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Abstract. In this paper we present a new technique for performance modelling
and a tool supporting this approach. Performance Evaluation Process Algebra
(PEPA) [1] isan algebraic language which can beused to build model s of computer
systems which capture information about the performance of the system. The
PEPA language servestwo purposesasaformal description languagefor computer
system models. The performance-related information in the model may be used
to predict the performance of the system whereasthe behavioural information in
themodel may be expl oited when reasoning about the functional behaviour of the
system (e.g. when finding deadlocks or when exhibiting equivalences between
sub-components). In this paper we concentrate on the performance aspects of the
language.

A method of reasoningabout PEPA model sproceedsby consideringthederivation
graph obtained from the model using the underlying operational semantics of the
PEPA language. The derivation graphis systematically reduced to aform whereit
can betreated as the state transition diagram of the underlying stochastic (in fact,
Markovian) process. From this can be obtained the infinitesimal generator matrix
of the Markov process. A steady state probability distribution for the system can
then be obtained, if it exists.

We haveimplemented a prototype tool which supportsthis methodol ogy from the
initial checking of the well-formedness of the PEPA model through the creation of
the state transition diagrams to the cal cul ation of performance measures based on
the infinitesimal generator matrix. The tool is implemented in Standard ML [2]
and provides an interface to the Maple Symbolic Algebra package [3] for the
solution of matrix equations.

Introduction

Formal descriptions of computer systems are amenable to analysis by arange of formal
techniques. At the simplest level, they may be checked for conformance with the
syntax, grammar and type-correctness rules of theformal language used. M ore advanced
analysis may involve deriving properties of a system from its description: either by
deduction or by calculation. For concurrent systems modelled by an algebraic descrip-
tion, the propertieswhich may be checked include freedom from deadlock and algebraic
equivalence under observation with a simpler description which serves as a specifica-
tion of the system. When the algebraic description is enhanced with information about
the system’s expected performance—as in PEPA—till further properties can be calcu-
lated. These include steady-state probabilitiesand rewards which may be used to derive
performance measures.
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The goal of the work described here is to provide a workbench for a designer of a
computer system who isworking from an initial PEPA model. As with other languages
based on agebra and processes, e.g. CCS[4], PEPA is a parsimonious language which
provides the essential, simple toolsfor system description. The formality and succinct-
ness of the language have enabled the authors to design and build a workbench which
assists with checking and reasoning about PEPA descriptions. Use of PEPA and the
workbenchisillustrated by an example taken from the area of communi cation networks.

2 The PEPA Language

The motivation for process algebra-based techniques for the quantitative analysis of
computer systems have been presented indetail elsewhere[5, 6]. Some of the advantages
of such an approach are;

— The system isrepresented as a collection of active agents who cooperate to achieve
the behaviour of the system. This cooperator paradigm is particularly apt for
modelling many modern computer systems.

— Compositional reasoning is an integral part of the modelling language.

— The formal definition clarifies the task of providing tools for model manipulation,
simplification and analysis.

— Process a gebra has growing importance as a design methodology [7, 8] and so this
approach offers the possibility of integrating performance analysis into the system
design process.

From a performance point of view, process algebras, such as CCS, lack essential,
guantifiableinformation about time and uncertainty. Timed extensions of some process
algebras have been proposed [9, 10, 11, 12] but these make a distinction between time
progressing and computation progressing. PEPA, and TIPP, developed at Erlangen, take
an alternative approach—time is incorporated into the algebra by associating a random
variable, representing duration, with each activity". We assume arace condition between
simultaneously enabled activities. Thus, as in probabilistic process algebras, we replace
the nondeterministic branching by probabilistic branching, and the timing behaviour of
the system is captured. Thisis analogous to the association of a duration with thefiring
of atimed transition in a generalised stochastic Petri net [13].

It was important when designing the PEPA language to retain the key features of a
process al gebrawhich had motivated theapproach: compositionality, parsimony, and the
existence of aformal definition. However, it was also hecessary to incorporate features
to make the language suitable for capturing the performance-related information about
the system. This additional information can be added as an annotation to an existing
model or design.

