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Abstract
When implementing parallel programs for parallel computer systems the performance scalability
of these programs should be tested and analyzed on different computer configurations and
problem sizes. Since a complete scalability analysis is too time consuming and is limited to
only existing systems, extensions of modeling approaches can be considered for analyzing the
behavior of parallel programs under different problem and system scenarios.

In this paper, a method for automatic scalability analysis using modeling is presented. Initially,
we identify the important problems that arise when attempting to apply modeling techniques
to scalability analysis. Based on this study, we define the Parallelization Description Language
(PDL) that is used to describe parallel execution attributes of a generic program workload.
Based on a parallelization description, stochastic models like graph models or Petri net models
can be automatically generated from a generic model to analyze performance for scaled parallel
systems as well as scaled input data.

The complexity of the graph models produced depends significantly on the type of parallel
computation described. We present several computation classes where tractable graph models
can be generated and then compare the results of these automatically scaled models with their
exact solutions using the PEPP modeling tool.

1 Introduction

Implementing parallel programs for scalable parallel systems is difficult since the program’s
behavior could vary for different problem sizes and different system configurations. In order to
implement portable and efficient programs which will also have good performance scalability,
parallelization choices must be tested for many systems and problem testcases. Such empirical
analysis is time consuming and is limited to existing parallel computer systems.

Modeling parallel programs with discrete event models like stochastic graph models [15] or
stochastic Petri nets [1] is a well–known and proven method to analyze a program’s dynamic
behavior. It can be used to predict the program’s execution time [16], and, by changing model
parameters, help to understand the program’s general performance behavior, to investigate
reasons for performance bottlenecks, or to identify program errors.
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When using modeling for scalability analysis, we desire to compute speedup values from the
predicted runtimes of model instances for different numbers of processors or problem sizes. As
done with performance monitoring, we also want to use modeling to analyze different parts of
the program in order to obtain a detailed scalability profile [2, 11]. A significant advantage of
modeling vs. monitoring is that model–based analysis is not restricted to existing systems and
does not, necessarily, require access to existing systems for experimentation. Thus, we hope to
be able, using modeling, to evaluate whether it is worth scaling a parallel machine and what the
best scale of the system would be.

A systematic scalability analysis based on modeling techniques requires the creation of models
for different configuration and topologies of the parallel system as well as for different problem
sizes. However, model creation is a difficult problem – issues such as problem mapping and
processor scheduling can quickly lead to large model complexity. One approach for automatic
analysis might be to develop a model generator which automatically creates multiple “scaled”
models by extending a basic “generic” model of the program to be analyzed. Adopting this idea,
we have developed the Parallelization Description Language (PDL) for describing the structure
of parallel programs, the parallelization scheme for each parallel program part, and various
aspects of a program’s runtime behavior.

Although this “generator” approach could be undertaken with different modeling techniques, we
first target stochastic graph modeling for scalability analysis and automatic model generation.
In several respects, scalability analysis using stochastic graph models is the most challenging
one because of the close association between model complexity and solution tractability and
accuracy. The key issue is to find model generation methods which produce approximately
accurate models of scaled performance behavior but that do not exceed the solution capabilities of
stochastic modeling tools. To evaluate the efficacy of our techniques, we have integrated methods
for model generation and scalability analysis into our tool PEPP (Performance Evaluation
of Parallel Programs) [4]. Based on the parallelization description language, PDL, a model
generator for other model targets (like stochastic Petri net models) can be implemented in a
similar manner.

The remainder of the paper is organized as follows. In section 2, the concept of model–based
scalability analysis is introduced. The automatic creation of scalability models is addressed in
section 3. Here, different parallel computation classes are described, and generic and scaled
models of those classes are discussed. Our parallelization description language is presented in
section 4. Finally, in section 5 it is shown how scalability analysis with stochastic graph models
using our modeling tool PEPP can be carried out.

