
Mesh Decomposition and Communication
Procedures for Finite Element Applications on the
Connection Machine CM-5 System

Citation
Johan, Zdenek, Kapil K. Mathur, S. Lennart Johnsson, and Thomas J.R. Hughes. 1994.
Mesh Decomposition and Communication Procedures for Finite Element Applications on
the Connection Machine CM-5 System. Harvard Computer Science Group Technical Report
TR-08-94.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829621

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829621
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Mesh%20Decomposition%20and%20Communication%20Procedures%20for%20Finite%20Element%20Applications%20on%20the%20Connection%20Machine%20CM-5%20System&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Mesh Decomposition and Communication

Procedures for Finite Element

Applications on the Connection Machine

CM-5 System

Zden�ek Johan

Kapil K. Mathur

S. Lennart Johnsson

Thomas J.R. Hughes

TR-08-94

April 1994

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

To appear in The International Conference on High-Performance Computing and

Networking, HPCN Europe '94, Munich, April 18{20, 1994.

Mesh Decomposition and Communication Procedures for Finite

Element Applications on the Connection Machine CM-5 System

Zden�ek Johan

1

, Kapil K. Mathur

1

,

S. Lennart Johnsson

1

* and Thomas J.R. Hughes

2

1

Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142, USA

2

Division of Applied Mechanics, Stanford University, Stanford, CA 94305, USA

Abstract. The objective of this paper is to analyze the impact of data mapping strategies on the

performance of �nite element applications. First, we describe a parallel mesh decomposition algorithm

based on recursive spectral bisection used to partition the mesh into element blocks. A simple heuristic

algorithm then renumbers the mesh nodes. Large three-dimensional meshes demonstrate the e�ciency

of those mapping strategies and assess the performance of a �nite element program for
uid dynamics.

1 Introduction

Data distribution is a crucial issue when implementing �nite element techniques on distributed-memory

parallel computers. Communication between processing nodes can become a bottleneck if the �nite element

data structures are not carefully mapped to the processing nodes. In order to minimize this bottleneck, we

have developed a set of data mapping strategies and implemented them on the Connection Machine CM-5

system. Special library communication routines taking advantage of data locality to reduce data transfer

between processing nodes are used to perform the gather and scatter operations found in �nite element

applications. Decomposition timings for large tetrahedral meshes are presented, as well as the e�ect of data

mapping on the performance of a �nite element program for computational
uid dynamics.

2 Data Mapping Strategies

Both elements and nodes of an unstructured mesh are mapped onto the vector units of the CM-5 system.

We have designed a two-step procedure which performs these mappings:

1. First, the mesh is decomposed into element blocks made of adjacent elements.

2. The mesh nodes are then mapped onto the vector units using the mesh partitioning as a criterion for

chosing the placement of each node.

The objective of these mappings is to achieve as much locality between the nodes and the elements as possible

to minimize data transfer through the CM-5 data network. In order to achieve the best computational load

balance possible in the �nite element program itself, we constrain the elements and the nodes to be uniformly

distributed across the vector units, i.e., all vector units hold the same number of elements (resp. nodes) except

for the last one which gets whatever elements (resp. nodes) remain. The implementation of both mapping

strategies is done on the CM-5 system itself.

2.1 Mesh Partitioning

The recursive spectral bisection (RSB) algorithm was chosen as the basis of the data mapping strategies

described in this paper. The RSB algorithm was proposed by Pothen, Simon and Liou for reordering sparse

matrices [1]. Simon then applied it to unstructured mesh partitioning [2]. The RSB algorithm has since found

wide acceptance in the scienti�c community because of the high-quality partitionings it generates.

The RSB algorithm is based on a graph representation of the mesh topology. It is therefore insensitive to

regions of highly concentrated elements or to element distorsion. In our implementation, the graph is gener-

ated through the dual mesh connectivity, which identi�es the elements sharing a face with a given element.

* Also a�liated with the Division of Applied Sciences, Harvard University

In this representation, the mesh elements become the graph vertices and the internal faces correspond to

the graph edges. The mesh partitioning is performed using an iterative process which decomposes the whole

mesh into two partitions, each of which in turn is decomposed into two partitions, and so on. This process

ends when there are as many partitions as vector units in the CM-5 con�guration considered. Each iteration

of the process just described involves several computational steps:

1. Possible disconnections in a partition are identi�ed using a frontal algorithm.

2. The smallest non-zero eigenvalue and its associated eigenvector (also called the Fiedler vector) of the

Laplacian matrix L, de�ned as

L

ij

=

�

�1; if elements i and j share a face;

0; otherwise.

(1)

L

ii

= �

n

el

X

j=1

j 6=i

L

ij

(2)

are computed using the Lanczos algorithm.Each Lanczos step includes three dot-product operations, one

matrix-vector product and an eigenanalysis of the tridiagonal matrix generated by the Lanczos process.