1 Activity' isusedinstead of the usual processalgebra‘ action’ to distinguish between timed and
instantaneous behaviour respectively.



2.1 PEPA Terminology

In PEPA a system is described as an interaction of components and these components
engage, either individually or cooperatively, in activities. The components will corres-
pond to identifiable substructuresin the system, or rélesin the behaviour of the system.
They represent the active units within a system; the activities capture the actions of
those units. For example, agueue may be considered to consist of an arrival component
and a service component which interact to form the behaviour of the queue.

A component may be atomic or may itself be composed of components. Thus the
gueue in the above example may be considered to be a component. Each component
has a behaviour which is defined by the activities in which it can engage. Actions of
the queue might be accept, when a customer enters the queue, service, or loss, when a
customer isturned away because of a full buffer.

Each activity has an actiontype. We assume that each discrete action withinasystem
has a unique type and thereis a countable set, A, of al possible such types. The action
typesof a PEPA term correspond to the actions of the system being modelled. There are
situationswhen a system iscarrying out some action (or sequence of actions) theidentity
of whichisunknown or unimportant. To capture these situationsthereis a distinguished
action type, =, which can be regarded as the unknown type. Activities of thistype are
private to the component in which they occur.

Every activity in PEPA has an associated duration which is a random variable with
an exponential distribution. Since an exponential distributionisuniquely determined by
its parameter, the duration of an activity may be represented by a single real humber
parameter. This parameter is referred to as the activity rate (or simply rate) of the
activity; it may be any positive real number, or the distinguished symbol T, which
should be read as “ unspecified”.

AnM/M/1/N/N queueinwhichthearrival processis suspended when the buffer
isfull, isrepresented as follows:

def

Arrivaly = (accept, X). Arrival;

def

Arrival; = (accept, N). Arrival; 41 + (serve, T). Arrival;_; 1<i<N-1

. def .
Arrivaly = (serve, T). Arrivaly_;

def
Server = (serve, jt).Server

def .
Queuey = Arrivaly P Server
{serve}

Each activity, a, isdefined as a pair («, r) where o € A isthe action typeand r is
the activity rate. It followsthat there isa set of activities, Act C A x RT, where R is
the set of positive real numbers together with the symbol T.

When enabled, an activity « = («, ), will delay for a period determined by its
associated distribution, denoted F,(t) ( = 1 — ¢~ "*). We can think of this as the



activity setting a timer whenever it becomes enabled. The time alocated to the timer
is determined by the rate of the activity. If severa activities are enabled at the same
time each will have its own associated timer. When the first timer finishes that activity
takes place—the activity is said to complete or succeed. This means that the activity is
considered to “happen”: an external observer will witness the event of an activity of
type «. An activity may be preempted, or aborted, if another one completes first.

2.2 The Syntax and Semantics of PEPA

Components and activities are the primitives of the language PEPA; the language also
providesasmall set of combinators. As explained in the previous section the behaviour
of a component is characterised by its activities. However, this behaviour may be
influenced by the environment in which the component is placed. The combinators of
the language alow expressions, or terms, to be constructed defining the activitieswhich
components may undertake and the interactions between them.

The syntax for terms in PEPA is defined as follows:

Pi=(a,r).P|PXQ|P+Q|P/L|X|A

Prefix: (e, 7). P Prefix isthe basic mechanism by which the behaviours of components
are constructed. The component («, r). P carries out activity («, ), which has action
type « and a duration which is exponentially distributed with parameter » (mean 1/7).
Thetimetaken for the activity to compl ete will be some At, drawn from thedistribution.
The component subsequently behaves ascomponent P. When a = («, r) thecomponent
(v, 7).P may bewrittenas a.P.

It is assumed that there is always an implicit resource, some underlying resource
facilitating the activities of the component which is not modelled explicitly. Thus the
time elapsed before activity completion represents use of the resource by the component
enabling the activity. For example, thisresource might be processor time or CPU cycles
within a processor, depending on the system and the level at which the modelling takes
place.