2 The Methodology

Modeling programs to be executed on parallel or distributed systems is too complicated a task
to develop a model from scratch. For this reason Herzog proposed a “three step methodology”
[9] to reduce modeling complexity. Instead of creating a single, monolithic model for each
combination of workload, machine configuration, and load distribution, a workload model is
developed independent of its implementation concerns. The machine model is also developed
separately. The system model is then obtained by mapping the workload model onto the machine
model. The combined model reflects the dynamic, mapped program behavior and shows how
system resources are used (Figure 1).
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Figure 1: Concept for Automatic Scalability Analysis

Our approach for scalability analysis uses this methodology as a basis, but extends it by another
necessary step: a system model is enumerated to model various degrees of parallelism varying
from ��� 1 to ����� , where � is the maximum number of processors considered for scalability
analysis. Since the number of processors of the parallel or distributed machine is not fixed in
scalability analysis, the number of processors should not — in contrast to Herzog’s approach —
be set in the machine model. The mapping of the workload model onto the machine model must
be realized for each number of processors separately by creating (ideally, automatically) scaled
models. In our approach, the machine model only describes synchronization mechanisms and
performance distributions for each important machine component.

Unfortunately, techniques that automatically generate scaled models must address several diffi-
cult issues. Parallelization schemes must be well understood in order for the automatic mapping
of tasks to processors to occur. This requires some representational form to be defined that
identifies parallelization characteristics for different classes of computations. The difficulty,
however, is that some parallelization schemes, although simple, can significantly impact scaled
graph model complexity — resulting in solution intractability — if exact execution behavior
is modeled. Although modeling techniques have been developed that are “largeness tolerant”
[17] (i.e., can deal to some extent with graph complexity), the process of creating a correct
and accurate graph model is non–trivial. In order to overcome these model generation and
evaluation problems, we should instead develop approximate models which can capture the
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correct behavior of the program, but that do not sacrifice analysis accuracy. Approximate model
generation, however, is not easy due to problems such as task dependencies, scheduling, and
synchronization. Furthermore, the generation of task density functions for approximate scaled
models presupposes intimate knowledge of performance interactions between parallel tasks.
Techniques must be developed for both graph structure approximations and execution time
distribution approximations, keeping in mind, of course, that naive approximations can lead to
invalid analysis results.

Finally, it is our aim to implement not only scalable, but also portable parallel programs.
Therefore, our work should also address the use of different machine models in scalability
study. By mapping the workload model onto � different machine models we obtain at least �
different system models, each generating a scaled model set. Using this methodology, model–
based scalability can be used to compare the scalability performance of different machines.

3 Scalability Models for Parallel Programs

Using stochastic graph models, the execution order of program activities, their runtime distribu-
tion, and branching probabilities can be represented. Besides modeling algorithmic properties,
graph models can also be used to model the mapping onto a parallel machine, which is a
prerequisite for scalability analysis. A parallel program is modeled by a graph

�
�������	�
�	�
�

which consists of a set of nodes � representing program tasks and a set of directed edges (arcs)
��������� modeling the dependences between the tasks. To each program task ��� a random
variable ������� is assigned which describes the runtime behavior of ��� ( ������� � 1 �! " " "�	� , are
assumed to be independent random variables).

Our goal with automatic scalability analysis is to make it possible for modeling tools to be
applied to scaled versions of parallel programs where it is the number of processors or size of
problem or both that are changing. The principal problem to solve is representational. That is,
how scalability properties of a program – which might be known at different levels of detail and
accuracy – are represented in a manner that a modeling tool can use.

We believe that this problem is best approached by considering different computation classes.
In this section we consider several computation classes that are related to well-known parallel
execution paradigms. We attempt to define the scaling behavior of these classes and to formulate
how scaled models will be developed for them.

3.1 Parallelization of Independent Tasks

Perhaps the simplest parallel execution paradigm is one of � equivalent tasks executing on
� processors. If �$# � , then the tasks must be assigned to the processors. A trivial form of
assignment is a dynamic one where each processor takes a task, executes it, and retrieves
another until all tasks are completed. Given one processor, the tasks execute sequentially. Given
�&%�� processors, � tasks can be executing in parallel.

