
Performance Comparison of Ten Variations on
the Interpretation-Tree Matching Algorithm

Robert B. Fisher

Dept. of Artificial Intelligence, University of Edinburgh
5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United Kingdom

A b s t r a c t . T h e b e s t known algorithm for symbolic model matching in
computer vision is the Interpretation Tree search algorithm. This algo-
rithm has a high computational complexity when applied to matching
problems with large numbers of features. This paper examines ten vari-
ations of this algorithm in a search for improved performance, and con-
cludes that the non-wildcard and hierarchical algorithms have r e d u c e d

theoretical complexity and run faster than the standard algorithm.

1 I n t r o d u c t i o n

The most well-known algorithm for symbolic model matching in computer vision
is the Interpretation Tree (IT) search algorithm[7]. The algorithm searches a tree
of potential model-to-data correspondences, which is a key problem in model-
based vision, and is usually a preliminary to pose estimation, identity verification
or visual inspection. This algorithm has the potential for combinatorial explo-
sion, even with techniques for limiting the search[7]. This paper compares ten
extensions (mainly found in the published literature) to the standard IT algo-
ri thm that have the potential to reduce the search space. The results of the
paper show that several of the variations produce improved performance in both
theory and as applied to real data.

We follow the standard IT model[8]:

- There are M model features in the model.
- On avera.ge, p.oM of these are visible in the scene. In 2D scenes, Pv - ' 1 and,

in 3D scenes, pv - 0.5 as about half of the features are back-facing.
- Of the visible model features, only Pr of these are recognizable forming C =

prp.v~ r correct matchal)le data features.

- There are also S spurious features and thus D = C + S data features.

- The probability that a randomly chosen model feature matches with an
incorrect random data feat, ure is Pl.

- The probability that a random pair of model features is consistent with an
incorrect random pair of data features (given that the individual model-to-
data pairings are consist.ent) is p~,.

- An acceptable set of model-to-data pairings must have at least T = r p v M
non-wildcard correspondences (r E [0, 1]).

Lecture Notes in Computer Science, 'Col. 800
San-Olof Eklundh (Ed.)
Computer Vision - ECCV '94

508

2 The Algorithmic Variations

Geomet r i c Matching: Once enough model-to-data pairings have been formed,
it is (usually) possible to estimate a pose[2]. Then, the exponential portion of the
search algorithm stops for that branch. The pose estimate allows the prediction
of the image position of unmatched model features including which are back-
facing and hence not visible[4]. If a model feature is visible, then direct search is
used to find data features whose position is consistent with the predicted model
feature. The effort required to do each comparison is assumed to be comparable
to that of standard algorithm's testing.

If spatial indexing of data features is possible, then the direct search phase
need only match against data. features directly indexed, instead of all features.
We assume here that spatial indexing is sufficiently good that only 1 incorrect
feature is selected. We investigated algorithms that required 2 (e.g. for 2D) and
3 (e.g. for 3D) ma.tches before going to geometric matching.

A l ignmen t Methods : After several levels of the interpretation tree are ex-
plored, a model pose can be estimated and used to predict the position of the
remaining unmatched model features. Data features near the prodicted posi-
t.ions are then used for subsequent levels of the IT. Here, the IT is searched by
expanding model levels, rather than data levels. In the experiments below, we
assume that direct search starts after 2 non-wildcard features are matched and
the nnmber of candidate features found is as described above.

S u b c o m p o n e n t Hierarchies: Suppose that the M = K L model features can
be decomposed into K L-1 primitive subcomponents each containing K features,
each matched to the D data features in the standard way. Then, each of the sub-
components are grouped into K L-" larger models, each containing K 2 features,
and so on hierarchically until we have one top-level model containing all K L

model features. Let each group at each level now define a new type of model fea-
ture representing its particular set of subcomponents. The hierarchical match-
ing algorithm[(J] generat, es hypotheses of these submodel types, by combining
matched sets of features (i.e. submodels) frorn the next lower level. The algo-
rithm is a top-down matching process, in which the largest possible matches are
always generated first,, and previous successes are recorded to limit computation
when back-tracking. Consistency is checked using the standard IT criteria.

S u b c o m p o n e n t Hierarchies Using 1Keference Frame Consis tency: When
a new hypothesis is tested for consistency, if the two subcomponent hypotheses
have sufficient features matched that their poses have been estimated, then only
the poses of the subcomponent hypotheses are checked for consistency relative
to the pose of their "parent" hypothesis.

Model Invoca t ion Methods : If a pre-classification of the data features or
model invocation ([3], Chapter 8) occurs, then only the pre-selected model-to-
data correspondences need to be considered. The pre-classification does not affect
the number of nodes accepted, but it reduces the fan-out at each node and hence

509

the nnmber of nodes tested. The process requires an initial comparison between
each model and data feature. Once in search, the search tree is the same as for
the standard IT algorithm, except that a.t level ,~, only model features known to
be compatible with data featnre da are compared. No unary tests are needed as
compatibility is ensured, but the pairwise tests still apply.

