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A b s t r a c t .  This paper discusses the well known problem of structure 
from motion for the special case of rigid curves. It is already known that  
it is theoretically possible to recover the motion and thus the structure 
of a moving 3D rigid curve observed through one camera given some set 
of derivatives that are defined on the so-called spatio-temporal surface 
under the most general camera model of perspective projection. We give 
here a new simplification of the previous results. In order to show that 
implementing this theory is indeed feasible, we proceeded towards two 
main directions. First, we have implemented the special case of planar 
rigid curves. Second, we show that the derivatives defined on the spatio- 
temporal surface which are needed in the general case can indeed be 
computed from the images. 

1 I n t r o d u c t i o n  

Recovering three-dimensionnal information about an observed scene from images is 
one of the main goals of computer vision. The basic underlying idea leading to a vast 
majority of methods is to combine information coming from many different viewpoints. 

One way to obtain multiple viewpoints is to use motion [FLT87, WKPS87, FDN89, 
SA90]. In these approaches, only one camera is used. From the measurement of the 
motion of image primitives (flow fields), the 3D motion parameters and the relative 
depth can be computed. However, there are many ways to compute flow fields: most 
of these approaches are based on optical flow which is computed directly from image 
intensities [LHP80, HS81, Nag83, Hi184, Koe86, D'H86, Bou89, Gon89]. Another way 
to proceed is to use the motion fields in the image which are defined as the projection 
in the image of the 3D motion field of some geometric object (usually points or lines). 
We have studied in [FP93] the relationship between optical flow and motion field for 
general 3D curves and shown that the assumptions usually made in the computation 
of the optical flow are a bit difficult to defend. Moreover, we have shown that for 
a rigid 3D curve it is theoretically possible to recover the 3D structure and motion 
from a monocular sequence of images. The data needed in order to achieve these tasks 
are derivatives defined on the so-called spatio-temporal surface. In order to implement 
these ideas, we focussed on three main directions: 

- Simplify the existing equations. 
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- Find methods to compute the needed derivatives. 
- Implement some simpler cases, namely the case of planar 3D curves. 

After the introduction of notations, we examine briefly why the equations for the 
general case can be simplified and how to relate the 3D motion of planar curves to the 
first order derivatives in space and time on the spatio-temporal surface. In the final 
section, we discuss our implementation for the planar curve case and results on both 
synthetic and real images. As well, results of the derivative computation needed for the 
general monocular case are presented. 

2 N o t a t i o n s  a n d  B a s i c  R e s u l t s  

The goal of this section is to introduce some notations relative to the problem of 
recovering the 3D motion from 2D motion fields. We also recall some basic results that 
are described in details in [FP93] and explain without proof why one of the basic results 
of this paper can be simplified. 

2 .1  T h e  C a m e r a  M o d e l  

We assume that the camera obeys the standard pinhole model with unit  focal length. 
We note O the focal center point and suppose that  the retina Tr is parallel to the plane 
(O, X, Y). The frame (O, X, Y, Z) being natural ly attached to the camera model, all 
equations involving 3D parameters are writ ten in this frame. 

Given a 3D point M = (X, II, Z) and its 2D perspective projection m = (z, y, 1) 
on the Tr plane, their relationship is characterized by the following equation: 

M = Xm (1) 

This equation is fundamental in that all the constraints we present here are direct 
consequences of it. The concept of temporal variation can be incorporated with the 
introduction of a time factor T. 

2 . 2  D e f i n i t i o n s  

We now assume that we observe in a sequence of images a family (c~) of curves, where 
~- denotes time, which we assume to be the perspective projection in the retina of a 3D 
curve (C) that moves in space. If we consider the three-dimensional space (x, y, ~-), 
this family of curves sweeps in that space a surface (22) defined as the set of points 
((c~), r ) .  Figure 1 illustrates an example of one such spatio-temporal surface generated 
by a circle rotating around one of its diameters in front of the camera. 

At a given time instant % let s be the arclength of (c,) and S the arclength of (C). 
We further suppose that S is not a function of t ime (i.e. the motion is isometric). Now, 
for a point m on (c,), it is possible to define two different motion fieds: the apparent 
motion field v~  and the real motion field v ~  of m(8, ~-) obtained by taking the partial 
derivative of m(s,  ~-) with respect to time when respectively s or S is kept constant. 

