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A b s t r a c t .  Tracking elementary features and coherently grouping them 
is an important problem in computer vision and a real challenging fea- 
ture extraction problem. Perceptual grouping techniques can be applied 
to some feature tracking problems. Such an  approach is presented in 
this paper. Moreover we show how a perceptual grouping problem can 
be expressed as a global optimization problem. In order to solve it, we 
devise an original neural network, called pulsed neural network. The spe- 
cific application concerned here is particle tracking velocimetry in fluid 
mechanics. 

1 I n t r o d u c t i o n  

The particle tracking velocimetry technique deals with recording on a single im- 
age, at n different instances in time, positions of small tracers particles following 
a fluid flow and illuminated by a sheet of light. It aims to determine each par- 
ticle velocity vector, made of n different spots. We suggest an approach using 
perceptual grouping notions, a global optimization formulation and an original 
neural network. Our algorithm consists of two distinct processing steps: 

1. Extraction of potential features from the original image, by using metric 
constraints imposed by the image acquisition process, and determination 
of coefficients of mutual consistency and incompatibility between potential 
features, by use of perceptual grouping notions and physical properties of 
the phenomena. 

2. Extraction of a set of features satisfying each constraint in terms of global 
consistency, through a global optimization problem and a pulsed neural al- 
gorithm. 

Particle tracking is one of the simplest and most powerful methods of quan- 
titative visualization. Some reviews on particle tracking velocimetry (PTV) de- 
scribe the principles and applications of many types of PTV ([1], [5], [2]), and 
present several drawbacks (high sensitivity to noise, low speed of computation, 
degraded results). We attack the PTV problem as a perceptual grouping prob- 
lem. Several papers express some feature grouping problem as combinatorial 
optimization problems and try to minimize a global cost function including local 
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constraints ([8], [7], [9], [4], [6]). We present in this paper a new neural approach 
able to minimize such a cost function while satisfying all the constraints. 

2 A combinatorial optimization formulation for the 
particle tracking problem 

2.1 E x t r a c t i o n  o f  p o t e n t i a l  f e a t u r e s  

First, points identified as possible particle spots are extracted from the origi- 
nal numerical image. The corresponding points set is used to generate potential 
features. Each feature represents a potential particle trajectory (a vector). Gen- 
eration of such potential features uses some a priori knowledge related to the 
experimental acquisition process. At this step, erroneous trajectories can be se- 
lected. Our aim is to label each feature as "good" if it corresponds to a real 
particle trajectory, or "erroneous" otherwise. 

2.2 N o t i o n  o f  c o n s i s t e n c y  a n d  i n c o m p a t i b i l i t y  between features 

Our method makes use of perceptual grouping notions from Gestalt theory (sim- 
ilarity and proximity laws) and physical properties of the fluid (viscosity, speed, 
Reynolds number), so as to define consistency and incompatibility coefficients be- 
tween any two potential trajectories. A consistency coefficient must be the higher 
as the feature pair is consistent with the fluid motion in its local environment. 
The incompatibility coefficient is binary and indicates a strict incompatibility 
between features. Our goal is to extract and quantify, in both coefficients, the 
features ability to induce a continuity feeling beyond their physical limits, The 
consistency coefficient is defined by: 

r(o. 
Yj �9 V(i), qij = (1 ~-/~ .) + (exp -2.---~2) (1) 

where Oi and Oj are orientations of features i and j regard to an axis of the 
image, V(i) is a neighbourhood of the feature i, dij is the distance between 
features i and j ,  ad is a fraction of the standard deviation of all the distances 
over the image and : 

l a - b [  if l a - b [ < ~  
~r F( b ,a )=  [ a - b - r r l  i f y < a - b < T r  

[ a - b + ~ r t  i f - ~ r < _ a - b < - ~  

The incompatibility coefficient is defined by: 

clj- = max (~ di,er ciJ- r voi,,,) (2) 