Let �'� be a task in the set of � tasks, � , that are to be executed. Suppose (��)�+*	� represents the density
function of the execution time of task �,� , for 1 %-�.%/� . Under the assumption of identically
distributed tasks, (0�1��*	� �2(43!�+*5����67�8�)9:%2� , let (';7��*	� represent the overall distribution density. In
this case, the one processor (i.e., sequential) execution time is given by the convolution of all
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densities ( �1��*	� resulting in the density (0;7�+*5� � ������ 1 ('�1��*	� . The graph models in Figure 2(a) show
two graph model versions of the sequential case.
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Figure 2: Independent, Identically Distributed Tasks

From the single processor graph description, what is needed to allow a scaled analysis? In this
case, very little. We know that the tasks must be assigned to at least one processor. Although
it will be critically important to know the scheduling strategy in later cases, here only one
strategy makes sense because the tasks are identically distributed. Knowing this, the modeling
tool can easily generate the graph model shown in Figure 2(b), where the tasks are assigned to
independent paths (representing processors) as equally as possible; each path has a subset of
tasks, represented by � 1, ..., ��� . The tool can then reduce this graph to the simpler one shown
in Figure 2(c). The important thing to note is that separate paths have the same mean execution
time only when � mod � � 0. In any case, the mean completion time of the task set � will be
determined by all subsets.

Even with this simple model, there are several issues to address. First, even though tasks are
independent, it is often the case that their parallel execution can influence their execution time,
due to resource contention in the target system. This contention will be a consequence of the
machine model and the workload mapping. If we chose to model low-level contention overhead
due to parallel interactions, the scaled models may become too complex to solve, even in
this simple case. Another approach would be to model the accumulated delay caused by the
interactions using a single distribution function based on the type(s) of interactions expected,
the number of tasks, and the number of processors. With respect to the graph model, this would
require an “interaction” or “contention” node to be added; this node is shown in Figure 2(b,c))
with the distribution function 	'�1� � ��� .
If the tasks are independent, but not identically distributed, (��1��*	��
� ("3!��*	� , performance will
depend significantly on task load balance. Several static scheduling scenarios could be applied
with accumulative “per processor” distributions computed by the convolution of the densities of
tasks assigned to a processor, (
���)�+*	� � � ("3!��*	�	�	�"3 ��� � . A dynamic scheduling scenario is more
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difficult to model, but a simple lower bound estimate is given by �
�������	�
� . As in the identically

distributed case, a contention node is added at the end.

3.2 Parallelization of Dependent Tasks

Of course, any parallel program will have portions of the computation where the executing
tasks are inter–dependent. The resulting models have a more complex structure than the models
discussed in section 3.1 due to the synchronization arcs in the task graph. In general, dependen-
cies can be quite arbitrary. In practice, certain dependent parallel computation classes are quite
common in real–world applications. In the following, we discuss model scalability for some
standard computation classes; Figure 3 shows some of the classes we will be considering.
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Figure 3: Parallel Computation Classes with Dependent Tasks

Before treating specific cases, it is instructive to consider what problems we might encounter.
Computation classes are best defined by the pattern of task interaction; that is, dependency
constraints. The problem size often translates into the number of tasks represented in the
computation graph and the number of iterations of the basic graph structure (i.e., phases of the
computation). The task density functions are rarely random: either they are related by the type
of algorithm, or the same set of functions is used several times because the computation repeats.
When generating a scaled model, we must try to determine some property of the computation
class that allows us to transform the generic model, representing the detailed computation, to a
tractable graph model.

Structurally, the scaled model should be of a form that tools like PEPP can analyze. The number
of task nodes and the dependency structure of even basic computation graphs can overwhelm
graph modeling tools. Thus, not only the size of the generic model, but also the dependency
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structure must be transformed. For instance, we would prefer that the task graph of the scaled
model be a function of the number of processors, rather than the number of “scaled” generic
tasks. Also, we want to use graph structures that can be reduced during model analysis. However,
the trick will be to perform model scaling in a way that does not sacrifice modeling accuracy.
Because performance scalability is intimately tied to parallel task interactions, reducing the
detail at which these interactions are modeled in order to allow tractable solutions risks the loss
of performance predictability.

3.2.1 Neighbor Synchronization

Many iterative solution methods for linear equation systems can be modeled by a neighbor
structure (Figure 3(a)). The main characteristic of this computation class is that a processor can
start the � -th iteration only after the �1��� 1 � -th iteration has finished on its neighbor processors
[10]. (Although Figure 3(a) shows only two neighbor processes, in general, the number of
neighbor tasks can be greater than two.)

The generic graph model for the parallel computation class with neighbor synchronization is
shown in Figure 4. If we were to represent, in the scaled model, each task and dependency in the
generic model, the graph size and complexity would be unmanageable. However, it is easy to
identify that the tasks at each iteration are independent and could be modeled by the techniques
in section 3.1, but the neighbor synchronization has to be simplified. Our approach is to collapse
the neighbor synchronization between iterations to a single barrier, as shown in Figure 4.

i

barrier

task

. . .