R e - o r d e r i n g T h e Tree : This algorithm expands the IT one model feature at
a time.

U n i q u e Use o f F e a t u r e s : This algorithm allows model features to be matched
only once.

V i s ib i l i t y S u b g r o u p s : After two features match, estimate an orientation for
the model, predict which model features are visible, and then expand the search
tree for on]y these features.

N o n - w i l d c a r d Sea rch : This matching algorithm[5] explores the same search
space as the standard IT, but does not use a wildcard model feature. The a.lgo-
r i thm compared here has several new nnpublished work-saving ideas: (1) men>
bets of the set P. are generated only when needed and (2) compatible pairs
of matches (data~, modelb) and (data~, model.a) are recorded to prevent being
tested more than once.

O r d e r e d Sea rch : By exploiting an ordering of the features (e.g. size), then
whenever we have successflflly matched a model feature, for subsequent matches
we need only consider model features after this feature in the ordering[i]. This
adds an additional assumption to those used in the other algorithms.

3 T h e E x p e r i m e n t s

The following simulated experimental problem is based on a.n example described
in [8]. This allows us to compare the performance on data sets of varying sizes.
(Real problems also follow below.)

Each model-match experiment consisted of: (1) initially determining a ran-
dom selection of C of the D data features to be the solution and (2) for each
generated model-to-data pairing, a correspondence is accepted if the new cor-
respondence is: (al) individually satisfied with probability pl and (a2) pairwise
satisfied with each previously filled non-wildcard feature with probability P2 or
(b) part of the solution or use the wildcard.

For the experiments described in this paper, we used:

510

PAI~AMETER NOMINAL IiANGE
M 40 5 t o 100by5

20 S

Pl
P2

0.1
0.01

0.5

0 to 100 by 5
0.05 to 0.75 by 0.05
0.001, 0.002, 0.004, 0.008, 0.01,
0.02 to 0.20 by 0.02, 0.25

T

Pv 0.5 no variation
p~ 0.95 no variation

0.2 to 0.9 by 0.1

In each experiment described in this section, one parameter was varied over
the range given above and all others were set to the nominal value. All experi-
ments were run 200 times and the value reported is the mean value.

We show here only the results for varying the number of model features M
and the probability Pl (results from varying other parameters were not signifi-
cantly different). Figure 1 shows how the number of nodes generated varied with
the changed parameter for the best seven algorithms. In the graphs, the curves
for the different algorithms are labeled by the following. The two cohmms at the
right show the mean number of nodes generated for the maximum parameter
value from the two experiments.

Label Algorithm M = 100 pt = 0.75
align Alignment 94356 65886
geom2 Geometric+2 starters 271452 596086
geom3 Geometric+3 starters 155508 392350
geom2hash Geometric+2 starters+indexing 50773 90416
geom3hash Geometric+3 starters+indexing 147727 367265
hier Hierarchy 11482 90870
hiersubc Hierarchy+pose consistancy 12192 67983
invoke Model invocation 25535 266019
non-WC Non-wildcard 20487 209837
norm Standard IT 161236 348414
reorder Re-ordered tree 361943 348414
sort Sorted Features 17363 62724
uniq Unique use of feature 146563 336562
vis Visibility subgroups 113710 195772

As we look over the results, which explore a. substantial portion of the pa-
rameter spaces likely to be encountered in visual matching problems, there is
no clear "winning" algorithm. The vis, geom2, geom3, norm, reorder and uniq
algorithms generally have poor performance compared to the others. The real
comparison is between the geom2hash, the hierarchical, the invoke, the align and
the non-wildcard algorithms, and the choice depends on the problem parameters.
The sorted fea.ture algorithm also has good, but not dramatic, performance, but
makes an additional problem assumption. The hier and hiersubc algorithms are
generally the best when lh is low, and the difference between them is not large.

511

Nodes Searched versus M
Number

- - r 7_

5 - - II hiersubc

, . ;da

2 - /,/" 1/- n~nZV~/C.--
le+04 g.,

~'~'-/ invoke

2 ~" / " 4 f ~ / a l i g ;

le+03 I1 ,'*'."'1 f
5 .r

le+02 L . M

le+01 le+02

Nodes Searched versus P1
Number

2 I I - sort
- / - iilfffili~

le+05 t ~ Z ?ii~[a"

/ /,~" ~i~r-
5

,, /...;71 7e;~-2f~
/ . . 2 / / H P,s" 2 I t . . ' / ,r

~" . I ' " / / ;o1
," .., I / . . ' , " ~ n - W C

le+04 / ~' / ~ . ~ t

',,, ~ 4 ..4 5 ~,, .., --
�9 / />

/ .:# 2 ~ ' r
I .#'~"

le+03 J " I I -- P1
le-01 3

Fig. 1. Generated Nodes versus a.) Number of Model Features (M) and b) Unary Match
Probability (pz). Labels a.re ordered by the results a.t the maximum parameter setting.

