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A b s t r a c t .  This paper addresses the problem of accurately and auto- 
matically recovering the epipolar geometry from an uncalibrated stereo 
rig and its application to the image matching problem. A robust corre- 
lation based approach that eliminates outliers is developed to produce a 
reliable set of corresponding high curvature points. These points are used 
to estimate the so-called Fundameutal Matrix which is closely related to 
the epipolax geometry of the uncalibrated stereo rig. We show that an 
accurate determination of this matrix is a central problem. Using a lln- 
ear criterion in the estimation of this matrix is shown to yield erroneous 
results. Different parameterization and non-linear criteria are then de- 
veloped to take into account the specific constraints of the Fundamental 
Matrix providing more accurate results. Various experimental results on 
real images illustrates the approach. 

1 I n t r o d u c t i o n  

Recovering the epipolar geometry of a stereo pair of images is an impor tan t  and 
at t ract ive problem. I t  is the only geometric constraint  tha t  could be used in 
image matching to reduce the searching area of potential  matches in the images. 
Until recently this step has been closely related to the calibration problem. In 
this paper,  we are interested in recovering this information without  the use of a 
calibration process. The proposed method consists of the following major  steps: 
extracting points of interests, matching a set of at least 8 points, recovering 
as accurately as possible the so-called Fundamental Matrix and the epipolar 
geometry using a robust  matching process tha t  considers possible false matches 
as outliers, run for a second t ime the correlation process while taking into account 
the recovered epipolar geometry and update  the Fundamental matrix using non- 
linear criteria. 

The importance of the criterion to be minimized in order to correctly recover 
the Fundamental Matrix and the strong need to deal with a robust  matching ap- 
proach tha t  detect and discard possible false matches,  are two impor tan t  points 
to be considered in such problem. Our work is closely related to the work of 
Olsen [S] and tha t  of Shapiro and Brady [10]. Both use linear Olsen assumes tha t  
the epipolar lines are almost aligned horizontally and uses a linear method  to es- 
t imate  the epipolar geometry. A robust  method  (the M-est imator ,  seeSect. 3.2) 
is used to detect possible false matches.  Shapiro and Brady  also use a linear 
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method.  The camera model is however a simplified one, namely an affine camera 
and correspondences are established while rejecting possible outliers by the use 
of a regression diagnostic processus. These two approaches (M-estimators and 
Regression diagnostics) work well when the percentage of outliers is small and 
more important ly their derivations from the valid matches are not too large, as 
in the above two works. In the case described in this paper, two images can be 
arbitrarily different. There may be a large percentage of false matches (usually 
around 20%, sometimes 40%) using heuristic matching techniques such as cor- 
relation, and a false match may completely be different from the valid matches. 
The robust technique described in this paper (i.e Least-Median-of-Squares ) deals 
with these issues and can theoretically detect  as high as 50% outliers. 

2 Geometry of Stereovision 

The camera model which is most widely used is the pinhole and in the general 
case, the camera performs a projective linear transformation, rather  than a mere 
perspective transformation. The pixel coordinates u and v are the only informa- 
tion we have if the camera is not calibrated q = [su, sv, s] T = A G M ,  where 
M -- [X, Y, Z, 1] T is the point in 3D space, A is a 3 x 3 transformation matr ix  
accounting for camera sampling and optical characteristics and G is a 3 x 4 dis- 
placement matrix accounting for camera position and orientation. If the camera 
is calibrated, then A is known and it is possible to use normalized coordinates 
m = A - l q ,  which have a direct 3D interpretation. 

The epipolar geometry is the basic constraint which arises from the existence 
of two viewpoints. It is well-known in stereovision: for each point m in the first 
retina, its corresponding point m '  lies on its epipolar line 1~. 