Generic Model Scaled Model

. . . . . .. . . . . .

iteration 

Figure 4: Scaling Neighbor Synchronization Models

Although we can accurately capture the per iteration task execution times in the scaled model
(albeit using a scaled independent task model), the synchronization approximation has certain
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model analysis consequences. In particular, because synchronization and computation cannot
overlap in the scaled model, it will have poorer worst case behavior than expected for an exact
model. However, this effect is reduced if the tasks at each iteration are identically distributed,
or if the number of tasks at each iteration is significantly larger than the number of processors.
The principal advantage of the scaled model is that it can be easily analyzed by graph modeling
tools.

3.2.2 Macropipeline

If a task can be divided into subtasks, where the result of one subtask is the input to another
subtask, the macropipeline computation paradigm (Figure 3(b)) results. The structure of a
macropipeline is characterized by the number of service elements and the number of jobs. The
execution time is determined by the interarrival time of new jobs and the runtime distribution
of one pipeline stage. The macropipeline task graphs have also been referred to as mesh graphs
[21] and are characteristic of wavefront computations.

Our scalability approach is similar to that for neighbor synchronization (Figure 5). We identify
sets of independent tasks and separate their parallel execution in the approximate graph model
by barrier synchronization. Many of the analysis ramifications are also the same. The graph
structure is more complex, however, in that a different number of tasks are present at each
graph stage. It is also possible that the tasks will be of different types, complicating the scaled
submodel for independent tasks.

barrier

task

Scaled ModelGeneric Model

Figure 5: Scaling Macropipeline Models
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3.2.3 Fork-Join, Broadcast-Reduction

Fork-join models are characteristic of computations where a source periodically generates jobs
that spawn tasks to be completed with a drain node collecting results (Figure 3(c)). The graphs
that result also have many similarities to graphs generated from computations that involve
a sequence of broadcast and reduction operations. Such graphs are typical of linear algebra
computations.

As an example, consider the generic LU-decomposition graph in Figure 6; the graph shown
here is for a 6 x 6 matrix. Given a large matrix, the graph would consist of several thousands
of nodes, making certain solution techniques computationally intractable [19]. However, we
can transform the generic model to a simpler scaled model. Again, our standard technique can
be applied in this case by identifying independent tasks at different iteration levels. However,
because of the implicit fork-join nature of the computation, its explicit representation in the
scaled model is less likely to lead to modeling inaccuracies.

Generic Model Scaled Model

Figure 6: Scaling Fork-Join, Broadcast-Reduction Models
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3.2.4 Paired Synchronization

Our last computation class is commonly found in parallel loops with static dependencies [20].
In general, we are considering parallelizable loop statements, where the loop body consists
essentially of independent and dependent parts. The independent parts can be executed at any
time. The dependent parts, however, have to wait for the results of the corresponding independent
part and several earlier iteration steps. Often, a single static dependency spans two loop iterations
separated by a constant number of iterations, resulting in a paired synchronization between two
task nodes, as in Figure 7. However, in general, the number of static dependencies between loop
iterations can be greater than two, as in the following loop:

do i = 1, n
...
a[i] = a [i-1] + a[i-5] + a[i-11]
...

done

Scaled ModelGeneric Model

. . .

. . .. . .. . .

. . .

. . .. . .. . .

. . .

. . .

. . .. . .. . .

. . .

. . .. . .. . .

. . . . . . . . .

. . .

. . .. . .. . .

. . .

. . .

. . .

Figure 7: Scaling Paired Synchronization Models

Because the dependency constraints effectively separates an iteration into independent and
dependent parts, we can scale the generic model by forcing a barrier synchronization before
entering the dependent task nodes. Notice that we now have an option on how to parallelize the
task sections. Shown in the figure is an assignment of processors to loop iterations.
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For the scalability analysis of a program that contains independent and dependent working
phases as described above, the following parameters are needed: the problem size (i.e. the
number of iterations of the particular loop), the runtime distributions of the independent and
dependent subtasks, and, finally, the scheduling strategy. The latter is especially important to
enable the modeling tool to generate a model for any number of processors.