Choice: P + () The component P + ) represents a system which may behave either
as Poras@. P+ @ enables dl the current activitiesof P and al the current activities
of @). Whichever enabled activity completes it must clearly belong to either P or Q.
In this way the first activity to complete distinguishes one of the components. The
other component of the choice is discarded. The continuous nature of the probability
distributions ensures that the probability of P and ¢) both completing an activity at the
same timeiszero. The system will subsequently behave as P’ or ' respectively, where
P’ isthe component which results from P completing the activity, and similarly Q”.
Thereisan underlyingassumption that P and () are competing for the same implicit
resource. Thus the choice combinator represents competition between components.

Cooperation: P X Q The cooperation combinator is in fact an indexed family of
combinators, one for each possible set I of action types. The set L, the coopera-
tion set, defines the action types on which the components P and ) must synchronise
or cooperate, i.e. it determines the interaction between the components.



All activities of P and ¢ which have types which do not occur in L will proceed
unaffected. These aretermedindividual activities. In contrast shared activities, activities
whosetypedoesoccurin L, will only beenabledin P XIQ whenthey areenabledinboth
P and . Thus one component may become blocked, waiting for the other component
to be ready to participate. These activities represent situationsin the system when the
components need to work together to achieve an action. In general both components
will need to complete some work, corresponding to their own representation of the
action. Thus a new shared activity is formed by the cooperation P> 1 @), replacing the
individua activitiesof P and (). This activity will have the same action type as the two
contributing activities and arate reflecting the rate of the slower participant.

If an activity has an unspecified rate in a component, the component is passive with
respect to that action type. This means that although the cooperation of the component
may be required to achieve an activity of that type the component does not contribute
to the work involved. An example might be the rdle of a channel in a message passing
system: the cooperation of the channel is essentia if a transfer is to take place but
the transfer involves no work on the part of the channel. This may be regarded as one
component coopting another.

In contrast to choice, it is assumed that P and 7 each have their own implicit
resource. Activitieswith actiontypesin theset /. are assumed to requirethe simultaneous
involvement of both components, both resources. The unknown action type, =, may not
appear in any cooperation set.

Hiding: P/L The component behaves as P except that any activities of types within
the set . are hidden, meaning that their typeis not witnessed upon completion. Instead
they appear as the unknown type = and can be regarded as an internal delay by the
component.

Hiding does not have any effect upon the activities a component may engage in
individually, but a hidden activity is witnessed only as a delay of the unknown type,
7. The duration of an activity is unaffected if it is hidden. However, a hidden activity
cannot be carried out in cooperation with any other component. In effect the action
type of a hidden activity is nolonger externally accessible, to an observer or to another
component.

Variable: X If Eisacomponent expressionwhichcontainsavariable X, then {P/ X }
denotes the component formed when every occurrence of X in £ is replaced by the
component P. More generally, an indexed set of variables, X, may be replaced by an
indexed set of components P, asin E{P/X}.

Constant: A £ P We assume that there is a countable set of constants. Constants are
components whose meaning is given by a defining equation suchas A £ P which
gives the constant A the behaviour of the component P. Thisis how we assign names
to components (behaviours).

The semantics of the language, presented in structured operational semantics style,
are shown in Figure 1. The transitional semantics over PEPA is then given by the |east
multi-relation— C PEPA x Act x PF P A satisfying the rules.
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Fig. 1. Operational Semantics of PEPA

When the set L is empty, B has the effect of parallel composition, allowing
components to proceed concurrently without any interaction between them. We use the
more concise notation P || @ (the parallel combinator) to represent P Dﬁ Q.

Execution Strategies and the Exponential Distribution The race condition governs
the dynamic behaviour of a model whenever more than one activity is enabled. This
means that we may think of all the activities attempting to proceed but only the ‘ fastest’
succeeding. Of course, which activity is ‘fastest’ on successive occasions will vary
due to the nature of the random variables determining the durations of activities. The
probability that a particular activity completes will be given by the ratio of the activity
rate of that activity to the sum of the activity rates of all the enabled activities.