3. After convergence of the Lanczos algorithm, the components of the Fiedler vector are ranked, and this

ranking is used to reorder the dual mesh connectivity.

4. The graph is then split in two, and this process is repeated on each subgraph.

The RSB algorithm can be computationally intensive since a series of eigenvalue problems have to be

solved. In order to keep the partitioning time as small as possible, we have implemented the RSB algorithm

on the CM-5 system in a data-parallel fashion. In this implementation, all elements of the mesh are treated

in parallel. It implies a two-level parallelization: one level on the partitions generated at a given stage of the

decomposition process and the other on the elements in each partition. Most of the resulting code is written

in the CM Fortran language [3], except the eigenanalysis of the tridiagonal matrix which is implemented in

CDPEAC (a macro-assembler) [4]. Details of the implementation can be found in [5].

2.2 Node Renumbering

Once the elements have been reordered to obtain element blocks, the mesh nodes are renumbered using the

following procedure:

1. Each element is assigned the element block number to which it belongs.

2. Each element sends the block number to the nodes it is associated with. Nodes receiving the same block

number from their neighboring elements are marked as \interior nodes" and their location code is the

block number received. The other nodes are marked as \boundary nodes" and they choose their location

code at random from the block numbers they received.

3. Nodes are ranked based on their location code with the constraint of having interior nodes ranked before

boundary nodes for the same location code.

4. Nodes are assigned to the vector units based on their location code in the order obtained at Step 3. Since

all nodes may not be assigned during this phase because of the load-balance constraint described at the

beginning of Section 2, this strategy forces interior nodes to have a greater probability than boundary

nodes of being assigned to the same vector unit as the elements they are associated with.

5. Nodes which have not been assigned during Step 4 are distributed among the vector units which still

have room left.

This procedure can be easily implemented in a data-parallel fashion, parallelization occuring over the elements

for Steps 1 and 2 and over the nodes for Steps 3 through 5.

2.3 Partitioning Example

Both examples presented in this paper have been run in 64-bit arithmetic on a 32-processing node CM-5E

system. This system is a prototype used internally at Thinking Machines and has the following hardware

characteristics:

1. A processing node running at 39 MHz and composed of a SuperSPARC microprocessor controlling four

vector units and 32 Mbytes of memory (which can be upgraded to 128 Mbytes), yielding a peak 64-bit

oating-point performance of 156 M
ops/s/pn. Systems shipped to customers will have processing nodes

running at 40 MHz.

2. A new network interface chip which can inject larger packets into the data network at a faster rate. The

operating system running on the CM-5E at the time we performed the numerical tests (CMost 7.3 beta

2.9) had the large packet mode disabled.

3. A SPARCstation 2 control processor. Systems shipped to customer sites will have SPARCstation 10

control processors.

The software and hardware restrictions of this CM-5E prototype should have little impact on the performance

of the problems presented in this paper.

A tetrahedral mesh of an assembly part composed of 19;793 nodes and 81;649 elements, courtesy of Mark

Shephard (Rensselaer Polytechnic Institute), was used as a partitioning illustration (see Fig.1). The graph

representation of this mesh has 152;878 edges. The decomposition into 32 subdomains depicted in Fig.2

shows the quality of partitioning. Note that 128 subdomains are actually needed on a 32-node CM-5E, but

the resulting picture is too confusing to be shown here. The total cost of partitioning the mesh into 128

subdomains is 24:6 seconds, making the RSB algorithm a competitive strategy for mesh decomposition. At

this level of partitioning, there are 10;648 cuts in the graph, which represents 7:0% of the total number of

graph edges. Detailed timings based on CM elapsed times (which correspond to the elapsed execution times

while the program is not swapped out by the operating system on the processing nodes) are presented in

Tables 1 and 2. Figure 3 presents the cost of the RSB algorithm as the bisection procedure progresses. The

O(log

2

(no. of partitions)) cost seen in this �gure is due to the two-level parallelization of the RSB algorithm.

The time spent renumbering the nodes using the algorithm presented in Section 2.2 is 0.2 seconds.

Table 1. Assembly part. CM elapsed times for di�erent parts of the RSB algorithm for a

partitioning into 128 subdomains on a 32-node CM-5E system.

Timings Percentage

ident. of connected blocks 5.7 s 23.2%

comp. of Fiedler vector 16.8 s 68.3%

data ranking/reordering 1.3 s 5.3%

miscellaneous 0.8 s 3.2%

Total 24.6 s 100.0%

Table 2. Assembly part. Cost analysis for the computation of the Fiedler vector.