Let us now use retinal coordinates. For a given point q in the first image, 
the projective representation lq of its the epipolar line in the second image is 

given by lq = Fq.  Since the point q'  corresponding to q belongs to the line lq 
by definition, it follows that  

q ' T F q  = 0 (1) 

We call the 3 x 3 matr ix F which describes this correspondence the funda- 
mental matrix. The importance of the fundamental matr ix has been neglected 
in the literature, as almost all the work on motion has been done under the 
assumption that  intrinsic parameters are known. In tha t  case, the fundamental  
matr ix  reduces to an essential matrix. But if one wants to proceed only from 
image measurements, the fundamental  matr ix  is the key concept, as it contains 
all the geometrical information relating two different images. 

It  can be shown that  the fundamental matr ix  F is related to the essential 
matr ix  [5] E = t x R by F = A - 1 T E A  -1. Unlike the essential matrix, which is 
characterized by the two constraints described by Huang and Faugeras [3] which 
are the nullity of the determinant and the equality of the two non-zero singular 
values, the only property of the fundamental  matr ix is that  it is of rank two. As 
it is also defined only up to a scale factor, the number of independent coefficients 
of F is seven. 
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3 M a t c h i n g  W i t h o u t  t h e  E p i p o l a r  G e o m e t r y  

A slightly improved correlation based approach is used to match a set of high 
curvature points extracted from each image. The corner detector developed in 
[2], is used with a value of k equal to 0.04 for providing discrimination against 
high contrast pixel step edges. After that ,  the operator  output  is thresholded 
for the corner detection. It  should be pointed out tha t  this method allows us to 
recover a corner position up to a pixel precision. In order to recover the corner 
position up to a sub-pixel position, one use the model based approach we have 
already developed and presented in [1], where corners are extracted directly 
from the image by searching the parameters of the parametric model tha t  best 
approximate the observed grey level image intensities around the corner position 
detected. This step of refinement at a sub-pixel position of the high curvature 
points has been found impor tant  specially in the case where a small number  of 
points are used in the minimization process performed to recover the so-called 
Fundamental Matrix. 

3 . 1  M a t c h i n g  b y  c o r r e l a t i o n  

The matching process developed to put  into correspondences the set of extracted 
points of interest is then the following one : Given a high curvature point rnl in 
image 1, we use a correlation window of size (2n + 1) x (2m + 1) centered around 
this point. We then select a rectangular search area of size (2d + 1) x (2d + 1) 
around this point in the second image, and perform a correlation operation on a 
given window between point m l  in the first image and all high curvature points 
m2 lying within the search area in the second image. The following constraints 
are then applied in order to select the most consistent matches : 

- C o n s t r a i n t  o n  t h e  c o r r e l a t i o n  s c o r e  : F o r  a given couple of points to 
be considered as a possible set of corresponding points, the correlation score 
must be higher than a given threshold. 

- C o n s t r a i n t  o f  t h e  g r a d i e n t  d i r e c t i o n  : The cosines of the angle between 
the vectors gradients of ml  and m2 is evaluated. This direction consistency 
measure must be greater than a given threshold for the matching to be 
considered consistent. 

- C o n s t r a i n t  o f  c u r v a t u r e  This constraint is based on the magnitude of 
the curvature difference. The curvature sign is also used. It differentiates a 
convex angle from a concave one. Two points are said to be consistent in 
curvature if and only if the absolute value of the difference of their curvature 
is less than a fixed threshold. 

- C o n s t r a i n t  o f  d i s p a r i t y  : This constraint reflects some a priori knowledge 
about  the disparities between the matches points. All the feature points are 
supposed to have a a maximum disparity. 

If the above four constraints are fulfilled, we say that  the potential points con- 
sidered are mutually consistent. A similarity function is computed for each con- 
sistent correspondences. This similarity function is a function of the measures 
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defined above, weighted by the difference between the gradient norm of both 
points considered. 

Finally before validating the match with the highest similarity value, we per- 
form the correlation twice by reversing the roles of the two images and consider 
as valid only those matches for which the reverse correlation has fallen on the ini- 
tial point in the first image. The two images play a symmetric role. This validity 
test allows us to greatly reduce the probability of error. 