- d i r e c t i o n  0 i f  i.j > 0 - c o m m o ~  point 
where: cij = 1 if i.j < 0 cii = a common point 

otherwise 

In the final solution, following binary constraints must exist: 

Vi, j, pi = pj = l ~ aij = O 
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2.3 A c o m b i n a t o r i a l  o p t i m i z a t i o n  s t a t e m e n t  

A consistency matrix Q = (qq)(ij)e<l,N>~, with qq E [0, 1] and an incompatibil- 
ity matrix C = (6ij)(ij)e<l,N>~, with 6ij E {0, 1} have been generated. At this 
step, we intend to select all real features corresponding to particle trajectories. 
The solution of the particle tracking problem is consequently a subset of the po- 
tential trajectories, in which all "erroneous trajectories" have been suppressed. 
Those "erroneous trajectories" are features which display a low consistency with 
their local environment or which do not satisfy the constraints inherent in the 
problem. As a consequence, the problem can be expressed as finding a subset 
of potential features maximizing a quality function representing a global con- 
sistency measure of the solution, and satisfying all binary constraints. In other 
words, i f p  = (p l , . . . , pN)  is a vector in which pi = 1 if the trajectory i rep- 
resents a real particle, or pi = 0 if it is an erroneous one, the problem can be 
expressed by: finding p such that  {Pi I Pi = 1} is an independent subset of 
and such that p maximizes E(p)  = ~ 1 y~N. 1 qq'Pi'PJ We will devise a neural 
method to solve this global optimization problem, using a new neural network 
called pulsed neural network. 

3 P u l s e d  n e u r a l  n e t w o r k  

3.1 F o r m u l a t i o n  as a m a x i m u m  i n d e p e n d e n t  set p r o b l e m  

Let us define a graph G, in which each vertex is a potential feature and whose 
adjacency matrix Ae = (~lij)(ij)e<l,N>2 is defined by gij = 6q +B(qi j )  E {0, 1}, 
where B(qq)  is the result of binarization of the consistency coefficient. In [3], 
we demonstrate that,  in this case, the particle tracking problem reduces to the 
search of the largest independent set of graph G. 

Our artificial neural network consists of N recursive neurons which are auto- 
connected and potentially fully inter-connected with symmetric synaptic weights. 
A neuron is ascribed to each feature. We denote pi the binary output of neuron i 
and ui its potential. A neuron belonging to the final solution will have its output 
equal to 1 in the final state vector. The gain function used, for each neuron, is 
the McCulloch-Pitts one. Initially, all ouputs are set equal to 0 and all inputs 
are randomly generated with negative values. 

D e f i n i t i o n  1. Let the following functions defined by: 

deg : < 1, N >--~ IN 

x ~-+ card{j E< 1, N >] #~j = 0} 

h : ~ t - ~  {0,1} 

1 i f x = 0  
x~ 0 ifxr 

l :  ]R • {0, 1} N • IN ---+ {0,1}  

(x,p,Q ~ ( ~ otherwiseifX < R(p,t) 

where R(p, t) is the size of the largest independent set found at t. 
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Theor e m 2. The neural network with feed-back and pulsations, whose evolution 
equation for each neuron i is: 

du' (t + l) = p'(t)" [ - l  + j~v(,),{,}E ~ij.pj(t))] + 

du t ( 1 -  pi(t)). [h(jey~(O\{i}Oq.pj(t)) + 6(-~,t).l(deg(i),p, )] 

converges, in asynchronous running mode, between two pulsation phases, towards 
a feasible solution (proof in [3]). du 6(Wi-,t ) returns 0 while the network has not 

converged (3i I dt wJ ~ 0), and returns 1 during several complete updatings of 
the network as soon as the network has converged. This defines a pulsation. 