The non-wildcard algorithm is not bad for most problems, but its performance
deteriorates when Pl is large. The align and geom2hash algorithms become dis-
tinctly worse as M increases and the invoke algorithm becomes distinctly worse
a s P l increases.

When there is no instance of the object in the scene, the hierarchical and non-
wildcard algorithms have about 6 times more search. The standard algorithm
is also rnuch worse ([8], page 389). Simulation results suggest that only the
hierarchical and non-wildcard algorithms are real alternatives to the standard
algoritlma, and both of these algorithms give a factor of about 3-77 improvement
(in search) over the standard algorithm.

To assess the performance on real data, the hierarchical and non-wildcard al-
gorithms were compared on edge matching from several real scenes (on a Spare-
Sta.tion 1+, code in C + +) . Because the algorithms are sensitive to data feature
order, the algorithms were run 100 times with the model and data features per-
muted randomly. The effective probabilities in this scene were pl = .235 and
P2 = 0.017 and the number of features were M = 13 and D = 129. Seven of 13
model edges match true data edges in the test scene. The average time taken for
the rnatching algorithms was 0.96 sec. for the non-wildcard algorithm, 1.47 sec-
onds for the hierarchical algorithm and 5.88 sec. for the standard algorithm. The
mean number of nodes tested was 55025 for the hierarchical algorithm, 64412
for the non-wildcard algorithm and 544171 for the standard algorithm. On an-
other test scene containing 10 instances of only the matched part, the average
times required for a match was non-wildcard 20.4 sec., hierarchical 21.4 sec. and
standa.rd 419 sec. The effective probabilities in this scene were Pl = .288 and
p~ = 0.011 and the number of features were M = 28 and D = 191.

512

In a. flfll recognition process, t imings of typical associated processes are:
Ca.nny edge detector: 14.3 see, connectivity and tracking: 2.1 sec, segmenta-
tion: 1.2 sec, merging/description: 1.9 see and pose est imation a.nd verification:
0.7 sec. Hence, using the improved algorithms rednces the complete t ime from
26 to 21 seconds in the first case and from 511 to 41 seconds in the second.

4 D i s c u s s i o n and C o n c l u s i o n s

It is obvions that the non-wildcard and hierarchicM algorithms produce better
performance than the more straightforward variations of the s tandard IT. How-
ever, for all of the algorithms, the real work occurs at the first or second step,
which effectively requires a comparison between all model and da ta features.
As any model feature might be an explanation for any da ta feature, it is hard
to avoid this complexity, which results in M D initial comparisons and roughly
p i M D false a.cceptaaces, and which effectively provides a lower bound on the
amount of work required. After that, a reduced search spa.ce is possible, but
the initial effort is substantiM. There does not seem to be much possibility of
reducing this amount of effort, unless some additional aspect of the part icular
problem can be exploited.

This research was funded by SERC (IED grant G /F/3S310).

R e f e r e n c e s

1. Murray, Da.vid W., Buxton, B. F. Experiments in the ran.chine
interpreta.t.ion of visua.1 motion MIT Press, Cambridge, Mass. 1990.

2. Fa.ugera.s, O. D., Hebert, M., A 3-D Recog,~ition an.d Positioning Algorith.m
Using Geometric Matching Between Primitive Sub:faces, Proceedings 8th Int.
Joint Conf. on Artificia.1 Intelligence, pp996-1002, 1983.

3. Fisher, R. B., From Surfaces to Objects: Computer Vision a.nd Three
Dimensiona.1 Scene Analysis, John Wiley a.nd Sons, Chichester, 1989.

4. Fisher, R. B., Determining Back-facing Curved Model Surfaces By Analysis At
Th.e Boundary, Proc. 3rd Int. Conf on Computer Vision, pp 296-299, Osa.ka.,
1990.

5. Fisher, R. B., Non-Wildcard Matching Beats the Interpretation Tree, Proc.
1992 British ma.chine Vision Conf., Leeds, pp 560-569, 1992.

6. Fisher, R. B., Hierarchical Matching Beats The Non- Wildcard and Interpre-
tation Tree Model Match.ing Algorith.ms, Proc. 1993 British ma.chine Vision
Conf., Surrey, pp 589-598, 1993.

7. Grimson, W. E. L., Loza.no-Perez, T., Model-Based Recognition and Localiza-
tion fl'o'm. Sparse Range or Tactile Data, Interna.tional Journa.1 of Robotics
Resea.rch, Vol. 3, pp 3-35, 1984.

8. Grimson, W. E. L., Object Recognition By Computer: The Role of
Geometric Constraints, MIT Press, 1990.

9. tInttenlocher, D. P., and Ullman, S., Object Recognition Using Alignment,
Proc. Int. Conf. Comp. Vision, London, pp102-111, 1987.

