
Timewise Re�nement for
Communicating Processes

Steve Schneider

Royal Holloway� University Of London

Egham� Surrey� TW�� �EX� UK

steve�dcs�rhbnc�ac�uk

Abstract

A theory of timewise re�nement is presented� This allows the translation of speci�cations
and proofs of correctness between semantic models� permitting each stage in the veri�cation
of a system to take place at the appropriate level of abstraction� The theory is presented
within the context of CSP� A denotational characterisation of re�nement is given in terms
of relations between behaviours at di�erent levels of abstraction� Various properties for
the preservation of re�nement through parallel composition are discussed� An operational
characterisation is also given in terms of timed and untimed tests� and observed to coincide
with the denotational characterisation�

Keywords� Concurrency� Real�time systems� Re�nement� Timed CSP� Timewise re�nement�
Veri�cation�

� Introduction and general theory

Veri�cation of time�critical systems requires the application of necessarily complicated and de�
tailed techniques� re�ecting the complex nature of such systems and the detailed and precise
requirements upon them� Yet it is often the case that a signi�cant proportion of speci�cations
on timed systems will be concerned with logical behaviour rather than timing behaviour� and
proposed implementations will often be correct with respect to these parts of the speci�cation
by virtue of their functional properties� independently of their timing properties�

Speci�cations often split naturally into parts that are dependent upon time� and time�independent
parts� For example a timed bu�er must meet certain functional constraints� it can output only
what has been previously input� and in the same order	 it should be deadlock�free� and will
eventually become ready to output when non�empty� There might also be requirements on the
capacity of the bu�er� In addition to these requirements� there might be some desired timing
properties� concerning throughput� maximum rate of input� minimum rate of output� and so on�
The techniques required to establish these two kinds of properties will often be quite di�erent�
and the timing behaviour of a proposed implementation may be irrelevant in verifying the func�
tional correctness� In such cases� we would hope to perform each part of the veri�cation at the
appropriate level of abstraction�

Development of a timed system could also follow this pattern� A system may be developed
initially with respect to the time�independent aspects of its speci�cation� A subsequent stage of
development may introduce precise timed behaviour into the system to ensure that the timing
aspects of the speci�cation are also met� It is important to ensure that the correctness of the
�rst stage is preserved when time is introduced�

This paper proposes a framework in the context of CSP for system development and veri�cation
at various levels of abstraction� in such a way that consistency is ensured between results obtained
at di�erent levels� We investigate re�nement relations between processes in di�erent models of
the CSP hierarchy
Ree���� It is important to identify which properties
such as deadlock�
freedom or determinism� can be translated between models� since only for such properties can

�

veri�cations be mapped up the hierarchy� The more mature and powerful techniques available in
the more abstract models
such as model�checking� algebraic techniques� specialised theories for
deadlock�freedom� and simply more abstract reasoning� may then be used in conjunction with
the more cumbersome and di�cult methods required for the more detailed timed aspects of the
veri�cation�

This paper investigates two re�nement relations in detail� both between an untimed and a timed
model of CSP� The �rst untimed model is concerned only with safety speci�cation� The second
is also able to address fairness and
untimed� liveness requirements� The relationships between
these two models and the timed in�nite model for timed CSP
Sch��� MRS��� will be presented�

General framework

The various models for CSP all embody a particular approach to denotational semantics� A
process is modelled in terms of the observations that may be made of it� which may also be
considered as the behaviours it may exhibit� If we have a set O of all possible observations� then
a process is identi�ed with a subset of O� The corresponding semantic modelM consists of those
subsets of O that may be considered to represent some process� A set of healthiness conditions�
or axioms� for M are used to characterise these subsets of O�

A programming language L is used for describing processes� Each term in L together with a
binding � � E � V � M of variables to values is associated with an element of M� called its
semantics or meaning� by means of a semantic function F � L � E �M� This meaning consists
of the set of possible behaviours for the term� This function is compositional� in the sense that
the process associated with any particular term depends only on the processes associated with
its components� and on how these components are composed� A program is a term with no free
variables� The process associated with such a program is independent of the environment � used
to evaluate it�

Following the notation introduced in
Hoa���� we give speci�cations in terms of predicates upon
observations� A term P meets a speci�cation S
o� in environment � if all of the observations in
the semantics of P in � meet the corresponding predicate� In this case� we write P sat� S
o��

De�nition ���

P sat� S
o� � � o � O �
o � F

P ���� S
o��

�

A term P� is re�ned by another term P� when every possible behaviour of P� is also a possible
behaviour of P� in any environment� In this case we write P� v P�� and consider P� to be more
deterministic than P�� since P� can do everything P� can� and possibly more� If P� v P�� and
P� sat� S
o�� then it follows that P� sat� S
o�	 re�ning a process maintains correctness with
respect to speci�cations� This approach also allows terms P to act as speci�cations� P� meets
speci�cation P if it is a re�nement of P �

The nature of the semantic model is dependent upon the nature of the observation set O� Ob�
servations describe executions of systems at a particular level of abstraction� For example� the
use of traces as observations provides only the sequences of events that a system may perform	
refusals provide information about contexts in which a system may deadlock	 and timed traces
also provide information about the times at which events may occur� The use of a particular
kind of observation depends on the kind of speci�cation we wish to consider� and the level of
abstraction at which we need to consider the system in order to establish correctness�

If we have two di�erent semantic models MA andMC � based upon di�erent sets of observations
OA and OC respectively� then we are able to analyse systems at two di�erent levels of abstraction	
and we may ask when a description at the level of MC re�nes a description at the level of MA�

�

We �rstly employ a relation ARC� OA 	 OC to relate observations at the di�erent levels of
abstraction� The intention is that if bA ARC bC then bA and bC are both descriptions� at
di�erent levels of abstraction� of the same execution	 or alternatively� that bA is an abstract
description of bC � There is of course no guarantee that the relation ARC captures a useful
relationship between behaviours	 this depends upon the intended application of the theory�

An environment �A � V � MA is re�ned by an environment �C � V � MC if �A
Y � contains
every abstract behaviour related to each concrete behaviour in �C
Y �� This re�ects the idea
that the concrete re�nes the abstract in that it contains fewer behaviours�

De�nition ���

�A vARC �C � �Y � V �ARC��
�C
Y �� � �A
Y �

�

The re�nement relation may now be given between terms from MA and terms from MC with
respect to the relation ARC and a pair of environments�

De�nition ���

PA vARC PC � � �A� �C � �A vARC �C �ARC��
FC

PC ���C � � FA

PA���A�
�

The following lemma states that re�nement between models is monotonic with resect to re�ne�
ment within models�

Lemma ���

PA� vA PA� vARC QC� vC QC� � PA� vARC QC�

�

A veri�cation of PA may be translated into a veri�cation of PC by use of the following inference
rule� whose soundness follows from the de�nitions above�

�A vARC �C
PA sat�A SA
oA�
PA vARC PC

PC sat�C � oA �
oA ARC oC � SA
oA��

We may thus consider the speci�cation

SC
oC � � � oA �
oA ARC oC � SA
oA��

to be the translation of SA
oA��

Observe that if MA � MC � and the relation ARC is the identity relation� then the re�nement
relation v

ARC is simply re�nement under the non�deterministic ordering	 and the rule states that
if a program meets a speci�cation� then so too does any re�nement of it� The re�nement relation
within a single model MA is de�ned as

P� vA P� � � �A � FA

P����A � FA

P����A
The above rule is sound for any re�nement relation ARC � by virtue of the de�nitions of the
operators involved� We shall later take advantage of the dual property of completeness� which
states that whenever the conclusion to the above rule is true� then a term PA and environment
�A can be found such that the antecedents to the rule are true� In general� this property will not
hold� but it may hold for some particular re�nement relations ARC � and in fact we will establish
that it holds for the relations presented in this paper�

�

De�nition ��	 A re�nement relation ARC is said to be complete if whenever the conclusion of
the above rule holds for any SA� then there is some PA and �A for which the three antecedents
hold� �

The following lemma provides a necessary and su�cient condition for a re�nement relation to be
complete� in the case where FA is surjective for any �A
as is the case for the untimed semantic
models used in this paper��

Lemma ��
 The relation ARC is complete if and only if ARC��
T � is an element of MA

whenever T is an element of MC �

Proof Assume that ARC��
T � is an element of MA whenever T is an element of MC �
Consider the conclusion PC sat�C � oA �
oA ARC oC � SA
oA��� Then it follows that

ARC��
FC

PC ���C � sat SA
oA�� De�ne �A by de�ning it on each Y as �A
Y � �ARC��
�C
Y ��
Then �A is well�de�ned since ARC��
�C
Y �� is always inMA� Since ARC��
FC

PC ���C � �MA

and FA is surjective there is some PA such that FA

PA���A �ARC��
FC

PC ���C �� Hence all
three antecedents of the inference rule hold�

If on the other hand there is some PC for which ARC��
FC

QC ���C � �� MA� then consider PA
and �A for which PA vARC PC � The term PA will not meet the speci�cation SA
oA� de�ned by
SA
oA� � oA � ARC��
FC

PC ���C �� This is because ARC��
FC

PC ���C � is a proper subset of
FA

PA���A� and so will contain some behaviour oA which breaks the speci�cation SA
oA�	 yet
the term QC in �C meets the translation of that speci�cation�

� oA � oA ARC oC � SA
oA�

Hence there is some speci�cation SA for which the conclusion holds� but for which the second
and third antecedents of the rule cannot both hold� �

The de�nitions given above applied to terms� of which programs are a special case� In the
case of programs
but not of general terms� the environment information does not in�uence the
semantics� and environmental considerations may be elided from the de�nitions and rules below�

The satisfaction relation for programs may be given independently of environmental information�

De�nition ���

P sat S
o� �
 � � P sat� S
o�

�

The inference rule given above simpli�es to the following in the case of programs�

PA sat SA
oA�
PA vARC PC

PC sat � oA �
oA ARC oC � SA
oA��

and is complete in the same circumstances�

Completeness of the re�nement relation allows the following rule for programs�

PC sat � oA �
oA ARC oC � SA
oA��

PA � PA vARC PC � PA sat SA
oA�

The discussion so far has all been independent of the details of the programming language�
In order to prove that one program re�nes another using the above theory� it is necessary to

�

calculate the semantics of each program in the appropriate model� and then check that the
re�nement relation holds between them� Compositionality often plays a critical role in breaking
down veri�cation obligations on large systems to manageable components� We aim to exploit the
compositional nature of program semantics� and so we investigate when re�nements established
between components of abstract and concrete systems mean that the entire abstract system is
re�ned by the entire concrete system�

Our aim is to �nd relationships concerning the operators of the language L so that re�nement
between terms and programs may be established without resorting to explicit calculation of their
semantics� by reasoning at the syntactic level�

A syntactic operator �� of L is a re�nement of operator � if ���combinations of re�nements of
processes re�ne ��combinations of the original processes�

De�nition ��� An operator �� of the language L with arity � re�nes operator � with the same
arity� if

� i � � � Pi vARC P �i � � �hPi j i � �i v
ARC ��hP �i j i � �i

�

In general this de�nition applies to two languages L and L�� but for the purposes of this paper
we will work within a single language�

The framework presented above is very well known� But to go further� we must focus on partic�
ular models� languages� and re�nement relations� We are interested in conditions for re�nement
relations to exist between programs
which will vary from relation to relation�� and how speci��
cations translate between models�

In this paper we are concerned with mapping results up the hierarchy of untimed and timed
models for CSP� We will concentrate on two relations in detail� both from an untimed to a timed
model� one from the untimed traces model� which is used for analysis of safety properties	 and
one from the untimed in�nite traces model
Ros���
which also contains failures and divergences��
a more sophisticated untimed model supporting consideration of liveness issues�

� Communicating Sequential Processes

Syntax

The language of Communicating Sequential Processes
CSP� is given as follows�

P ��� Loop j Stop j Skip j P 	P j P t
� P j P � P j a � A
� Pa ju

i�I
Pi

j P AkA P j P jjj P j P n A j f
P� j f ��
P� j Y j �Y � P

Here the set A is a subset of the universal set of events �	 I is a subset of the set of indexes I	 f is
a function �� �	 Y is drawn from the set of process variables V	 and t is drawn from the set of
times� the non�negative real numbers� The �xed point operation �Y � P binds free occurrences
of Y in P � The programs of the language are those terms with no free process variables� Observe
that the requirement that arguments to an arbitrary internal choice be indexed from I ensures
that the size of the choice is bounded by some cardinal� which is required to ensure that the
language is well�de�ned by this syntax� For more details of the technicalities� see
MRS����

The constructors given above represent respectively� the most non�deterministic process	 dead�
lock	 successful termination	 sequential composition	 timeout	 external choice	 pre�x choice	 non�
deterministic choice	 synchronised parallel	 interleaving parallel	 interface abstraction or hiding	

�

two forms of alphabet renaming	 process variable	 and recursion� For a more detailed discussion
of the language� the reader is referred to
DaS����

The following abbreviations often prove useful�

Wait t � Stop
t
� Skip

b
� P � a � fbg
� P
a�
where P
b� is de�ned to be P�

b
t
� P � b
�Wait t 	 P

P k Q � P �k� Q

P u Q � u
i�f���g

Pi
where P� is de�ned to be P and P� is de�ned to be Q�

P k
A
Q � hA
fA
P� A����kA���� gA
Q��

where

fA
x � � x if x � A

��x otherwise

gA
x � � x if x � A

��x otherwise

hA
x � � y if x � ��y
y if x � ��y
x otherwise

When modelling timed processes� we must take care to ensure that recursive calls are time
guarded� so that a minimum delay must elapse between successive recursive calls� This is achieved
by ensuring that every instance of the process variable of a recursive term should appear in the
right�hand argument of a non�zero timeout� A set of rules for determining when a term is time
guarded is detailed in
DaS����

Notation

The set � is the set of visible events� Variables a� b� c are taken to range over �� If M � � then
c�M is shorthand for the set of events fc�m j m �M g � �� The variable t ranges over R�� the
set of non�negative real numbers� Variable tr ranges over ��� �nite sequences of events from �	
u ranges over ��� in�nite sequences of events from �	 X � � denotes a set of events	 s ranges
over
R� 	
�� �
R� 	
��� the
�nite and in�nite� sequences of timed visible events	 we use
� � R�	
 to represent a timed refusal� a set of timed visible events� In fact the timed refusals
used within the timed model have a particular structure� as de�ned later in IRSET �

We use the following operations on
untimed and timed� sequences of events� �w is the length
of the sequence w 	 w��w� denotes the concatenation of w� and w�	 last
w�x � � x yields the
last item in the list� The notation w� � w� means that w� is a
not necessarily contiguous�
subsequence of w�	 the notation w� � w� means that w� is a pre�x of w�	 the notation w� �i w�
means that w� is a pre�x of w� such that �w� � �w� � i �

The following projections are de�ned on untimed sequences by list and set comprehension�

tr �j A � ha j a � tr � a � Ai
tr n A � ha j a � tr � a �� Ai
tr � c � hx j a � tr � a � c�x i
	
tr� � fa j tr �j fag �� hig

�

For timed sequences� we de�ne the beginning and end of a sequence in the following way�
begin
h
t � a�i�s� � t � end
s�h
t � a�i � t� end
s� �� when s is in�nite� and for convenience
begin
hi� �� and end
hi� � �� The following projections on timed sequences are de�ned by list
and set comprehension�

s � t � h
t �� a� j
t �� a�� s� t � � ti
s
� t � h
t �� a� j
t �� a�� s� t � � ti
s � t � h
t �� a� j
t �� a�� s� t � � ti
s �j A � h
t �� a� j
t �� a�� s� a � Ai
s n A � h
t �� a� j
t �� a�� s� a �� Ai
s
 t � h
t �
 t � a� j
t �� a�� s� t � � ti

strip
s� � ha j
t �� a�� si
	
s� � fa j s �j fag �� hig

We also de�ne a number of projections on timed refusal sets�

�
� t � f
t �� a� j
t �� a� � �� t � � tg
� � t � f
t �� a� j
t �� a� � �� t � � tg
� �j A � f
t �� a� j
t �� a� � �� a � Ag
�
 t � f
t �
 t � a� j
t �� a� � �� t � � tg
	
�� � fa j
t �� a� � �g

end
�� � supft � j
t �� a� � �g

We will use
s���
 t as an abbreviation for
s
 t ��
 t�� and end
s��� for maxfend
s�� end
��g�

Semantic models

The hierarchy of models presented in
Ree���
see Figure �� supports reasoning at a number of
levels of abstraction� allowing aspects of behaviour dependent upon refusal information� stability
information� or timing information to be included as required� In addition to Reed�s hierarchy
of models� we have the in�nite timed model MTI � presented in
Sch��� and
MRS���	 and the
untimed in�nite traces model MUI of
Ros���� which is an extension of the failures�divergences
model of
BrR���� In this paper we will focus on the three models which yield the most general
results concerning re�nement� the untimed traces model MUT � and the two in�nite models�
These three models are presented in full� together with their corresponding semantic functions�
in Appendix A� The semantic functions FUT and FUI are surjective in the sense required for
completeness in Lemma ���	 this follows directly from similar results presented in
Sch����

The untimed traces model

Observations in the model MUT are simply �nite sequences of events� or traces� A trace tr of a
system is a record of the events performed during some
partial� execution of the system� Thus
the observation set OUT is de�ned to be ��� where � is the universal set of events�

The model MUT is the set of nonempty pre�x closed subsets S of OUT �

The untimed in�nite traces model

This model is �rst described in
Ros���� In other presentations� processes consist of three compo�
nents� modelling the three kinds of observation that may be made� a failure set F � ��	P
��	

�

MTFS

MUFS

MUFTS

MUS MTS

MUT

MTT

MUFMTF

�

�

�

�

����

�
�
�
�R

�
�
��R

�
�
�
�

�
�
�
�
�
��	

�
�

�
�

�
�

�
�

�
��	

�
�
�
�
�
�
�
�
�
��R

�
��R

�
��	

�
��	

�
��R

MUFD

MUI

MTI

�

��R

��R

�

��

Figure �� Reed�s hierarchy and additional models

a divergence set D � ��	 and an in�nite traces set I � ��� A divergence tr � D is a sequence of
events such that after some pre�x of tr the system may perform an in�nite sequence of internal
actions� A failure
tr �X � � F is an observation of a system if either the sequence of external
events tr may be observed during an execution� after which no further internal progress may be
made and the process refuses to engage in any event from the set X 	 or else tr is a divergent
trace� An in�nite trace u is an in�nite sequence of actions such that either the system may
perform the whole trace during a single execution� or else some pre�x of it is a divergent trace�

For the sake of uniformity within this presentation� we consider a process to consist of a single set
S of pairs� where the �rst component is a label from the set ff � d � ig� and the second component
is a behaviour from the corresponding behaviour set� Thus S is a subset of

ff g 	
�� 	 P
��� � fdg 	�� � fig 	 ��

The timed in�nite traces model

In this model� the times at which events are performed and refused are recorded� This model
assumes that systems are �nitely variable� an in�nite sequence of internal and external actions
may not be performed in a �nite time� Thus the only in�nite traces that may be observed must
take in�nitely long to occur� Furthermore� since a change in the set of events made available to
the environment is considered to correspond to an internal action� this model needs to consider
only those refusal sets which contain �nitely many changes in any �nite interval�

The set of traces T��
� and refusal sets IRSET are adequate for capturing all possible observations

�

of �nitely variable systems�

T��
� � fs �
R� 	 ��� �R� 	��� j h
t�� a���
t�� a��i � s � t� � t�

� �s ��� end
s� ��g
RTOK � f
b� e�	A j � � b � e �� � A � �g
RSET � fSR j R � RTOK � R is �niteg
IRSET � fSR j R � RTOK � � t �
SR�
� t � RSETg

Behaviours consist of
trace�refusal� pairs� In contrast to the untimed case� the refusal is observed
during the occurrence of the trace� rather than simply afterwards�

For example� the behaviour
h
�� a��
�� d��
�� b�i�
�� ���	 fcg� is a record indicating that the
process was observed to refuse event c beginning at time �� that while it was continuing to do
so� it performed event a and then d at time �� and then event b at time �� Finally� the observer
stopped watching c being refused at time ���

As usual� a process consists of the set of possible behaviours that may be observed of it� A
detailed discussion of the model appears in
Sch��� MRS����

Example

De�ne the program AB as follows�

AB � �Y �
a �
� Y
�
� b
� Stop�

Then FUT

AB �� contains both the traces hai and ha� a� bi� but not trace hb� ai� The untimed
in�nite semantics FUI

AB �� contains failures
f �
ha� ai� fag�� and
f �
ha� bi� fb� cg��� but not

f � hai� fbg� or
f � hb� ai� fg�	 it contains the in�nite trace
i � ha� a� a� � � �i�	 and it contains no
divergences�

The timed behaviours FTI

AB �� include
h
�� a��
�� a�i�
�� ��	 fbg�� the process may perform
event a at time �� and again at time �� while refusing to perform b between times � and �� The
behaviour
hi�
�� ��	 fbg �
����	 fag� is also possible� if no external events are performed�
then b will be refused for the �rst � units of time� after which the timeout will occur� and a

will be refused thereafter� Neither
h
�� a�i�
�� ��	fag� nor
hi�
�� ���	 fbg� are possible timed
behaviours of FUI

AB ���

� Timewise re�nement

��� Trace re�nement

We consider an untimed trace to be an abstract description of a timed failure if the trace cor�
responds to the sequence of events in the timed trace� We thus de�ne the re�nement relation
between untimed traces OUT and timed failures OTI as follows�

tr UTRTI
s��� � tr � strip
s�

For a timed trace s� the sequence strip
s� is the trace s with the times removed from the events�

Theorem ��� This re�nement relation is complete �

Proof By Lemma ��� it is enough to show that T �UTRTI
��
U � is a well�de�ned process

for any timed process U � But UTRTI
��
U � � fstrip
s� j
s��� � U g� and this set is clearly

non�empty
since U is� and pre�x closed
since U is�� and hence it is a well�de�ned process�
meeting the de�nition in Appendix A� �

�

It turns out that all of the CSP operators preserve this re�nement relation�

Theorem ��� Given any CSP operator �� and two vectors of terms of length arity
�� P and
Q such that P v