The two first terms of the evolution equation ensure that  the solution satisfies 
all binary constraints, i.e. that  the solution is an independent set of G. The third 
term, called pulsation term, enables the network to leave a local minimum and 
converge towards a new feasible solution. This term is only used during the 
pulsation phase, after the network has converged. During a pulsation phase, all 
neurons, whose degree in G is smaller than the size of the largest independent set 
previously found and which are inactivated are excited. If no neuron has a degree 
higher than the maximum independent set found size, then the solution can not 
be improved (stopping criteria). The final solution is the largest solution among 
the feasible solutions proposed by the network. We notice that  this network is 
powerful to solve a maximum clique problem. 

3.2 Formulation as a global opt imizat ion  problem wi th  constraints 

The problem is presented in section 2.3. The evolution equation is defined so 
that  to maximize E(p),  while satisfying all binary constraints. We propose a 
synchronous by bloc running mode. A neuron, whose state is inactivated (Pi = 0) 
just before its updating, must be shifted to Pi = 1 if it contributes towards a 
quality function increase. Furthermore, so as to evolve in the space of indepen- 
dent set of the incompatibility graph, we impose that ,  if an inactivated neuron 
i such that  p~(t) = 0 is updated to p~(t + 1) = 1, then all the activated neurons 
j incompatible with it (~q = 1 and pj(t) = 1) are updated to pj(t + 1) = 0. 

Before the transformations pi(t) = 0 
{pi(t + 1) = 1 (3) 

After the transformations Vj ] (pj(t) = 1 and c-q = 1)i pi(t + 1) = 0 

The expression of the quality function variation associated to the previous trans- 
formations, when neuron i is considered at time (t + 1), is: 

z 2 E i ( t + l ) = - 2  E E qjs.pj(t).p,(t) 
{sl~i,_-I } j;ts , j;ti 

+2 p (t)+l (4) 
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Defini t ion 3. Let k(p, i) be a function that randomly selects, among all com- 
ponents Pi ofp  such that pi(t) = 1, z components and returns cc if i belongs to 
this set of components, and 0 otherwise: k(p, i) = oc and so pi(t + 1) = 0. 

T h e o r e m 4 .  The neural network with feed-back, pulsations and Potts neurons, 
whose evolution equation of neuron i is: 

{ ~ t ' ( t  + 1) = (1 - pi(t)).max(O, AEi(t + 1 ) ) -  pi(t).5(~t,t) .k(p,i  ) 

Vj # i ,  ~ t ' ( t  + 1) = -~ij.(1 - pi(t)).max(O, AEi(t + 1)) 

converges, between two pulsation phases, towards a feasible solution.(cf. [3]). 

The network, conducted by the first term of the evolution equation, converges to 
a feasible solution. The second term enables it to be pulsed in another starting 
point and find another solution. The solution maximizing E(p) is finally chosen. 

4 Experimental  results and discussion 

The algorithm described in the previous section has been applied to many images 
of fluid mechanics. Figs. 1 and 2 respectively show an original image and the final 
result proposed with the second algorithm. The computationnal time required 
for the total processing is, in this example, 2s870ms on a standard SUN SPARC 
10. Our algorithm is far quicker than all classical velocimetry methods. The 
results proposed testify to the great visual quality of the algorithm. Regardless 
of the image tested, the algorithm recognizes at least 95% of the particles seeded 
in the fluid. 

Fig. 1. A particle tracking image of Fig. 2. The result of applying our neural 
800*800 pixels, algorithm 



526 

In this paper, we have proposed a new paradigm for the feature grouping 
problem, with special emphasis on the problem of particle tracking. First and 
foremost, we suggest a mathematical  encoding of the problem, which takes into 
account metric constraints specific to the problem, perceptual properties of the 
image and physics properties of the phenomena. Second, we propos a new state- 
ment of the particle tracking problem as a global optimization problem. Endly, 
in order to solve this combinatorial optimization problem, we devise original 
neural networks, named pulsed neural networks. The advantages of these new 
neural networks are: 

- They need no coefficient. Accordingly it has a completely black-box be- 
haviour from a user points of view. 

- When the network has converged (Vi, du~ = 0), all constraints are neces- --dT 
sarily satisfied. 

- The iterations number  necessary to converge is much smaller than most  of 
other methods. 
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