We assume that the introduction of cooperation between two components implies
that in general they are independent and running on separate resources. Thus we can
think of their individual activities as interleaving. On the other hand, when there is a
choice between components we assume that they are competing for the same under-
lying resource and that in fact only one of them gains the use of that resource. Thus
we have two different preemption scenarios: preemptive-resume for cooperation and



preemptive-restart with resampling for choice. However, we take advantage of the
memoryless property of the exponential distribution which makes the two equivalent
and always assume a preemptive-restart policy (with resampling). This alows us to
formulate Expansion Laws of the form shown below: this would not be possible if
another distributionwere associated with activity durationsasin some versions of TIPP
[14].

ExpansionLaw Let P = P, DI P,. Then

P=3 {(0,r) (P2 Py) s Py 0 Pl g 1)

+ 3 (e, ) (P Py P Y Pl g L)
+ 3 {(a, (Pl Py s P oy S Pl e 1)

Recent work on TIPP[5] has concentrated on the subset of the languagein which all
activity durations are exponentialy distributed. The mgjor differences between PEPA
and this subset are in the definition of the cooperation or parallel composition, and
more importantly, the choice of a multi-relation, rather than a relation, to capture the
operational semantics of the language.

2.3 Generating and Solving the Underlying Markov Process

For any PEPA model we can define a multigraph—the derivation graph—based on the
operational semantics. Thisisagraph in which language terms form the nodes and the
arcs represent the possible transitions (activities) between them; it isa multigraph since
we distinguish between different instances of the same activity. This derivation graph
provides a useful way to reason about the behaviour of amodel. Moreover itis used to
generate the stochastic process underlying any PEPA model. Each node of thederivation
graphistakento be a statein the stochastic process and the transition rate between states
is the sum of the rates shown on arcs connecting the nodes in the multigraph. Thisis
anal ogousto the use of the reachability graph in stochastic extensions of Petri nets such
as GSPN [13]. For the M /M /1/N/N queue considered earlier the derivation graph is
shownin Figure 2.

(accept, X) (accept, A) (accept, A) (accept, X)
Queue, Queue, Queue _4 Queue 5
(serve, p) (serve, p) (serve, p) (serve, p)

Fig. 2. The derivation graph for an M /M /1/N/N queue



Theorem 2.1 In a PEPA model if we define the stochastic process X (¢), such that
X (t) = C; indicatesthat the system behaves as component C; at timet, then X (¢) isa
Markov process.

We can construct transition rates ¢(C;, C;) between components of the system as
follows:

9(Ci,C) = Y. ra where Act(C; | C;) = {{a € Act(Cy) | C; = C; |}
a€Act(C;|Cy)

Typically this multiset will only contain one element. The ¢(C;, C;), or g¢;;, are the
off-diagonal elements of the infinitesimal generator matrix of the Markov process, Q.
Diagonal elements are formed as the negative sum of the non-diagonal elements of each
row, i.e Qis = — Z]’;ﬁi qij-

The conditions which must be satisfied in order to guarantee the existence of an
equilibrium distributionfor aMarkov process, and for thisto be the same asthe limiting
distribution, are well-known—a stationary or equilibrium probability distribution, II,
exists for every time homogeneous irreducible Markov process whose states are all
positive-recurrent.

All PEPA models are time-homogeneous since all activities are time-homogeneous:
therate and typeof activitiesenabled by acomponent are independent of time. The other
conditions, irreducibility and positive-recurrent states, are easily expressed in terms of
the derivation graph of the PEPA model. We only consider PEPA models with a finite
number of states so if the model isirreducible then all states must be positive-recurrent
i.e. the derivation graph is strongly connected. In terms of the PEPA model this means
that al behaviours of the system must be recurrent; in particular, for every choice,
whichever path is chosen it must eventually return to the point where the choice can be
made again, possibly with a different outcome.

It isinteresting to note that deadlock and livelock in the process algebra model will
correspond to an absorbing state, or set of states respectively, in the underlying Markov
process. However, in this paper, we restrict ourselves to model s without such features;
for more details see [1].