The presented list of computation classes is not complete. In order to analyze more general
structures, a default parallelization scheme is provided, where the problem structure must be
given in terms of a directed acyclic graph.

To conclude this section, the presented scaled models were gained from our experience in
model evaluation using various bounding methods, since most of them apply modifications
to the models until they are series–parallel reducible. In [13] different bounding methods are
compared in order to obtain good scaled models.

4 The Parallelization Description Language PDL

In order to carry out scalability analysis of a parallel program based on modeling techni-
ques, a general description of the program to be analyzed is needed, describing the different
workload phases of the program’s computation (workload model). We define the Parallelization
Description Language (PDL) for describing how a program can be parallelized. We consider a
program to consist of an arbitrary pattern of execution phases of the following types: sequential
phase, parallelizable phase, and synchronization phase. Following the methodology presented
in section 2, a workload model described in this manner can be combined with a machine model
to build a system model, forming the basis for scalability analysis. The choice of a specific
parallel architecture mainly influences a subtask’s runtime, the mechanism and the duration of
barrier synchronizations, and the communication times.

After creating the system model the user has to select two parameters needed for scalability
analysis: the problem size and the maximal degree of parallelism, � (i.e., the maximum number
of processors to be considered with this analysis). With these two input parameters, � system
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models are created automatically to carry out scalability analysis (Figure 8). The scaled models
are derived using the techniques discussed in the previous section. (Note, if � is large, only
certain numbers of processors may be selected for scalability study.)

Scalability Results

Scalability Analysis

- description of parallelization

PDL-Description

- workload model

Parameters

- problem size

of parallelism
- max. degree

models

System Model

machine

Library of

Select parallel machine

for each working phase

for elementary tasks

- runtime distribution

- execution time for barriers

- max. degree of parallelism

Figure 8: Scalability Analysis Using PDL

4.1 Program Description

A description of a parallel program in PDL consists of the following three parts:

1. Execution pattern
The execution order of the different work phases and synchronization phases must be
specified in terms of a regular expression.

2. Definition of the work phases
As the work phases represent the parallelizable parts of the program, the runtime distri-
butions of the subtasks and the parallelization scheme for a particular work phase have to
be specified.

3. Concatenation of work phases
If no synchronization phase is between two parallelized work phases, they may be conca-
tenated in different ways. The selected concatenation method must be described for each
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PROGRAM NAME IS ’prgA’;

EXECUTION PATTERN IS �
1 � #���� � 	 �$# � 2 � # � 2 � # � 3;

Figure 9: Begin of a PDL–Description

work phase which is not succeeded by a synchronization phase or a sequential phase (see
section 4.3).

The specification of the program’s name and the execution pattern form the first part of each
PDL description. The name of the described program must be given for reference purposes; see
Figure 9. After this, the work phases are described.

4.2 Description of Work Tasks

In general, we distinguish between two types of work phases, namely work phases with a
predefined parallelization scheme and work phases with an arbitrary parallelization scheme; see
section 3.2. The definition of a work phase with a predefined parallelization scheme consists of
the following elements:

� Name of the work phase
For identifying the work phase in other parts of a PDL description a unique name must
be assigned. This name is used for specifying the execution pattern (Figure 9) and the
concatenation of two phases (Figure 12).

� Parallelization scheme
Using PDL, the following six parallelization schemes (computation classes) are
available (see section 3.2): INDEPENDENT, NEIGHBOR, NEIGHBOR-TORUS1,
MACROPIPELINE, FORK-JOIN, and PAIRED. For some of the parallelization schemes
the partitioning of the data and the mapping of the partitions onto the processors must be
given.

� Runtime distributions
The user can choose between various parametric distributions like exponential, general
Erlangian, or numerical distributions. Since the runtime distribution is a property of each
task and independent of the selected machine, the runtime distribution must be specified
in PDL. In order to represent the dependence on the underlying machine, a runtime factor
(RTFactor) can be given. This factor is defined in the machine model and allows the
comparison between different parallel systems. The use of numerical distributions which
may be obtained from measurements makes the accurate modeling of real–world programs
possible. Using parameters obtained from monitoring renders performance prediction
more relevant.