3.2 Detecting outliers 

In all matches established so far, we may find two types of outliers due to 

b a d  l o c a t i o n s .  Error  in localization can be large (greater tha t  three pixels) 
for some extracted points of interest. This will degrade the accuracy of the 
estimation. 

false m a t c h e s .  False matches occurring in the correspondence process spoil the 
final estimate of the fundamental  matr ix  and can render it definitely useless. 

Many the so-called robust regression methods have been proposed that  are not 
so easily affected by outliers [4, 9]. The reader is referred to [9, Chap. 1] for a 
review of different robust methods. The two most popular robust methods are 
the M-estimators and the least-median-o/-squares (LMedS) method. 

Let ri be the residual of the i-th datum, i.e., the difference between the 
i-th observation and its fitted value. The standard least-squares method tries 

2 which is unstable if there are outliers present in the data. to minimize ~ r i ,  
2 by another  functions of the The M-estimators replace the squared residuals ri  

residuals, yielding 
min y ~  p(ri), 

i 

where p is a symmetric,  positive-definite function with a unique minimum at zero. 
The M-estimators can be implemented as a weighted least-squares problem. This 
method [8, 6] reveals to be robust to outliers due to bad locations. It  is, however, 
not robust to false matches. 

The LMedS method estimates the parameters by solving the nonlinear min- 
imization problem: 

2 rain reed rl . 
i 

Tha t  is, the estimates must yield the smallest value for the median of squared 
residuals computed for the entire data  set. It turns out tha t  this method is 
very robust to false matches as well as outliers due to bad locations. Unlike the 
M-estimators, however, the LMedS problem cannot be reduced to a weighted 
least-squares problem. It is probably impossible to write down a straightforward 
formula for the LMedS estimator. It must be solved by a search in the space of 
possible estimates generated from the data. Since this space is too large, only 
a randomly chosen subset of da ta  can be analyzed. The algorithm which we 
have implemented for robustly estimating the fundamental matr ix  follows that  
s t ructured in [9, Chap. 5], as outlined below. 
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Given n point correspondences and their retinal image coordinates rhl i  = 
[Uli, vu]  T,  rh2i = [u2i, v2i] T and denoting the homogeneous coordinates of ~ = 
[x, y , . . . ]T  by x, i.e., x = Ix, y , . . . ,  1] T, a Monte Carlo type technique is used to 
draw m random subsamples of p = 8 different point correspondences. For each 
subsample, indexed by J ,  we determine the fundamental  matr ix  lea. For each 
lea, we can determine the median of the squared residuals, denoted by Ma, with 
respect to the whole set of point correspondences, i.e., 

Ma = med [d2(m2i, F j m l i )  + d2(ml,,FTm2D]. 
i----1,...,n 

We retain the estimate F j  for which M j  is minimal among all m Mj 's .  The 
question now is: H o w  to d e t e r m i n e  m ? A subsample is "good" if it consists of 
p good correspondences. Assuming that  the whole set of correspondences may 
contain up to a fraction e of outliers, the probability tha t  at least one of the 
m subsamples is good is given by P --- 1 - [1 - (1 - s)P] m . By requiring that  
P must be near 1, one can determine m for given values of p and ~. In our 
implementation, we assume ~ = 40% and require P -- 0.99, thus m = 272. 

As noted in [9], the LMedS e f f i c iency  is poor  in the presence of Gaussian 
noise. The efficiency of a method is defined as the ratio between the lowest 
achievable variance for the estimated parameters  and the actual variance pro- 
vided by the given method.  To compensate for this deficiency, we further carry 
out a weighted least-squares procedure. The robust  s tandard  dev ia t ion  estimate 
is given by 5 = 1 .482611+5/ (n -p ) ]v / -M-~ j ,  where U j  is the minimal median. The 
reader is referred to [9, page 202] for the explanation of these magic numbers. 
Based on 5, we can assign a weight for each correspondence: 

{~ 2 < (2.55)2 if r i _ 

otherwise,  

where r 2 = d2(m2i, F m l i )  -Fd2(mli, F T m 2 i ) .  The correspondences having wi = 
0 are outliers and should not be further taken into account. The fundamental 
matr ix F is finally estimated by solving the weighted least-squares problem: 

min y ~  WiT 2 . 
i 

We have thus robustly estimated the fundamental  matr ix  because outliers have 
been detected and discarded by the LMedS method.  