Solving the Markov Process For finite state PEPA models whose derivation graph is
strongly connected, (ergodic Markov process) the equilibrium distribution of the model,
IT, isfound by solving the matrix equation

Q=0 (2.1)

subject to the normalisation condition
> I(C) =1 (2.2)

The computer algebra package Maple’ [3] is used to find IT. The equations 2.1 and 2.2
are combined by replacing a column of @ by a column of 1s and placing a 1 in the
corresponding row of 0. Moreover, since Maple deals with row vectors instead of
column vectors, thismodified @ istransposed.

2 Mapleis aregistered trademark of Waterloo Maple Software.



Reward Structures and Derivation of Performance Measures Performance meas-
uresare derived by defining areward structure over amodel inasimilar way tothe use of
reward structuresin [15]. Reward structures have generally been explicitly treated only
inthe context of performability modelling, where reliability and performance aspects of

a system are considered together. However, such structures may also be used to define
performance measures.

As the emphasis in a PEPA model is on the behaviour of the system in terms of
activities, rather than states, we associate rewards with certain activities within the
system. The reward associated with a derivative (and underlying state), is then the sum
of the rewards attached to activitiesenabled by thederivative. The performance measure
isthen defined as the total reward based on the steady state probability distribution, i.e.
if p; isthereward associated with derivative C;, and II( - ) isthe steady state probability
distribution of the underlying Markov process, then the total reward R is

R= Zpi H(CZ)

In thisway, as in Stochastic Reward Networks [15], the rewards can be defined at
thelevel of the PEPA model, rather than at the level of the underlying Markov process.

3 The PEPA Workbench

The design philosophy behind the PEPA workbench was to provide a set of smple
tools to allow a skilled user of the PEPA language to delegate to machine assistance
some of the routine tasks in checking PEPA descriptions and performing calculations
of transition graphs and rewards. The Standard ML language was chosen as the imple-
mentation language for the workbench because it had previously been successfully used
for the implementation of the Concurrency Workbench (for CCS and TCCS) [16] and
choosing the same language may alow us to re-use some of the Concurrency Work-
bench code. Standard ML has aso been used for theorem provers and other software
tools locally since it provides high-level functionality via higher-order polymorphic
functions. However, these functional language features are smoothly integrated with
imperative assignment which allows the convenient construction of efficient programs.
Standard ML is a strongly-typed, secure programming language and its use gives us
confidence in the correctness of the workbench.

3.1 The Workbench Implementation

The workbench takes the form of a Standard ML image with the functionality imple-
mented as Standard ML functions which have been pre-compiled. This provides a
convenient and secure mechanism for exporting the PEPA workbench while also
conveniently providingapowerful command lineinterfacein the Standard ML language
itself. A screen dump showing the workbench being accessed via the Lemacs editor is
giveninFigure 3. Some simple Emacs Lisp routinesprovide pull-downmenus with sub-
menus for issuing workbench commands. The benefits of the design of Standard ML
are inherited by this process. For example, PEPA descriptions can easily be stored as



BIZE e Q.pe ]
File Edit Buffers Pepa Help
#Node30 = (in, lambda).Node31 + (walk_E3, infty) Node30;

#Node31 = (walk_F3, infty).Node32;
#Node32 = (serve3, mu3) Node30 + (walk_E3, infty) Node32;

#S1 = (walk_E1, omega).52 + (walk_F1, omega).(servel, infty) S2;
#32 = (walk_E2, omega).83 + (walk_F2, omega).(serve2, infty).S83;

#53 = (walk_E3, omega).5S1 + (walk_F3, omega).(serve3, infty) S1; Commands »
#MSMQ = (Nodel0 <> Node20 < Node30) | Compile ’
<walk_E1, walk_E2, walk_E3, Transition graph b
walk_F1, walk_F2, walk_F3, Rewards »
servel, serve2, served> Pepa Help »
(81 <« S1);
MSMQ

—**_Emacs: MSMQ pepa Tue Oct 52:22pm 0.00 (Pepa)-—Bot—————

PEPA: Version 0.3

Two major functions are provided: these are ‘compile’ and ‘printresults’.
The ‘compile’ function expects a filename and adds the extension ‘ pepa’.
The ‘printresults’ function produces a ‘.table’ file and a ‘ trans’ file.

