

We show in this paper that the GPC significantly simplifies pose determination 
based on 2D image to 3D model line matches (called, here 2D-3D line matches). 
The simplicity of the pose constraints and their solutions makes a form of Hough 
transform an appropriate choice for establishing correspondences between image 
and model line segments. 

2 Non-iterative Pose Estimation from Line Matches 

We first discuss pose determination using a set of known 2D-3D line matches. 
Assume an image line S and a model line M form a match. Then from the known 
equation of the image line, one can easily derive the equation of the so-called 
interpretation plane 17 in which the model line M must lie. The necessary and 
sufficient conditions for M to lie in 17 are [3-4] 

�9 The direction vector of M is perpendicular to the normal vector of YI; and 
�9 A known point on M lies in 17. 

The above two conditions, in conjunction with the GPC, lead to the following 
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two constraints on the three pose parameters X, Y and 0 (see [3] for details): 

Fcos0 + Gsin0 = H 
(1) 

Acos0 + B sin0 + CX + OY = E 

where A, B, C, D, E, F, G and H are terms computable from known variables [3]. 
Therefore, for a set of N 2D-3D line matches, the three pose parameters are 
constrained by a total of 2N equations: 

FicosO+GisinO= H i, i = 1,2 .. . . .  N 
(2) 

AicosO+BisinO+CiX+DiY =El, i = 1, 2 . . . . .  N 

The number of independent equations in (2) depends on the line configurations, and 
lies between N and 2N [5]. 

The system of 2N equations in (2) may be solved in a number of ways. Here we 
outline two non-iterative closed-form solutions. 

2.1 Linear Least Squares Solution (LLS) 

The linear solution is made possible by treating cos0 and sin0 as two independent 
unknowns. The equations in (2) can be written in matrix form as 

e q  = Q (3) 

where q = (cos0 sin0 X y)T is the unknown vector, and P and Q are the 
appropriate coefficient matrices. Equation (3) can easily be solved using pseudo- 
inversion to obtain the LLS solution. 

2.2 Non-Linear Closed-Form Least Squares Solution (NLS) 

A non-linear least squares technique is outlined in the following which does not 
neglect the trigonometric constraint and involves no iterations. We rewrite (3) as 

Plql  + P2q2 = Q (4) 

where ql = (cos0 sin0) 7, q2 = (X y)Z, and P1 and P2 are appropriate sub- 
matrices of P.  The least squares solution of (4) is then given by 

ql, q2 = arg { r a in  IIPxql+e2q2-QII 2 t subjectto I[q1[I 2 -  - 1 (5~ 
ql, q2 

The above minimisation problem is solved by using a Lagrange multiplier ~. After 
some tedious manipulations, the minimisation is mapped into the solution of a 
fourth-order polynomial equation on ~. whose roots can be solved in closed-form. 
Once the Lagrange multiplier is obtained, the optimal ql and q2 can easily be 
computed. 

The performance of the techniques outlined in this section has been studied by 
numerous Monte Carlo simulations, and tested by pose recovery in real outdoor 
traffic scenes. The experimental results have confirmed the robustness of the 
techniques (detailed discussion on performance is given in [6]). It should be pointed 
out that while in the general case of 6 dof there are no closed-form pose solutions 
from an arbitrary number of line matches [1], we have shown in this section that the 
GPC allows simple and robust closed-form pose recovery from line matches. 
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3 Matching and Recognition 

The pose determination algorithms described in the preceding section assume 
known correspondences between image and model lines. We now discuss how to 
establish such correspondences. Although a number of matching schemes (e.g. the 
IT scheme [8]) may be tailored to make use of the GPC, there are good reasons for 
choosing the generalised Hough transform (GILT) [6]. 

3.1 Pose from a Single Noisy Line Match 

The first equation of (1) does not involve the translation parameters, and can easily 
be solved to obtain the orientation parameter. When data is perfect, this gives two 
values for the rotation angle. When data is noisy, the two discrete values are 
replaced by two orientation intervals where the PDFs of the rotation angle can be 
computed from explicit noise models [2, 6]. In many cases, one of the solutions can 
be eliminated because the model line would be occluded in the derived pose. 

Once the orientation is known, the object is confined to slide along a confusion 
line on the GP def'med by the second constraint of (1). The confusion line is 
bounded by requiring overlap between the image line and the projected model line. 

3.2 Pose Clustering and Feature Matching 

Pose clustering is decomposed into orientation histogram followed by GP location 
clustering. Image line segments are first extracted from the input image (see 
Fig. l(a)-(b)). The orientations recovered from all possible matches between image 
and model lines are then histogrammed according to the respective PDFs and the 
visibilities of the model lines [2]. Fig.l(c) shows the results obtained for Fig.lCo). 
Each peak in the histogram identifies the orientation (0) of the model on the GP 
where multiple line matches agree. 