Introducing the Frenet frame (t, n),  where n is the unit  normal vector to (c,) at m, 
and under the weak assumption of isometric motion, we reach the following conclusions 
from the study of the spatio-temporal surface: 
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Fig.  1. The spatio-temporal surface generated by a circle rotating in front of the camera 

and and can be recovered from 1. The normal motion field fl is the same for vm v~  
the normal to the spatio-temporal surface, 

2. the tangential  apparent motion field a can be recovered from the normal motion 
field, 

3. the tangential  real motion field w cannot be recovered from the spatio-temporal 
surface. 

Therefore, the full real motion field is not computable from the observation of the 
image of a moving curve under the isometric assumption. This can be considered as a 
new statement of the so-called aperture problem. In order to solve it we must add more 
constraints, for example that  the 3D motion is rigid. 

2.3 T h e  C a s e  o f  a R i g i d  3 D  C u r v e  

Assuming now that  the curve (C) is moving rigidly. Let (g2, V) be its kinematic screw 
at the optical center O of the camera. We assume also that the camera has been 
normalized by calibration to unit  focal length. 

Taking the total.derivative of (1) with respect to time, using the standard formula 
giving4he velocity M of any point M attached to the rigid body as a function of the 
kinematic screw and projecting this vector equation onto t and n yields two scalar 
equations: 

Z(w  A- ~ "  b) -- - U n -  V 

z ( ~ -  n .  a) = v t . v  
(2) 
(3) 

where U t ,  U n ,  a, b denote respectively m x t,  m x n, m x U t and m x U n .  
These equations are fundamental  (especially (3)) in the sense that they express the 

relationship between the unknown 3D motion of a point and the real motion field of 
its image. 

Let's now recall some previous result that is given in [FP93]. 

T h e o r e m  1. At  each point of an observed curve (c~) evolving during time, it is possible 
to write two polynomial equations iu the coordinates Y2, V ,  [2 and ~r (The  kinematic 
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screw attached to the 3D curve and its first time derivative). The coej~cients of these 
equations are polynomials in the quantities 

that can be measured from the spatio-temporal surface ( ~ ) .  

These equations lead to a way to compute the motion and the structure of the 3D 
curve. It can be shown that they are, in fact~ a direct consequence of (3) and that one 
of these equations is redundant because it can be expressed as a linear combination of 
the other equation and its first order time derivative. Thus the previous result can be 
restated as: 

T h e o r e m  2. At each point of an observed curve (cr ) evolving during time, it is possible 
to write one polynomial equation in the coordinates ~ ,  V ,  [2 and "Q (The kinematic 
screw attached to the 3D curve and its first time derivative). The eoej~cients of this 
equation are polynomials iu the quantities 

that can be measured from the spatio-temporal surface ( 2Y). 

The nice thing with this new theorem is that  we get rid of all third order derivatives 
with only first and second order derivatives being left. Therefore we are only interested 
in the above-mentioned derivatives and we show later that it is possible to compute 
them quite precisely. 

3 The Mot ion  of 3D Planar Rigid Curves 

We study here a special case of the motion of rigid curves sketched in the previous 
section: the case of a 3D rigid curve that is planar. By making this hypothesis, it is 
possible to write an equation similar to those obtained in the general case but: 

- in which [2 and ~r are no longer involved, thus leading to a system of equations 
with less unknowns. 

- of total degree 2 (instead of 4). 
- in  which only the first order derivatives of 2Y appear. 

The first two properties show that the systems we ob t a in  is much simpler (less 
unknowns with lower degrees), thus the number of possible solutions is smaller. The 
second characteristic means that not only the equation are simpler but  also they are 
more stable with respect to the measurement noise. We thus may hope that  the solu- 
tions of the system are also more stable. 
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3 .1  T h e  E q u a t i o n  i n  t h e  P l a n a r  C a s e  

Let M = [X, Y, Z] T be a point on the 3D planar  curve. This point belongs to the 
plane of the curve. If  we suppose that  the image of the curve is not degenerated into 
a segment, then the optical  center of the camera is not on the curve plane. The point 
M thus verifies the following equation: 

N . M + I  = a X  + b Y  + c Z  + l = 0 (4) 

Combining (4) with the perspective equation (1), we obtain: 

- 1  
Z = N .  m (5) 

Equation (5) is fundamental  because it connects the plane structure of the curve 
Z to the measures in the image x, y. Practically,  it  allows to replace the quant i ty  Z 
that  varies along the observed curve by 3 quantities a, b, c that  are constant along this 
same curve. Replacing Z by its value given by this equation in (3), yields the following 
theorem: 

T h e o r e m 3 .  At  each point of (c~) considered as the projection of  a 3D planar curve, 
it is possible to write a polynomial equation in the unknowns/2,  V, N.  

f l -  1 2 - a +  (U t . V ) ( N .  m)  = 0 (6) 

This equation is not homogeneous in V but we can see that i f  (V, N) is a solution 
then (~V, ~ N )  is also a solution for every )~ ~s O. This property shows that, as in the 
general case, only the direction of V can be recovered. The equation is of  degree 2 in 
(V, N) ,  of degree 1 in 12 and of total degree 2. 