1The neighbor–torus class is a special case of the neighbor class were the tasks at the left and the right borders
are also synchronized.
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� Problem size specification
This depends on the selected parallelization scheme. The problem size may be either a
constant or a data structure which can be varied and whose size must be given by the user
as a parameter. A variable data structure can be an array, a grid, or any other partitionable
structure. In the case of a macropipeline or a fork–join model, the number of jobs and
their interarrival times have to be specified. In Figure 10, both cases are shown.

� Communication volume
For the generation of accurate system models, the amount of data to be transferred between
processors must be known. By specifying the communication volume the underlying
architecture can easily be changed. It must be specified in the machine model whether
the data exchange is realized via message passing or via shared memory access. The
time needed for data exchange is also specified in the machine model. In general, the
duration is a function of the communication volume given in the PDL–description. Since
the communication volume is dependent on the problem size, it has to be specified as a
function of the problem size in case of a variable problem size.

The description of the three work phases from Figure 9, each with a predefined parallelization
scheme, is shown in Figure 10 and Figure 11. For the description of work phases which do
not match any of the predefined computation classes, PDL provides the parallelization scheme
ARBITRARY (see section 3.2).

WORK PHASE �
1 IS:

PARALLELIZATION SCHEME IS INDEPENDENT;
SUBTASK RUNTIME IS ERLANG(100,1*RTFactor);

// constant problem size
PROBLEM SIZE IS VECTOR A(100);
COMMUNICATION VOLUME IS 100*SIZEOF(INT);

END;

WORK PHASE �
2 IS:

PARALLELIZATION SCHEME IS NEIGHBOR;
SUBTASK RUNTIME IS NUMERICAL(’’dur b.dis.$ARCH’’);

// variable problem size
PROBLEM SIZE IS GRID B(height, width);
COMMUNICATION VOLUME IS height*SIZEOF(FLOAT);

END;

Figure 10: Description of Work Tasks with INDEPENDENT and NEIGHBOR Parallelization

4.3 Concatenation of Work Phases

As already mentioned, sometimes it is desirable to model the execution of two work phases in
series without a global synchronization between them. In this case, the user has to describe how
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WORK PHASE �
3 IS:

PARALLELIZATION SCHEME IS PAIRED;
// � -th iteration depends on �)��� 1 � -th and �)��� 5 � -th iteration
DEPENDENCY IS 1, 5;

INDEPENDENT SUBTASK IS:
RUNTIME IS ERLANG(5,1*RTFactor);

END;

DEPENDENT SUBTASK IS:
RUNTIME IS DETERMINISTIC(5*RTFactor);
COMMUNICATION VOLUME IS 1*SIZEOF(FLOAT);

END;

PROBLEM SIZE IS GRID C(height, width);
COMMUNICATION VOLUME IS height*SIZEOF(FLOAT);

END;

Figure 11: Description of a Work Task with PAIRED Parallelization

to join the work phases. The following options are available: NEIGHBOR, NEIGHBOR-TORUS,
TORUS, SERIAL, and BARRIER. Figure 12 shows how the concatenation of two work phases
can be described in PDL.

CONCATENATION IS:
// concatenation � 1 � � 2 must not be specified,
// since there is a synchronization between both phases
�

2 � � 2 : NEIGHBOR;
�

2 � � 3 : SERIAL;
END;

Figure 12: Concatenation of Work Tasks

4.4 Flexibility of PDL

For flexible scalability analysis, the selected problem size and the underlying parallel machine
should not be determined in the PDL–description. This has the advantage that it is not necessary
to change the PDL–description each time the user wants to perform a new scalability analysis
for different input data.

Therefore, PDL supports language constructs to describe program parts which are dependent on
these input parameters on an abstract level. When creating scaled models the model generator
replaces these variables by their actual input values. Such variables can be used to describe the
problem size and the execution time of tasks in the PDL description. In Figure 10 the variables
height and width are used to allow a flexible description of the problem size.
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The abstract description of the communication volume in the same example (Figure 10) enables
the abstraction from a real machine. Here the advantage of our modeling method becomes clear.
Depending on the selected machine, the communication volume changes from 400 byte (size of
an integer is 4 byte) to 800 byte, if an integer is represented by 8 bytes.

The above discussed examples demonstrate that the language PDL can be used to describe a wide
range of parallel structures. The information given for each work phase is sufficient to create
stochastic models for performance modeling. Since PDL is not dependent of any model type,
a description in PDL can be used to generate arbitrary stochastic models like stochastic graph
models or stochastic Petri net models. Since we have developed a modeling tool for efficient
evaluation of stochastic graph models, we show in the next section, how a PDL–description can
be used in combination with this tool to automatically create scaled stochastic graph models.