For each orientation peak, the confusion lines of the line matches which are 
consistent with the peak orientation are then tallied in an (X, Y) accumulator. 
Local maxima in the accumulator are identified to recover the most likely locations 
of the object on the GP. In the case of an isolated vehicle such as Fig.1(a), we 
usually obtain one conspicuous peak as seen in Fig.l(d) (where darker points 
indicate higher accumulator values). Fig.l(e) shows the object instantiated in the 
image in this pose; the fit is very close. In our work, the goodness-of-fit between the 
model projection and the original image may also be measured by an evaluation 
score (see [7] for the computation of such scores). A high score indicates a good fit 
between the model projection and the image, and thus also signifies a good pose. 

Once an initial pose is obtained, a clique of consistent line matches is identified 
by retaining those matches for which the distance between the confusion line 
segments and the GP location is less than a threshold. Fig. l(f) shows the image lines 
(thick lines) of the identified clique for Fig. l(b). Note, almost all visible lines of the 
vehicle which are modelled have been correctly matched. The clique of consistent 
matches is then used by the pose determination algorithms described in Section 2 
to compute a more accurate object pose. Fig.l(g) shows the model instantiated at 
the pose returned by the NLS algorithm. 
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Fig, 1. (a) original image (350x270 pixels); (b) extracted line segments; (c) orientation 
histogram; (d) XY accumulator at global orientation peak (=175~ (e) initial peak pose 
from pose clustering; (f) matched line segments; (g) pose returned by the NLS algorithm. 

3.3 Pose and Model Discrimination 

The global peak of the orientation histogram and that of the (X, Y) accumulator do 
not always identify the correct pose. Usually a number of peaks in the histogram 
and the accumulator need to be located to identify a set of possible poses. The 
correct pose is then taken as the one which produces the highest evaluation score. 

Similarly, to identify the correct model for the object, the evaluation scores 
obtained under different models are compared. The model which achieves the best 
score is taken as the correct model for the object. Experiments with outdoor traffic 
scenes have confirmed the discrimination capability of the algorithm [2]. 

3.4 Multiple Objects 

The algorithm described in this section has also been applied to image regions 
which contain multiple occluding objects. An example is shown in Fig .2. Note, the 

Fig. 2. (a) an image region containing multiple occluding objects; (b) extracted line 
segments; (c) and (d) recovered poses for the two occluding vehicles. 
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Fig. 3. (a) a wide area image (512x512 pixels); (b) extracted line segments and 8 
regions of interest; (c) objects instantiated at the recovered poses and classes. 

poses recovered for both vehicles appear to be very accurate. A more difficult case 
is given in Fig.3 where all objects have been correctly classified and located (the 
VW "Beetle" on the left of the image was not considered because of the lack of an 
appropriate 3D model). 

4 Use of Multiple Cameras 

In the examples discussed so far, only one static camera has been involved. In many 
practical machine vision applications (e.g., in wide area traffic monitoring and 
surveillance), the use of multiple (stationary) cameras is often advantageous or 
even essential [6]. Since all reasoning is in a fixed world coordinate system, the 
matching and recognition scheme outlined in the preceding section allows simple 
fusion of data from multiple cameras. For each camera, the orientation histogram is 
first computed. The individual histograms from all cameras are then aggregated to 
produce the overall orientation histogram. The overall (X, Y) accumulator is 
similarly obtained. The cliques of consistent matches from different cameras yield 
independent pose constraints which are collectively solved by the NLS algorithm. 

Fig.4 shows an example of using multiple (two) cameras in a toy but fairly 
realistic traffic scene. Fig.4(a) and (b) depict the views (768x576 pixels) of the 
scene from two cameras (called here CD50 and F10 for reference). Each camera has 
"blind spots" due to occlusion by the buildings. The toy car would be extremely 
difficult (if possible) to locate were only F10 (Fig.4(b)) used. However, when data 
from both cameras are used, the location of the toy car proves to be straightforward 
as illustrated in Fig.4(c)-(f). The pose shown in Fig.4(e)-(f) corresponds to the 
global orientation peak of Fig.4(c) and the global accumulator peak of Fig.4(d), 

5 Conclusions 

Novel algorithms have been described for pose determination and recognition of 
vehicles in traffic scenes under the ground-plane constraint. Linear and closed-form 
algorithms for pose determination from an arbitrary number of line matches have 
been presented. The ground-plane constraint significantly reduces the pose 
redundancy of a line match, and a form of the generalised Hough transform has been 
used to find groups of consistent line matches. The algorithm is conceptually 
simple, fast, robust and inherently parallel, and has been shown to work well in 
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Fig. 4. Use of multiple cameras in object recognition. (a) toy scene in camera CD50; 
(b) toy scene in camera F10; (c) overall orientation histogram from both cameras (* 
marks the global peak); (d) overall (X,Y) accumulator at global peak orientation (=19 ~) 
of (c); (e) recovered pose in camera CD50; (f) recovered pose in camera F10. 

routine images of out-door traffic scenes. Multiple calibrated cameras have been 
used to overcome the limitations of a single static camera, and the algorithms 
developed for a single camera can be extended to fuse data from multiple cameras 
in a simple and straightforward way. 
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