In the following, we call this equation the planar  equation. Evaluating this equation 
at  8 points,  we obtain a system of degree 2 in the 9 unknowns (12, V,  N) .  I t  is then 
possible to  reformulate the conjecture we have made in the previous section for this 
par t icular  case: 

C o n j e c t u r e  4. The kinematic screw (12, V)  and the normal N to the plane of a 3D 
rigid planar curve can, in general, be estimated from the observation of the spatio. 
temporal surface generated by its image on the retina by solving a system of polynomial 
equations. The quantity Z can be estimated at each point up to a scale factor by using 
(5). 

Of course, as in the general case, this conjecture is wrong in some special cases such 
as straight  lines or conics. See [Ber89] for other examples of ambiguity. Practically,  for 
non ambiguous curves, this conjecture has always been found to be true. 

3 .2  R e c o n s t r u c t i o n  o f  t h e  C u r v e  

From previous formulas, once the motion is computed, it is possible to reconstruct the 
3D curve up to  a scale factor by two different means: 

- Using (4) which relates Z to the plane parameters  N. Here we are using explicitely 
the planar  hypothesis. 

- Using the general (3) that  is true for all 3D rigid curve. It relates Z to the kine- 
mat ic  screw (12, V) .  Since we do not use the planar  hypothesis, the reconstructions 
computed this way are more unstable than the previous ones. 
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3.3 Ambigui ty  of  the S o l u t i o n s  

We are interested here in describing the structure of the solutions. The question is: is it  
possible generically to find a relat ion between two solutions (here this means tha t  the 
result we look for does not depend on the actual  values of the est imated parameters) .  
One way to do this is to search for a t ransformation on (Y2, V,  N) that  leaves the 
equation unchanged. 

Let us thus look at the coefficients of (6) in variables x, y, t ,  ft. These different 
terms represent the way the information relative to (I2, V,  N) is coded in (6) and 
this is independent of the point at which the equation is written. In some way, every 
quant i ty  that  cannot be computed from these terms or that  remains ambiguous exhibits 
the same behaviour when computed from (6). We use this property to prove that  there 
is a companion solution to each solution of the system. 

Theorem 5. I f  (~ ,  V,  N)  is a solution of the system obtained for a planar curve then 
(~2 + V A N,  N,  V)  is also a solution of this same system. 

This theorem is the specialization to planar  curves of a well-known theorem on 
planar  points [TH82, LH84, May92]. This is not surprising since a planar  curve is 
nothing more than a set of planar  points. Wha t  is more surprising however is that  it  
can be shown tha t  there is no new ambiguity introduced by the fact we only use normal 
flow information. 

The coefficients of (6) in the variables x, y, t ,  fl can also be used to show that  there 
is at  least one and at  most 3 solutions to this problem (counting only once the two 
related solutions). 

4 Implementation 

We describe here the implementat ion of the theory described in the previous section 
and show the results we have obtained on both synthetic and real images. 

4.1 Mot ion  of  Planar Curves 

Many tests have shown that  it  is difficult to est imate with a good accuracy spatio- 
temporal  parameters .  Temporal  derivatives are especially difficult to obtain: this phe- 
nomenon seems to come from sampling problems in time. Whereas spatial  sampling 
of an image may be known and constant (it is fixed by the physical parameters  of 
the camera),  t ime sampling of the spat io- temporal  surface ,U around a point P should 
depend on the speed of that  point.  Temporal  derivatives cart be obtained very easily 
by considering the curve drawn on ,U tha t  lies in the plane defined by the point m at 
which we want to compute the spat io- temporal  parameters ,  and being spanned by the 
vectors n the normal  vector to the observed curve at m and by ~- the unit vector on 
the t ime axis. Therefore, the accuracy of the temporal  derivatives depends upon how 
well this curve is sampled. 

To val idate the approach, we use two image sequences-(of about 30 to 40 images 
each). The first one (see Fig. 2 left) is a synthetic sequence of a planar 3D quartic. 
The second one (see Fig. 2 right) is a real sequence. In all these images the 3D curve 
rotates  around a vertical  a~rds and translates in the same direction. 