> () :unit.
[Closing fhome/stg/ml/pepa/PEPA sml]

—**_Emacs: ¥ * Tue Oct 52:22pm 0.00 (Sml-Shell: run)-—Bot

Fig. 3. The PEPA workbench

Standard ML values in the Standard ML environment and moribund values will then
be taken away by the built-in garbage collector of the system, freeing the user of the
workbench from the problem of managing and conserving space while generating large
graphs. As afurther example, it is easy to interrupt a PEPA workbench session at any
timeand still beabletoreturntoitlater simply by exportingthe Standard ML image. No
re-compilation of the PEPA description will be necessary upon returning to the session.

3.2 The PEPA Parser

PEPA is a mathematical notation and in designing a parser for the notation it was
necessary to decide whether to use an extended character set for input or to decide to
devise areplacement concrete syntax for the mathematical symbols. The second option
was chosen. Distinct precedences were assigned to the connectives: the hiding operator
was given highest precedence with prefix next, followed by co-operation. The choice
operator was given lowest precedence. Parentheses were provided to allow the user to
enforce the aternative parsing. The language does not have alocal block construct so
the processing of namesis simplified. Separate name spaces are maintained for activities
and components. Rates may either be entered as symbolic values or as humeric literals.
Notationally, even with the above additions, PEPA is certainly not alarge language.
For this reason, we decided not to use the Standard ML versions of the well-known



Lex and Yacc tools to generate a lexical analyser and a parser. This decision has a
favourable consequence since using these tools would mean that they would be added

to the exported image of the workbench, making it larger than really necessary. Instead,

aBurge-style parser [17] has been produced for the PEPA language. Thisisa compact,

elegant functional program which uses infix function symbols to encode the operators
which combine productionsin aformal description notation such as BNF. This provides
asimplecorrespondence with thegrammar for thelanguage which makesthe parser both
easy to construct and easy to modify. Coding a Burge-style parser elegantly requiresthe
language to provide polymorphic functions as first-class objects, which Standard ML

does. In general, these parsers are not as efficient as Yacc-generated parsers but the
efficiency of the PEPA parser is perfectly acceptable.

3.3 Computing the Transition Graph

The possibletransitionsof a PEPA component are obtained by following the transitions
givenintheoperational semantic rulesin Figure 1. The built-inexhaustiveness checking
of the pattern-matching process deployed in thisfunction checks that all program forms
are handled by the function. Initially, the semantic rules were encoded in a naive
functional prototype implementation. This had the virtue of being obviously faithful
to the language definition as given by the operational semantics but, as expected,
this implementation was intolerably inefficient. Even when a sophisticated optimizing
compiler was used to compile the workbench, small PEPA descriptions executed on a
SparcStation 10/52 with 160Mb of memory had a running time of several hours. For
some mid-sized PEPA descriptions, this prototypewoul d exhaust the machine’ smemory
and fail without delivering the transition graph.

After some study and analysis, a minor modification was made to produce the
next version of the workbench. This used the imperative features of Standard ML to
avoid some redundant re-computation which was being performed by the functional
prototype. This modification was modest enough that we may be sure it did not alter the
program’s output from the results which would have been obtained from the prototype,
thus maintaining our confidence in its correctness. However, now the workbench will
calculate the transition graphs of mid-sized PEPA descriptionsin afew seconds when
running on a more modest SparcStation EL C with only 16Mb of memory!

This decrease in run time makes possible the interactive form of experimentation
which we hoped that the workbench would provide, making it a considerably more
useful tool. In addition, a decrease in memory utilization was achieved, facilitating
the analysis of models greater than the largest which could have been handled by the
functional prototype of the workbench.

3.4 Interfacing with Maple

The matrix manipulation routineswhich are required to solve the generator matrix either
symbolically or numerically are provided by the Maple computer algebrapackage. It was
judged to be simpler to use the existing Mapl e routines rather than re-implement these
in Standard ML. Thus we have implemented the functionality to allow a workbench
user to call Maple from the workbench. This enables a workbench user to pass PEPA



values between Standard ML and Maple, manipulating them using whichever systemis
more useful for the processing task at hand.