Timings Percentage

matrix-vector products 8.2 s 48.8%

dot-products 3.7 s 22.0%

eigenanalyses 1.5 s 8.9%

saxpys and miscellaneous 3.4 s 20.3%

Total 16.8 s 100.0%

3 Fluid Dynamics Application

We have implemented in CM Fortran a �nite element program for solving the compressible Euler and Navier-

Stokes equations [6,7]. It is based on the Galerkin/least-squares formulation proposed by Hughes et al. [8] and

Johnson et al. [9]. In the case of steady
ow computations, an implicit time-marching scheme is used to reach

steady-state. A preconditioned matrix-free GMRES algorithm is employed to solve the nonsymmetric systems

of equations arising from the �nite element discretization. The gather and scatter operations are performed

using special communication procedures available from the Connection Machine Scienti�c Software Library

[10].

To illustrate the performance improvements achieved by proper data mappings, we have computed the

inviscid
ow around a Falcon Jet
ying at Mach 0.85 and at an angle of attack of 1 degree on a 32-node

CM-5E system. The mesh, courtesy of Dassault Aviation, has 19;417 nodes and 109;914 tetrahedra (see Fig.4

for a view of the surface mesh on the airplane). A one-point integration rule was used on the elements. A

freestream uniform
ow was chosen as initial condition, and the solver was marched 50 time steps at a CFL

number of 10, which was su�cient to reach steady-state. Two computations were performed successively

using the following mapping strategies (referred to as Strategy 1 and Strategy 2, respectively):

1. Random mapping of elements and nodes to the processing nodes.

2. Mapping of elements and nodes according to the procedures described in Section 2.

Timings for the data mapping and the �nite element solver (which is a series of gather/compute/scatter

cycles) are given in Table 3. This example shows that proper mapping can improve overall speed of the pro-

gram by more than a factor of two, even if the partitioning time is included in the total time. In the case of

Strategy 2, the computation part of the solver achieves 39:5 M
ops/s/pn. The gather and scatter operations

yield bandwidths of 24:7 Mbytes/s/pn and 20:0 MBytes/s/pn, respectively. The overall performance of the

�nite element solver is 1:0 G
ops/s, which is 20% of the peak hardware performance. Substantial computa-

tional e�ciency can therefore be achieved on distributed-memory computers for �nite element applications

as long as a careful mapping of the data structures is performed.

Table 3. Falcon Jet. CM elapsed times for di�erent parts of the �nite element program

run on a 32-node CM-5E system.

Strategy 1 Strategy 2

data mapping | 35 s

gather operations 202 s 17 s

computations 180 s 177 s

scatter operations 234 s 26 s

Total time 10 min 16 s 4 min 15 s

References

1. Pothen, A., Simon, H.D., and Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J.

Matrix Anal. Appl. 11 (1990) 430{452

2. Simon, H.D.: Partitioning of unstructured problems for parallel processing. Comput. Systems Engrg. 2 (1991)

135{148

3. CM Fortran Language Reference Manual, Version 2.1 (Thinking Machines Corporation, 1994)

4. VU Programmer's Handbook, CMost Version 7.2 (Thinking Machines Corporation, 1993)

5. Johan, Z., Mathur, K.K., Johnsson, S.L., and Hughes, T.J.R.: An e�cient communication strategy for �nite

element methods on the Connection Machine CM-5 system. Comput. Methods Appl. Mech. Engrg. (in press)

6. Shakib, F., Hughes, T.J.R., and Johan, Z.: A new �nite element formulation for computational
uid dynamics: X.

The compressible Euler and Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 89 (1991) 141{219

7. Johan, Z., Hughes, T.J.R., Mathur, K.K., and Johnsson, S.L.: A data parallel �nite element method for com-

putational
uid dynamics on the Connection Machine system. Comput. Methods Appl. Mech. Engrg. 99 (1992)

113{134

8. Hughes, T.J.R., Franca, L.P., and Hulbert, G.M.: A new �nite element formulation for computational
uid

dynamics: VIII. The Galerkin/least-squares method for advective-di�usive equations. Comput. Methods Appl.

Mech. Engrg. 73 (1989) 173{189

9. Johnson, C., Szepessy, A., and Hansbo, P.: On the convergence of shock-capturing streamline di�usion �nite

element methods for hyperbolic conservation laws. Math. Comp. 54 (1990) 107{129

10. CMSSL for CM Fortran: CM-5 Edition, Version 3.1 (Thinking Machines Corporation, 1993)

Fig. 1. Assembly part. View of the surface mesh.

Fig. 2. Assembly part. Decomposition into 32 partitions.

log

2

(no. of partitions)

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7

P

a

r

t

i

t

i

o

n

i

n

g

t

i

m

e

(

s

e

c

o

n

d

s

)

Fig. 3. Assembly part. Partitioning cost as a function of

recursive bisection on a 32-node CM-5E.

Fig. 4. Falcon Jet. View of surface mesh.