Here is the general scheme of the implementat ion:  
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F ig .  2. Left: an image exerpted from the synthetic sequence. A Gaussian noise of 
signal/noise rat io of 20% has been added on intensities. Right: an image exerpted from 
the real sequence. 

- Build the spat io-temporal  surface. 
- Es t imate  the spat io- temporal  parameters  at  every point of the curve at  one t ime 

instant.  
- Normalise the parameters  and finally solving of the polynomial  system. 

Each of these stages is described in the next paragraphs.  

4 .2  B u i l d i n g  t h e  S p a t i o - T e m p o r a l  S u r f a c e  

In order to speed up computat ion times, we gather  the points of the spat io- temporal  
surface in a da ta  structure that  allows us to compute easily the neighbours of a given 
point on the surface. The solution adopted is to link the points together using two 
doubly linked list: one for spatial  neighbors and the other for t ime neighbors. The 
algori thm a t tempts  to use the continuity of the curves to avoid walking through too 
many points of either (c ,)  or (c~+a,). 

4.3 E s t i m a t i n g  S p a t i o - T e m p o r a l  P a r a m e t e r s  

The est imation of the spat io- temporal  parameters  is just sketched here. Because of the 
discrepancy between space and t ime sampling rates we compute independently spatial  
and temporal  parameters.  First ,  the local orientation at each point is computed: to do 
so, we construct the two signals z(s)  and y(s) and fit locally models to them. Deriving 
these models gives the local derivatives z'(s) and y ' (s)  that  describe the local tangent.  
Thus, the angle O(s) between the normal and the horizontal is obtained. 

The left part  of Fig. 3 shows the angle est imates along the curve. The maximal  
error between the theoretical curve and the measures is 0.011 radians. 

We then compute the value of the /3  parameter  at each point.  At each point m,  
which orientation is given by n, we build the curve that  is defined as the intersection of 
the spat io- temporal  surface 27 with the p l a n e / 7  defined by m, n and ~- the t ime axis. 
This curve can be represented in the plane (% d) where d is the distance in the direction 
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F ig .  3. Es t imated angle (left) and fi (right) along the curve. The X-axis is curvilinear 
abscissa. The crosses represent measures whereas plain curves represent theoretical  
values of the angle. 

of n between a point  of plane H and m (this distance is also the distance of this point 
to the tangent  to (c~) at  m if we represent (c~) and (c~+d~) in the same plane). We thus 
obtain a curve tha t  is approximated by a t runcated Chebyshev polynomial  (to reduce 
the effects of noise). The derivative of this polynomial  at  t ime ~- is then computed and 
is nothing but ft. 

The right part  of Fig. 3 shows the fi est imates along the curve at  one t ime instant 
for the synthetic image sequence. The maximal  error between the theoretical  curve 
and the measures is 0.017152 pixels by image (the image number here is the t ime 
coordinate).  

4 . 4  P a r a m e t e r s  N o r m a l i s a t i o n  a n d  S y s t e m  R e s o l u t i o n  

At  this point,  we compute the normalized values of all the spat io- temporal  parameters  
we need. Then we build the polynomial  system obtained from the plane equation 
expressed at each of these points. We arbi t rar i ly  normalize the first component of N 
to 1 and obtain a system in 7 unknowns and as many equations as there are points on 
the edge. We then solve this system using a modified Newton method.  

For the synthetic sequence, using the theoretical  values of the parameters  we have 
mathemat ica l ly  proved that  there are only two solutions to the motion problem. Namely 
the true solution and its companion solution as described in Theorem 5. In what follows 
we always consider errors between the true solution and the corresponding solution. 

In Table 1, we have tabula ted  the accuracy of the computed solution for all the 
components of (12, V,  N) as a function of the number of images of the synthetic se- 
quence (around image 14) used to compute the spat io- temporal  parameters.  Note that  
(and this is be true for all results showed here) for V and N only the angle between 
the theoretical  and est imated values are shown since these vectors are only defined up 
to a scale factor. The t ime needed to do all the computat ions (including parameter  
es t imat ion and resolution of the system which has 1112 equations) is about 32 seconds 
when 5 images are used and about  36 seconds when all 29 images are used. These t imes 
have been obtained on a Sun Sparc 2. 