5 Automatic Scalability Analysis with the Tool PEPP

PEPP (Performance Evaluation of Parallel Programs) [4] is a modeling tool for analyzing
stochastic graph models. It provides various evaluation methods to compute the mean runtime
of a modeled program. PEPP supports the analysis of real–world applications by applying
efficient solutions methods including a series–parallel structure solver, an approximate state
space analysis, and bounding methods to obtain upper and lower bounds of the mean runtime
[8]. In order to model measured runtimes, numerical runtime distributions are allowed in all
three cases. The following example illustrates how solutions to large graph models are calculated
using bounding methods.

For systematic monitoring of parallel and distributed programs, PEPP implements the M2–
cycle methodology [14]. Here, a functional model of a program to be measured is used for
event selection, automatic program instrumentation, and event trace evaluation. allowing the
functional model to be extended into a performance model.

PEPP can be used for automatic scalability analysis by creating multiple stochastic graph models
based on the program description given in PDL. After the maximal degree of parallelism � and
the problem size for each variable used in PDL is specified, PEPP creates � different graph
models. These models are then evaluated and speedup values are calculated from the predicted
execution times. The results are presented in a speedup chart.

As done with performance monitoring, modeling can classify different parts of the program
in order to obtain a detailed scalability profile (loss analysis [3, 2]). The relative influence of
the different program phases on the program’s execution time can be determined in the model.
For this, the execution time of all program phases not considered should be set to deterministic
runtimes with mean value 0. Using this technique, speedup values can be computed for only the
selected program parts.

5.1 Example: Scalability Analysis of a Iterative Algorithm

In this section, we give an example for a model-based scalability analysis of a iterative algorithm
which might be a part of a larger numerical computation. This example is influenced from an
application running on the multiprocessor SUPRENUM [18]. The analyzed algorithm belongs
to the neighbor computation class (see Figure 4). In order to model real program behavior, the

16



execution of each task in our example is assumed as a Erlang–8 distribution. The domain to be
calculated is a matrix consisting of 10 columns. If we assume that a column is the smallest unit
of work that can be distributed among the processors, by default � � 10. The parallelization for
2 and 3 processors is depicted as an example in Figure 13 for two iterations. Each node in this
figure represents a row iteration with rows numbered from left to right. Using two processors,
there are inter–processor dependencies only between row 5 and 6. Using more processors, more
inter–processor dependencies arise. The general model and the scaled model can be found in
Figure 4.
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Figure 13: Stochastic Graph Models for Two Iterations

This example shows the usefulness of model–based scalability analysis as well as the problems
encountered when modeling parallel systems. Using PEPP, scalability analysis can be carried
out in three different ways.

1. Accurate modeling with state space analysis2

Due to state space explosion, Markov analysis is not possible for more than 4 processors,
even when reducing the number of iterations to 2 (Figure 13). For this case the state space
is about 160,000 states, and model solution takes about 9 hours on a HP 715 workstation.
Although PEPP solves graph models using an approximate state space analysis, model
evaluation using state space analysis is not possible for a higher degree of parallelism
(Table 1). It should be emphasized that the approximate state space analysis implemented
in PEPP can deal with any runtime distribution (e.g. numerical distributions obtained from

2The presented numbers are modeled execution times and do not have a specific time unit
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monitoring existing programs). Since evaluating large models (especially models with a
high degree of parallelism causing a lot of task dependences) is hard, this method is not
applicable in practice.

P 2 iterations 4 iterations 8 iterations

1 160 320 640
2 85 167.7 331.6
3 64.6 too high
4 52.5 computations costs

Table 1: Results of State Space Analysis

2. Accurate modeling using bounding methods for model evaluation
Bounding methods tolerate largeness because models are solved using series–parallel
reduction instead of creating a state space [17]. Results obtained with bounding methods
implemented in PEPP are shown in Table 2 and Figure 14. In [7] we have shown for various
graph structures that the bounding methods implemented in PEPP are very accurate. In
PEPP, three different bounding methods are implemented in order to select the best bound.
Depending on the structure of the graph model, one or the other bounding method will
yield the best result. It can be seen in the figure that the difference between upper and
lower bound is very small. In some cases the computed bounds are equal to the state space
analysis results.