4 A c c u r a t e l y  R e c o v e r i n g  t h e  F u n d a m e n t a l  M a t r i x  

Using the set of matched points established in the previous step, one may then 
recover the so-called fundamental  matrix. This is one of the most crucial step. 
We have considered different linear and non-linear criteria and also considered 
different approaches to parametrize this matrix. 
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4.1 The linear criterion 

Equation (1) can be written down as a linear and homogeneous equation in the 
9 unknown elements of matr ix  F. Given 8 or more matches we will be able, in 
general, to determine a unique solution for F,  defined up to a scale factor. For 
example, a singular value decomposition technique can be used. 

The advantage of the linear criterion is tha t  it leads to a non-iterative com- 
putat ion method,  however, we have found tha t  it is quite sensitive to noise, even 
with numerous da ta  points. The two main reasons for this are : The constraint 
det (F)  = 0 is not satisfied, which causes inconsistencies of the epipolar geometry 
near the epipoles, and the criterion is not normalized, which causes a bias in the 
localization of the epipoles. A detaMed study of these points has been made in 
the technical report  [7]. 

As it has been said, one of the drawbacks of the linear criterion method is 
tha t  we do not take into account the fact tha t  the rank of F is only two, and that  
F thus depends on only 7 parameters.  This could be taken into account by doing 
a minimization under the constraint det(F)  = 0, which is a cubic polynomial in 
the coefficients of F. However, the numerical implementations were not efficient 
and accurate at all. Thanks to a suggestion by Luc Robert ,  we can express the 
same constraint with an unconstrained minimization: the idea is to write one 
line of matr ix F as a linear combination of the two others, which ensures tha t  F 
is singular. Choosing such a representation allows us to represent F by the right 
number of parameters,  once the normalization is done. 

It  can be shown that  F can also be expressed as function of the affine coor- 
dinates (x, y) and (x', y') of the two epipoles, and the coefficients, of the homog- 
raphy between the two pencils of epipolar lines [7] 

4.2 Minimizing the distance to epipolar lines 

We now introduce a first non-linear approach. The idea is to use a non-linear 
criterion, minimizing ~ i  d2(q~, Fqi ) .  However, unlike the case of the linear cri- 
terion, the two images do not play a symmetric role, as the criterion determines 
only the epipolar lines in the second image, and should not be used to obtain 
the epipole in the first image. We would have to exchange the role of qi and q~ 
to do so. The problem with this approach is the inconsistency of the epipolar 
geometry between the two images. To make this more precise, if F is computed 
by minimizing ~ i  d2 (q~, Fq~) and F' by minimizing ~ i  d2(qi, F'q~), there is no 
warranty that  the points of the epipolar line F q  different from q~ correspond to 
the points of the epipolar line F ' q  ~. To obtain a consistent epipolar geometry, 
it is necessary and sufficient tha t  by exchanging the two images, the funda- 
mental matr ix  is changed to its transpose. This yields the following criterion: 
~ i  (d2(q~, Fq~) + d 2 (qi, FTq~)), which operates simultaneously in the two im- 
ages and can be writ ten using the expression tha t  gives the Euclidean distance 
of a given point q in an image to a its epipolar line 1 in the other image, and the 
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' _TImT_! fact that  q~TFq~ = qi z qi: 

(Fq~)~ + (Fq,)2 2 + T t 2 T t 2 (qi Fq , )  (2) �9 (F q~)l + (F qi)2 

This criterion is also clearly normalized in the sense that  it does not depend on 
the scale factor used to compute F. 

4.3 Taking into account uncertainty 

Pixels are measured with some uncertainty. When using the linear criterion, we 
minimize a sum of terms which have different variances. It is natural to weight 
them so tha t  the contribution of each of these terms to the total criterion will 
be inversely proportional to its variance. 