Using the derivation graph the workbench specifies entries for the generator matrix
in Maple syntax. Thus, results from the workbench can be written as Maple files and
loaded into Maple. These files contain the results of the workbench analysis of the PEPA
model and it is important that the PEPA user should be able to read these filesin order
to be able to check that the PEPA model has the behaviour which was expected. For
this reason, the Maple input file is annotated with PEPA transition notation explaining
the significance of the transition in the user’s terms. These are written using Maple's
comment notation and are therefore ignored by Maple.

4 Investigating a Simple MSMQ System

We illustrate the use of PEPA as a modelling paradigm, and the workbench, in an
example taken from the study of communication systems. Polling systems have been
used extensively over the last twenty years to investigate many computer and commu-
nication systems [18]. In these systems a single server circulates amongst a number of
gueues providing service according to a predetermined discipline. Extracting perform-
ance measures for these systems is non-trivial since the congestion at any one queueis
dependent on the congestion at the other queues in the system. Recently these systems
have been extended by the introduction of one or more additional servers to form
multi-server multi-queue (MSMQ) systems [19]. MSMQ systems have been used to
model applicationsinwhich multipleresources are shared among several users, possibly
with differing requirements. In particular these models have been applied to local area
network architectures, with ring topologies and scheduled access, in which more than
onenodemay transmit simultaneously. For exampl e, slotted ringsand ringswith multiple
tokens are modelled as MSMQ systems by Yang et al. in [20].

Exact solutions for MSMQ systems have only recently been provided by Ajmone
Marsan et al., [19]. In this paper we extend the class of asymmetric models considered
by those authors. In [19] they consider a system of N nodes in which one node has
capacity /i and arrival rate K’ A while al other nodes have capacity 1 and arrival rate
A. This represents a network in which one node has high traffic and the other nodes
have light traffic, such as a LAN connecting several diskless workstations and one file
server. It was shown that the presence of the heavily loaded node did not greatly affect
the mean waiting time of customers at lightly loaded nodes. Here we consider a system
of N nodes each with capacity 1 and arrival rate A but with customers at one node
placing alarger service requirement on the server. We investigate the effect of thison
the average waiting time of customers at the other nodes.

4.1 Model

We consider an MSMQ system in which there are four nodes, and two servers. Service
is limited, meaning that each server serves at most one customer at each visit to each
node. This corresponds to the release-by-source access mechanism for slotted rings.
Moreover, only one server may service anode at any giventime. Bufferingisrestricted:



a customer occupies a place in the buffer until its service is complete, and the arrival
process is suspended whenever the buffer is full. We assume that the arrival process at
each node is Poisson with parameter A, and that normal service, heavy service and walk
timesin the system are exponentialy distributed with rates y, mu and w respectively.

The PEPA model of thissystem is shown in Figure 4. The components of the model
of the system are the servers, and the nodes. Since the structure of the system issimple
we model each node as a single entity.

Nodejo “ (in, X).Nodej1 + (walk_E;, T).Nodejo fori1<j <N
Nodejs o (walk_Fj,rn).Nodejo
Nodejo e (servej, uj).Nodejo + (walk_E;j, T).Nodejz

ity =1
Where“ﬂ—{mu ifl<j<N

Sy e (walk_Fj,w).(servey, T).S5g1 + (walk_E;, w).S;g1
where 1 =1whenj =N

MSMQ g (N0d610 || Nodeso || Nodeso || N0d640) ] (51 || 51) for 1 S] S 4
{walk_F:,
walk_Eljljseg'uej}

Fig. 4. PEPA model of an asymmetric MSMQ system with restricted buffering

S; denotes a server ready to approach the jth node in the system. There are two
possibilities: either it walks to the node and finds it empty or occupied, or it walks to
the node and finds a customer requiring service and no other server currently present.
These two possibilities are represented by the two activities walk_£; and walk_F}
respectively. After the former activity the server isready to approach the next node, but
after the latter it must remain at N ode; until the service is complete. The rate at which
service occurs is determined by the node. All the nodes appear alike to the server but
we must distinguish between them in order to maintain the cyclic scheduling. Similarly,
each of the servers appear alike to the nodes. The two servers do not directly interact
with each other so they may be represented as S; ||S; or S; || Sk.