3. Approximate modeling
Approximate models (like the model shown in Figure 4) can easily be evaluated if they
have a series–parallel structure. In this case a runtime distribution can be calculated using
the operators series reduction (i.e., convolution of two densities functions) and parallel
reduction (i.e., product of two distribution functions) to reduce the graph to one single
node. Here, generation of a state space is avoided.

P 2 iterations 4 iterations 8 iterations

1 160 320 640
2 85 - 86.8 167.1 - 172.7 330 - 341.8
3 64.5 - 65.8 128.1 - 130.4 256 - 258.8
4 51.9 - 53.9 101.5 - 105.1 200 - 209
5 38.8 - 38.9 73.5 - 77.8 141 - 154
6 37.7 - 38.8 72.2 - 77.7 135 - 153
7 36.8 - 37.2 70.8 - 75.3 138 - 149
8 35.2 - 36.7 68.5 - 70.3 134 - 142
9 32.2 - 32.3 64 - 64.2 128 - 130

10 23.7 - 24.7 44.7 - 48.1 85.8 - 96.1

Table 2: Results of Bounding Methods

P 2 iterations 4 iterations 8 iterations

1 160 320 640
2 87.1 174.2 348.4
3 65.8 131.6 263.2
4 53.8 107.6 215.2
5 41.7 83.4 166.8
6 40.5 81 162
7 38.9 77.8 155.6
8 36.7 73.4 146.8
9 33 66 132

10 25.7 51.4 102.8

Table 3: Results of Approximate Modeling

Results obtained by evaluating our scaled models are upper bounds of the mean runtime.
Kleinöder has proved [12] that an upper bound is obtained by inserting arcs. In this case,
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the added barrier synchronization arcs are causing higher execution times. The deletion
of arcs leads to a lower bound, because execution constraints, with respect to the original
model, may be violated.

The results obtained from evaluating our scaled models differ only slightly from the results
calculated with the sophisticated bounding methods implemented in PEPP (Table 3).
Comparing the results of both methods (Table 2 and Table 3), we see that results obtained
with approximate modeling estimate the runtime very well.

The speedup values presented in Figure 14 (right) verify the necessity of a systematic scalability
analysis. To obtain these results with measurements, 30 measurements must be taken. For
configurations of 2, 5, and 10 processors good speedup values are reached, since in these cases
a good load balancing of the 10 tasks can be obtained.
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Figure 14: Scalability Analysis Results

Note, in this example, communication delays are not considered. Using a model generator,
this can easily be done by substituting each inter–processor arc by an arc, a node representing
communication costs, and another arc. Communication delays depend on the underlying parallel
system and are specified in the machine models. The communication volume for each data
exchange is specified in PDL.

Using PDL, the problem size, the runtime distributions of all tasks and communication nodes,
and the underlying synchronization mechanism can easily be varied. This is a prerequisite for a
flexible and systematic scalability analysis. This first results of model–based scalability analysis
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show that our approach is well–suited to compare different scales of parallel systems and input
data.

6 Conclusion and Prospect

Scalability analysis is an important issue when implementing parallel programs for scaled
parallel systems. A systematic approach must be established wherein scaled performance can
be estimated subject to the constraints of the analysis tool used. In this paper, we have presented
an approach for scalability analysis based on stochastic graph modeling. There are several
compelling reasons for a model–based approach from a performance evaluation standpoint, but
the solution techniques must be efficient in order to return results in a timely manner.

By analyzing various computation classes, we have shown how scaled models can be created
from a generic computation description in PDL and analyzed by an existing stochastic graph
analysis tool, PEPP. Our results indicate that scalability analysis is possible with this approach
and delivers performance predictions that are consistent with other solution techniques.

However, there are still many open issues to address. We have only briefly touched on how
problem size scaling is handled or how the machine model interacts with the analysis. We
are currently exploring these issue more thoroughly through the analysis of additional testcases.
Another important problem is that we can handle only static computations, because the presented
computation classes depend on knowing something about the structure of computation. Finally,
we are investigating the integration of scalability model generation into PEPP. We believe that
the model-based instrumentation support in PEPP may allow us to extrapolate a template of a
generic model of programs from measurements of a few of its scaled versions. This appears
particularly important when task density functions are unknown.
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