UTRTI
Q� then

�
P � v
UTRTI

�
Q�

�

Proof By a structural induction over the CSP syntax� The timed and untimed semantics
given
in Appendix A� of each CSP operator need to be considered in turn� The case for all operators
except recursion follows the same pattern� As an example� we provide the case of the parallel
operator� The proof for recursion follows the structure of that given for failure re�nement in
Lemma ��� below� except that in the case here continuity of the CSP operators in MUT means
that a standard induction rather than a trans�nite induction is su�cient�

The proof for the parallel operator runs as follows� Assume that Pi vUTRTI
Qi for i � �� �� Then

we aim to prove that P� k P� vUTRTI
Q� k Q��

Consider some
s��� � FTI

Q� k Q����C � We must prove that strip
s� � FUT

P� k P����A� By
the timed semantics of the parallel operator there are �i � i � �� � such that
s��i� � FTI

Qi ���C �
Since Pi vUTRTI

Qi
by the inductive hypothesis� we have strip
s� � FUT

Pi ���A for each i � and
hence strip
s� � FUT

P� k P����A by the untimed trace semantics of the parallel operator� �

Corollary ��� For any program P � P v
UTRTI

P �

P

FUT

P �� FTI

P ��
v

UTRTI
�

� �

H
H
H
H
H
H
H
H
H
H
H
H
Hj

The payo� from this result is that whenever a trace speci�cation may be veri�ed of a CSP program
in the untimed traces model� then it follows immediately that its translation into the timed
model will hold for the same program on its more complicated semantics� Also Skip v

UTRTI

u
t�I

Wait t for any set of times I � so arbitrary delays can be introduced into programs while

still preserving re�nement� since if P v
UTRTI

Q � then it follows that Skip 	 P � P v
UTRTI

u
t�I

Wait t	Q� Thus an untimed veri�cation can be carried out and delays inserted subsequently�

The translation of a speci�cation S
tr� on traces will be S �
s���� given by

S �
s���� � tr � �� �
tr UTRTI
s���� S
tr��

If S is admissible
i�e�
� tr � u � S
tr��� S
u� for every in�nite trace u� then the translation is
equivalent on processes to the speci�cation S ��
s��� � S
strip
s��� Thus admissible speci�cations
may be translated to timed speci�cations by a simple substitution of the free variable� Since
most safety speci�cations are admissible� this does not amount to a practical limitation�

As an example� consider the safety requirement that no event should be performed after a b�
This is given by

S
tr� � � tr�� tr� �
tr � tr�
�hbi�tr��� tr� � hi

��

A veri�cation in the traces model that program AB satis�es this speci�cation would be quite
straightforward� We may translate this veri�cation to the timed model� and conclude that
AB sat S
strip
s�� in that model� This may then be used in a timed veri�cation� For example�
consider the timed speci�cation that event a should never be performed within � time units of
any b�

h
t � b�i � s � a �� 	
s �
t
 �� t � ���

This speci�cation reads as follows� if
t � b� is recorded in the trace s� then a does not appear in
the set of events recorded in s during the interval
t
 �� t � ��� Then the untimed speci�cation
tells us that a cannot occur after b� i�e� in the interval
t � t � ��� so the only cases to consider
in the timed model are a occurring before b� or at the same time� i�e� the interval
t
 �� t �� For
this case� a timed analysis on AB is required�

In general
even when S
tr� is inadmissible�� S
tr� is translated to
�s ��� S
strip
s���

��� Failures Re�nement

We think of a process refusing a particular set� in the untimed sense� if it eventually reaches a
state after which no event from that set is possible� In the timed world� this corresponds to the
information that there is some time after which the set may be continuously refused� Thus for a
timed behaviour
s��� with �nite timed trace s� an abstract view of this behaviour would be an
untimed version strip
s� of the trace� and for any set X � if there is some t for which
t ���	 X

is contained in �� then � is evidence that X may eventually be refused forever�

f �
tr �X �� UIRTI
s��� � tr � strip
s� �
 t �
t ���	 X � �

Relating timed in�nite traces to untimed ones� we obtain the following re�nement relation be�
tween OUI and OTI �

i � u� UIRTI
s��� � u � strip
s�

Observe that there is no timed version of divergence in this model�

Theorem ��� This re�nement relation is complete� �

Proof We need to show that T �UIRTI
��
U � is a well�de�ned process for any timed process

U
i�e� T meets axioms ��� given in Appendix A��

Axiom � for U �MTI yields axioms �� � and � for T 	 axioms �� � and � are trivial for T since
T has no behaviours of the form
d � tr��

Axiom � for U yields axiom � for T � if
f �
tr �X �� � T � � a � Y �
f �
tr�hai� fg�� �� T

then
s�
t���� 	 X � � U for some t� � end
s�� and also for any a � Y and any t we have

s�h
t � a�i� fg� �� U
since their untimed counterparts are not in T �� Now by axiom � forU there
is some �� � �whichcontainsallunperformableevents� Assume for a contradiction that
t � a� �� ��
for some t � t� and a � Y � Then

s � t��h
t � a�i���
� t� � U � and so
s�h
t � a�i� fg� � U by
axiom �
since s � s � t�� yielding the contradiction� Hence
t � a� � �� whenever t � t �� a � Y �
yielding
t����	 Y � � ��� and also
t����	
X �Y � � ��� and so
s�
t����	
X �Y �� � U �
and hence
f �
tr �X �Y �� � S � establishing that axiom � for S holds�

It remains only to establish axiom � for S � Consider a behaviour
f �
s� fg�� � T � Then there
must be some timed trace s� such that
s�� fg� � U and strip
s�� � s� Now by axiom � forMTI

there must be some process U � � CL such that
s�� fg� � U � and U � � U ��

��

Let c � P
R�� R be a choice function� Then de�ne�

V� � fs�g
Vn�� � fs�h
ta � a�i j s � Vn � a � �

� ft j
s�h
t � a�i� fg� � U �g �� fg
� ta � c
ft j
s�h
t � a�i� fg� � U �g

V �
S
i�NTi

Since U � is �nitely variable and closed� any in�nite trace in V comes from a legitimate in�nite
trace in U �� And since U � meets axiom � for MTI � the set of all events that do not extend a
given �nite trace in V must be refusable for all time after the corresponding timed trace in U ��
since there is no time after that timed trace at which any of those events is possible� It follows
that V is a set of traces that establishes that axiom � holds for T � �

A study of the CSP operators reveals the following�

Theorem ��	 Given any CSP operator � except parallel composition� and two vectors of terms
of length arity
�� P and Q such that P v

UTRTI
Q � then

�
P � v
UTRTI

�
Q�

�

Proof The structure of the cases of this proof is entirely similar to that of Lemma ���� All
operators follow the same pattern� with the exception of the proof of recursion� which we now
give�

Assume that P v
UTRTI

Q � Now consider a particular pair of environments �A v
UTRTI

�C �
Let U �
FTI

�Y � Q ���C � and T �UTRTI

��
U �� We must prove T � FUI

�Y � P ���A�
Observe that T �MUI by the proof of Theorem ���

We use the fact that FUI

�Y � P ���A � F�
�� for some ordinal �� where � � FUI

Loop���A�
and

F
S � � FUI

P ��
�
S�Y ��

Hence it is enough to prove by trans�nite induction that T � F�
�� for all ordinals ��
Base case� trivial� since any element of MUI is contained in ��
Successor case� if T � F�
��� then

T � UTRTI
��
U �

U is a �xed point of � S � FTI

Q ���C
S�Y �

� UTRTI
��
FTI

Q ��
�C
U �Y ���

structural inductive hypothesis� P v
UIRTI

Q � �A
T�Y � v
UTRTI

�C
U �Y �

� FUI

P ��
�A
T�Y ��

trans�nite inductive hypothesis� and monotonicity of all CSP operators

� FUI

P ��
�A
F�
���Y �

de�nition

� F���
��

as required�

��

Limit case� if
 is a limit ordinal� then the inductive hypothesis states that T � F�
�� for all
� �
� Then F �
�� � F

��� F
�
��� Since T is an upper bound for each element of the chain�

and T � MUI � then the least upper bound of the chain F �
�� is de�ned� and T � F �
��� as
required�

This establishes the case for recursion� �

We again obtain that Skip v
UIRTI ut�I

Wait t for any set of times I � so arbitrary delays can

be introduced into programs while still preserving timewise failures re�nement�

Unfortunately� parallel composition does not preserve re�nement in general� One example where
it fails is in the case of two programs Q� and Q�� illustrated in Figure ���� They are always
willing to perform an event at some time in the future� by o�ering it periodically
so neither will
eventually always refuse it�� but they are unable to �nd any time on which they can synchronise�
so their combination is able to refuse the o�er forever�

Q� � �Y �
a
� Stop�
�
� Wait � 	 Y

Q� � Wait � 	Q�

Q�

Q�

�time� � � � � � � � � � �� ��

Figure �� alternating o�ers

Each of Q� and Q� are re�nements of P � a
� Stop� but Q� k Q� is not a re�nement of P k P �
since it may refuse a forever� as Q� and Q� can never synchronise on a	 yet P k P is unable to
refuse a�

However� we will later obtain the following theorem
Theorem ����

Theorem ��
 Every CSP program P has that P v
UIRTI

P �

Observe that this theorem holds for Q� k Q�� since the untimed semantics reveals a divergence
in each of Q� and Q�� a possible in�nite sequence of internal events
repeatedly timing out and
passing round the loop without the performance of event a�� In the failures model� the untimed
semantics is that of Loop which is re�ned by any process� In fact� any program which could
repeatedly make and retract o�ers in the timed model would be divergent in the failures model

though as in the case of Q� and Q�� it could also re�ne a non�divergent program��

Parallel composition and re�nement

The importance of the parallel operator moves us to investigate conditions under which it does
preserve re�nement� The results presented below concern programs� but they generalise to terms
in particular environments� in the obvious way�

Non�Retraction

The example above illustrates one of the ways in which re�nement may be lost by parallel
composition� the periodic withdrawal of o�ers� One way to ensure synchronisation is to maintain
o�ers until they are accepted�

��

A process which does not withdraw o�ers
though it may make new ones� until it next performs
a visible event is termed non�retracting� This is similar to
though slightly weaker than� the
notion of nonpre�emptive given in
ClZ���� although that de�nition is given in operational terms�

De�nition ��� A program Q is non�retracting if

s��� � FTI

Q �� �
s�� � f
t � a� j
 t � �
t �� a� � � � end
s� � t � t �g� � FTI

Q ��

�

If an event may be refused at a time t �� then it must be possible that it was continuously refused
since the occurrence of the last visible event� at time end
s�� Thus once an event is guaranteed
to have been o�ered� it must be continually o�ered thereafter�

As expected� we obtain that parallel composition preserves re�nement for non�retracting pro�
grams�

Lemma ��� If P� vUIRTI
Q� and P� vUIRTI

Q�� and Q� and Q� are both non�retracting� then

P� k P�� vUIRTI

Q� k Q�� �

Proof This is a special case of Lemma ���� below� with A� � A� � �� and the fact that
non�retraction is stronger than eventual non�retraction on �� �

This idea of non�retraction may be generalised� so that it is concerned only with particular events
rather than all events� and with the fact that a time after which o�ers should be maintained is
reached eventually rather than immediately�

De�nition ��� A program Q is eventually non�retracting on A if for any trace s there is some
time t
s� such that

s��� � FTI

Q �� �
s�� � f
t � a� j a � A �
 t � �
t �� a� � � � t
s� � t � t �g� � FTI

Q ��

�

Observe that if S is eventually non�retracting on A� and B � A� then it is also eventually
non�retracting on B �

This form of eventual non�retraction allows a period of unstable behaviour before settling down�
This permits some timeout behaviour disallowed by a non�retraction requirement� For example�

a
� P
�
� b
� Q is eventually non�retracting
if P and Q are� although the o�er of a will be

retracted at time ��

Lemma ��� may be generalised to interface parallel� by considering programs that are non�
retracting on their common interface�

Lemma ���� If P� vUIRTI
Q� and P� vUIRTI

Q�� and Q� and Q� are both eventually non�
retracting on A� �A�� then

P� A�

kA�

P�� vUIRTI

Q� A�

kA�

Q��

�

Proof If
i � u� UIRTI
s��� and
s��� � FTI

Q� A�

kA�

Q���� then it follows immediately that

i � u �j A�� � FUT

P��� �
i � u �j A�� � FUT

P���� and hence that
i � u� � FUI

P� A�

kA�

P����

Consider
f �
tr �X �� related via UIRTI to
s��� � FTI

Q� A�
kA�

Q���� with
f �
tr �X �� UIRTI

s���� Then tr � strip
s�� and
 t �
t ��� 	 X � �� Now by the semantics of the parallel

��

operator� there are �� and �� such that
s �j A����� � FTI

Q����
s �j A����� � FTI

Q���� and
� �j
A� �A�� �
�� �j A�� �
�� �j A��� De�ne

X� � fa � A� j � t � a � 	
�� � t�g
X� � fa � A� j � t � a � 	
�� � t�g

Then X� �X� � X �j
A� �A��� Furthermore� by the eventual non�retraction of Q� and Q�� it
follows that there are t� and t� such that

s �j A���� �
t����	X��� � FTI

Q���

s �j A���� �
t����	X��� � FTI

Q���

Since each Pi is re�ned by the corresponding Qi � it follows that

f �
strip
s� �j A��X��� � FUI

P���

f �
strip
s� �j A��X��� � FUI

P���

and so
f �
strip
s��X� � X��� � FUI

P� A�

kA�

P��� by the semantics of the parallel operator�
Hence the parallel operator preserves re�nement for eventually non�retracting programs� �

However� if only one of the programs is non�retracting� then the re�nement need not be preserved
through a parallel combination� For example� consider the following programs� illustrated in
Figure ���
where succ is an alphabet renaming which maps n to n � ���

Q� � Wait � 	 �Y �
�
� Stop �Wait � 	 succ
Y ��

Q� � �Y �
n �N
� Stop�
�
� succ
Y �

Q�

Q�

�
�
�
�

�
�
�
�

� � �
� � �
� � �
� � �

���

���

���

���
�time� � �

� � � � �

Figure �� non�synchronising o�ers

The process described by Q� makes natural numbers available� one at a time� Q� is non�
retracting� and it is also a re�nement of P� � n � N
� Stop	 on the empty trace� nothing
may be refused forever� The process described by Q� begins with all natural numbers available�
and retracts them one at a time� Q� is a re�nement of

P� �u
F��nN

n �
N n F�
� Stop

for which all events are possible� and any �nite set of events may eventually be refused forever�
The parallel combination Q� k Q� is semantically equivalent to Stop� since there is no event that
Q� and Q� may cooperate on� Q� is prepared to perform event m from time m �� onwards� but
Q� is not prepared to perform it beyond time m � �� On the other hand� P� k P� is equivalent
to P�� which cannot deadlock before any events have been performed� Hence Q� k Q� is not a
re�nement of P� k P�� even though Q� is non�retracting�

��

Promptness

The above example highlights other ways in which parallel combination can fail to preserve
re�nement� If Q� had made all of its o�ers by some time t � then the counterexample would not
work� since the non�retraction of Q� would ensure that all of the o�ers� made by time t � must
remain on o�er until acceptance occurs�

We de�ne a program to be t�prompt if it must make its o�ers within t time units of the end of
the trace� if a set may be refused for time t � then it may be refused forever�

De�nition ���� A program Q is t�prompt if

s��� � FTI

Q �� �
t �� t � � t�	A � � � t � � end
s� �
s�� �
t ����	A� � FTI

Q ��

A program is prompt if it is t�prompt for some t � �

We then obtain the following alternative result� which places no constraints upon Q��

Lemma ���� If P� vUIRTI
Q� and P� vUIRTI

Q�� Q� is non�retracting and t�prompt for some
t � then
P� k P�� vUIRTI

Q� k Q�� �

Proof This is a special case of Lemma ���� below� �

Promptness may be generalised to apply only to a particular set of events A�

De�nition ���� A program Q is t�prompt on A if

s��� � FTI

Q �� � B � A �
t �� t � � t� 	 B � � � t � � end
s�

�
s�� �
t ����	 B� � FTI

Q ��

�

Then the condition for parallelism to preserve re�nement may be correspondingly generalised�
if the interface between two programs may be split into two parts� and each program is prompt
and non�retracting on a di�erent part� then re�nement will be preserved by parallel composition�

Lemma ���� If P� vUIRTI
Q�� P� vUIRTI

Q�� B��B� � A��A�� Q� is eventually non�retracting
on B� and prompt on B�� and Q� is eventually non�retracting on B� and prompt on B�� then

P� A�
kA�

P�� v
UIRTI

Q� A�
kA�

Q��

�

Proof It is clear that in�nite traces of the timed parallel combination will appear in untimed
form in the untimed combination� So we need only show that

f �
tr �X �� UIRTI
s��� �
s��� � FTI

Q� A�

kA�

Q���

�
f �
tr �X �� � FUI

P� A�
kA�

P���

Assume the antecedent� and consider
s��� � FTI

Q� A�
kA�

Q���� built from behaviours
s �j
A����� � FTI

Q��� and
s �j A����� � FTI

Q���� where we have
�� �j A�� �
�� �j A�� � � �j

A� �A��� We have by the relation UIRTI that tr � strip
s�� and also there is some t such that