Eachnode, NV ode; hasthreedistinguishabl e states depending onwhether the buffer is
empty or full, and whether afull buffer is occupied by a server. These are represented by
the three derivatives of the node component, Node;o, Node;; and Node;,. Anarrival
may occur only when the node isempty and thisisrepresented by an in activity withrate
A. The node will enable awalk to the node without engaging the server, walk_E, when
itisempty (N ode;o) or whenitisaready occupied by aserver (Vode;»). It will enable
awalk and engage the server, walk_F', whenever the buffer isfull but thereisno server
currently present (Vode;1). In each case the rate of the walk activity is determined by
the server. Although the nodes are not passive with respect to the walk_F' action type,
we assume that the corresponding activity rate rx is greater than w. When the buffer



of the node is full and a server is present a serve activity will be enabled with arate
determined by the node. This activity must be completed before arrivals are resumed at
the node.

The system has four nodes, so that when the server leaves Node, it walks on to
Node;. The nodes are independent, but must cooperate with a server to complete a
walk_E, walk_F or serve activity.

4.2 Solution

The values which were assigned to the parameters are shown in Table 1. The effect
of varying the service rate of customers at N ode; was investigated with respect to the
mean customer waiting time at the other nodes. The model has 560 states and 2064
transitions.

in |serve; (j=2,3,4)|serve; (j=1)| wakE walk_F
A 1t mi w w
| 01 | 1 [1<1/m<5] 10 [ 10 |

Table 1. Parameter values assigned to the PEPA MSMQ model

For each node we calculate the mean customer waiting time, W;, by applying
Little's Law to the node. The mean number of customers present at the node, V;, is
found by noting that there is exactly one customer present whenever the activity in is
not enabled. Thusif we associate areward of 1 with the activity in we can calculate the
reward R;, . This has the effect of associating a reward of 1 with all states in which
Node; isunoccupied. Then

Nj =1— Rin,.

The throughput &t the node, X, is found as the throughput of the activity serve;,
calculated by associating a reward of p; with the activity. Little's Law calculates the
mean time spent in the node by a customer so the mean customer waiting time, W is:
N; 1
W, =24 _ = 4.3
TUX (43)
The mean customer waiting time at each of the nodes, as the service demand at N ode;
increases, is shown in the graph shown in Figure 5. The expected waiting time for
customers at Node; increases only dlightly as the service demand at that node is
increases. However at the other nodes the expected customer waiting time grows as
the service demand at the Node; increases. It is interesting to note that this rate of
growth is dlightly slower at the node immediately downstream from the distinguished
node (N odes) asitis ableto take advantage of the second server overtaking the server
occupied at N ode;.
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Fig. 5. A plot of mean customer waiting times

Notethat using thisapproach asymmetric systems are handled as easily assymmetric
ones. As with GSPNs the major problem of the approach is state space explosion.
However, unlike GSPNs, the formal nature of the language makes it easy to detect
symmetries within the system and to take advantage of these to simplify the model. A
full description of these simplification techniques is beyond the scope of this paper but
details can be found in [6].

5 Future Extensions

Althoughitwould be possibleto extend the PEPA language toinclude more combinators,
we are not tempted to do this. The economy of PEPA makes reasoning about PEPA
descriptions easier and made it straightforward for us to implement the workbench.

Some features could be added to the input language of the workbench to make the
concrete syntax version of PEPA model sshorter. Thesewouldincludeprovidingan array
mechanism to allow the convenient description of families of related components. This
feature is aready present in the PEPA mathematical notation in the use of subscripting
to denote component families.

More interesting planned extensions to the workbench include the addition of
increased support for the experimentation process, allowing the workbench to take
advantage of Maple's ability to solve global balance equations symbolically. In part
this will rely on implementing an eguivalence checker for PEPA components. This
algebraic equivalence (known as bisimulation) will enable the user of the workbench
to solve more complex models by replacing complex components with simpler ones



which are algebraically equivalent. Finaly, weintend toinvestigatethe use of aternative
algorithms for the balance equations to replace the Gaussian elimination with partial
pivoting currently used.
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