Figure 4 shows the values of Z along the curve and the reconstruction for the 
good solution. Note that  there are always points on the curves where the value of Z 
computed from (3) is biased: it  can be shown tha t  these points corresponds to the 
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Number of images 
considered 

13 
20 
29 

;II e2 - ~'~theor 
in ~  
1.6 x 10 - I  

2.4 x 10 -2 

1.4 x 10-" 

1.1 x I0 -z 

II ~, F~l,~o~ 
i n  o 

4.1 x 10 - I  

1.1 
6.4 x 10 -x 
5.4 x 10 -1 

V,'-~theo , N ,  lq,heo , 
in 0 in 0 

1.2 1.2 
1.0 x 10 -1 6.0 • 10 -~ 
6.4 x 10 -1 6.2 x 10 -2 
5.1 x 10 -1 5.6 x 10 -2 

Tab l e  1. Errors in norm and angle between the estimated results and the theoreti- 
cal ones as a function of the number of images used to compute the spatio-temporal 
parameters. 

points for which U t �9 V = 0 which can be interpreted geometrically as the points at 
which the tangent to the curve goes through the focus of expansion. As it can be shown 
from (3), there is no depth information at these points. 

Fig.  4. On the left: estimates of Z along the curve. On the right: 3D reconstructions 
for the correct solution. The plain curve is the reconstruction based on (4) whereas the 
crosses represent the reconstruction based on (3). 

A nice experimental consequence resulting from the comparison of the planar and 
general reconstruction is that it seems possible to distinguish automatically the correct 
solution from the bad one: the correct solution is always associated to the reconstruc- 
tions for which the errors are the smallest. 

Verifying quantatively the results obtained with the real sequences is a difficult 
task: the best way to do it is to look at the angular speed. With the measured data of 
Fig. 5 the measured angular speed is -1 .055~ where it should be - l ~  
For this sequence, the worst relative error on the angular speed is under 15% but 
usually this relative error is lower than 7%. Note also that we have a good robustness 
to wrong estimation of camera parameters: we used many different internal parameters 
(involving changes of 5 to 10 pixels for the optical center and changes of 2 to 5% for the 
scale factors) obtained by calibrating with different data and noticed a good stability 
of the computed motion (the relative error between the different parameters is at most 
1%). 
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Figure 5 shows the angle and be ta  est imates along the curve. Figure 6 shows the 
reconstructions obtained from the correct and the bad solutions. 

. . . .  ,r 

Fig .  5. Es t imated angle (left) and fl (right) along the curve. The X-axis is curvilinear 
abscissa. The crosses represent measures whereas plain curves represent theoretical  
values of the angle. 

F ig .  6. 3D reconstructions for the correct solution (left) and the bad solution (right). 
The plain curve is the reconstruction based on (4) whereas the crosses represent the 
reconstruction based on (3). 

4 .5  H i g h e r  O r d e r  D e r i v a t i v e s  

We conclude by showing some figures giving the parameters  to, ~ and Ongfl along the 
curve for the synthetic image sequence. These measures seem good enough to allow a 
pract ical  implementat ion of the stereo disambiguation described in [FP93] as well as 
that  of the general 3D rigid curve case based on Theorem 2. 

aZ and 0nz/3 along the observed curve. There Figure 7 shows the parameters  to, 
are still  some problems around curvature extrema. In fact, the origin of these problems 
is now well understood and will be corrected in future work. 
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F ig .  7. From left to right: measured t r  and On~fl along the curve. Crosses represent 
measures whereas the plain curve represent the theoretical  values. 

5 C o n c l u s i o n  a n d  F u t u r e  W o r k  

We have shown in this paper how one of the  two equations relating the 3D motion of 
a rigid curve to the observed motion field is redundant.  Moreover, we have shown that  
the remaining equation does not depend on the third order derivatives on the spatio- 
temporal  surface generated by the ret inal  image of the 3D curve and demonstrated 
that  the first and second order derivatives can indeed be computed quite accurately 
from the long image sequences. This is very promising for the implementat ion of that  
theory which is, obviously, our next goal. 

From another point of view, we have completely implemented the more specific 
case of planar  rigid 3D curves and shown on real and synthetic images that  the theory 
gives quite accurate results. Moreover, it  seems that  the fundamental  ambigui ty  related 
to the use of this special kind of curves can be overcome by looking at  the errors on 
the Z reconstruction errors between the planar  and general model. This case was most 
fruitful since it allowed us to understand bet ter  many of the characteristics of the 
systems of polynomials and to develop many tools that  are useful for implementing 
the general case. Many improvements can still  be made to improve further the quality 
of the results such as working with many planar  curve patches or taking into account 
special properties of some points such as inflexion points,  bi tangent  points or points at 
which the tangent to the curve goes through the focus of expansion. 
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