Estimating the variance of each term as a function of the variance of the 
points q~ et q~, developing and simplifying, we obtain the following criterion : 

-- 'T F -  ~2 ( tt~ tll  ) 
(Fq,)~ + (Fq,) 2 + (F q,)l  + r , 2 r , ~ ( 3 )  (F qi)2 

Note the great similarity between this criterion and the distance criterion (2). 

5 Establishing Correspondences Using the Epipolar Line 

The recovered F-matrix is used to recover the epipolar geometry and establish 
a new set of correspondences using a correlation based approach tha t  takes into 
account the recovered epipolar geometry (i.e., epipolar constraint). Equation 
q ' F q  = 0 says tha t  the correspondence in the right image of point q' lies on 
the corresponding epipolar line. Transposing this equation yields the symmet- 
ric relation from the second image to the first image. The matching approach 
that  has been developped is a slightly modified version of the initial matching 
process. Once locating a feature point in the first image, and in order to find 
possible matching partners not too far from the epipolar line in the second im- 
age, we place a narrow band around this epipolar line and find the points that  
lie within the band. The last step of the approach is then related to the refine- 
ment of the fundamental matrix and its estimation using the larger number of 
correspondences produced by this matching process. 

6 Experimental results 

For the purposes of experimentation, the different types of criteria were consid- 
ered and the robustness of the approach to the outliers has also been considered. 
A large number of real images were selected and an intensive experimental work 
has been carried out in order to test the robustness and the accuracy of the 
recovered epipolar geometry as well as the efficiency in detecting outliers. 
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Fig. 1. Indoor scene: Matched points and the epipolar geometry using the linear 
criterion 

Fig. 2. Indoor scene: Matched points and the epipolar geometry recovered using the 
non-linear criterion 

Figures 1 and 2 illustrate on an indoor scene the performances of the match- 
ing approach tha t  have been proposed while using just the correlation par t  and 
without  taking into account the outliers detector module. The displacement be- 
tween the two images is mainly a horizontal translation toward to the left side, 
and we can expect  tha t  the epipoles will lie on a horizontal line passing around 
the middle of the image. The window size used for the correlation is 20*20 and 
the paramete rs  related to the constraints on the correlation and gradient direc- 
tion have been bo th  set to .9 

Figure 1 shows the set of 96 matched points using just  the correlation and 
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Fig. 3. Outdoor scene: Matched points by correlation and the epipolar geometry 
recovered using the nonlinear criterion 

Fig. 4. Outdoor scene: Remaining matches after eliminating outliers and the 
corresponding epipolar geometry recovered using the nonlinear criterion 

the associated constraints and illustrates the epipolar geometry recovered using 
the linear criterion. Note that  the two epipolar lines that  do not intersect the 
pencil of epipolar lines are those corresponding to the two epipoles. 

Figure 2 shows the set of 96 matched points and the epipolar geometry 
recovered using the non-linear criterion. The positions of the epipoles are what 
we expected. This example illustrates the good performances of the correlation 
based approach provided that  the deformation between the stereo pair of images 
is not too large. One can also remark the robustness of the non-linear criterion 
compared to the linear one. 
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Figures 3 and 4 illustrate the necessity to take into account the possibility of 
having some outliers in the initial set of matched points. The two images have 
been taken by a camera mounted on a moving vehicle. It moves forward in the 
middle of the right lane, and the epipolar lines are thus expected to intersect 
to each other at a point near the middle of the right lane. Figure 3 shows the 
matched points recovered just by the use of the correlation technique. 55 matches 
have been found. One can remark that there are some points that have not been 
correctly matched on this image pair and one can notice that the recovered 
epipolar geometry is not good at all. For example, match 11 pairs two points 
from two different branches of the tree. Match 0 is not false visually. It describes 
the intersection of a tree with the roof of the house on the left side of the image. 
However, this point is only virtual, and it changes with the point of view. Figure 
4 illustrates the performances of the outliers rejection module. 6 outliers have 
been detected, namely matches number 11, 0, 51, 54, 2 and 47. This fact changes 
significantly the recovered epipolar geometry and in particular the positions of 
the epipoles. 
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