��

t � end
s� � maxft
s �j A��Q��� t
s �j A��Q��g for some t � such that
t ���	 X � �� Now Q�

is t��prompt for some t�� and Q� is t��prompt for some t�� De�ne

X� � 	

�� �j
X �A� �B��� �
t� � t��

Y� � fa � X �A� � B� j
t� � t ���	 fag � ��g
X� � 	

�� �j
X �A� �B��� �
t� � t��

Y� � fa � X �A� � B� j
t� � t ���	 fag � ��g

Then X� �Y� �X� �Y� � X �
A� �A��� Now since Q� is eventually non�retracting on B�� it
follows
also using subset closure of refusals for Q�� that

s �j A���� �
t � t � t�� 	X�� � FTI

Q���

And hence it follows by promptness that

s �j A���� �
t ���	 X�� � FTI

Q���

Also� observe that
t� � t ���	 Y� � ��� Since Q� is a re�nement of P� it follows that
f �
tr �j
A��X��Y��� � FUI

P���� Similarly we obtain that
f �
tr �j A��X��Y��� � FUI

P���� Thus from
the semantics of parallel� we obtain that
f �
tr �X �� � FUI

P� A�

kA�
P���� yielding the result�

�

This result is particularly useful� as it applies immediately to systems such as those described
in terms of input output automata
LyV��� where input is always possible� and so components
are always non�retracting and prompt on input� In these systems� parallel composition connects
outputs from one program to corresponding inputs of the other� Thus the interface in a parallel
composition may be partitioned into those events input by one component� and those input by
the other� The two programs will be prompt and non�retracting on these two sets respectively�

This result may also be applied to CSP descriptions of occam programs� since in such programs
output guards are not permitted� Once a program is prepared to perform an output� it remains
ready to perform it until it occurs� Consequently� program are always non�retracting on output�
so parallel composition will preserve re�nement for prompt components�

Compactness

The �nal condition we will present here concerns the nature of the untimed programs P� and P��
A process is compact if its refusals are determined
in a particular way� by the �nite refusal sets�
If the untimed processes are compact� then it turns out that only one of the timed processes need
be non�retracting for re�nement to be preserved by the parallel operator� In the example above�
P� fails this condition	 any �nite subset of N may be refused� but in�nite subsets may not�

De�nition ���	 A program P is compact if for any tr � ���Y � � we have

�X ��n Y �
f �
tr �X �� � FUI

P ��� �
f �
tr �Y �� � FUI

P ��
�

Lemma ���
 If P� vUIRTI
Q�� P� vUIRTI

Q�� Q� is eventually non�retracting on A� �A�� and
P��P� are compact� then

P� A�

kA�

P�� vUIRTI

Q� A�

kA�

Q��

�

��

Proof It is clear that in�nite traces of the timed process will appear in the untimed process�
So we need only show that

f �
tr �X �� UIRTI
s��� �
s��� � FTI

Q� A�
kA�

Q���

�
f �
tr �X �� � FUI

P� A�

kA�

P���

Consider
s��� � FTI

Q� A�
kA�

Q���� built from behaviours
s �j A����� � FTI

Q��� and
s �j
A����� � FTI

Q���� where �� �j A� � �� �j A� � � �j
A� � A��� We have by the relation

UIRTI that tr � strip
s�� and also that there is some t � end
s� � t
s �j A��Q�� such that

t ���	X � �� De�ne

X� � fa � X �A� j � t � � a � 	
�� � t ��g
X� � fa � X �A� j
 t � �
t ����	 fag � ��g

Since �� �j A� � �� �j A� � � �j
A� � A��� we have that X� � X� � X � Since Q� is eventually
non�retracting� we obtain that
s �j A���� �
t ���	 X�� � FTI

Q���� Since P� is re�ned by Q��
we have that
f �
tr �j A��X��� � FUI

P����
Now consider a �nite set fa�� a� � � �ang � Y � X�� For each ai there is a corresponding time ti
such that
ti ���	 faig � X�� Thus there is a time t� � maxftig such that
t���� 	 Y � ���
Since P� is re�ned by Q�� it follows that
f �
tr �j A��Y �� � FUI

P���� This is true for all �nite
subsets Y of X�� so by compactness of P� we have that
f �
tr �j A��X��� � FUI

P���� Hence

f �
tr �X �� � FUI

P� A�

kA�
P��� as required� �

Compactness is often easy to check� since it will be present in any program not containing
in�nite non�determinism� Thus any program not containing any in�nite choice or in�nite�to�one
renaming will automatically be compact�

Speci�cation

In the untimed in�nite traces model speci�cations may be considered as consisting of three
components� dealing with the failures� divergences and in�nite traces� In other words� for any
given S
l � b� there are Sf � Sd and Si such that

S
l � b� �
l � f � b �
tr �X ��� Sf
tr �X �

�
l � d � b � tr�� Sd
tr�

�
l � i � b � u�� Si
u�

Then a speci�cation
Sf
tr �X �� Sd
tr�� Si
u�� translates to the timed speci�cation

S �
s��� � �s �� �
t ���	 X � � � Sf
strip
s��X �

� �s ��� Si
strip
s��

For example� the speci�cation !deadlock�free� constrains only the possible failure set� with Sf
tr �X ��
X �� �� The translation is equivalent to

�s ��� �
 t �
t ���	� � X

which is the timed version of deadlock�freedom� Thus an untimed veri�cation of deadlock�freedom
for a system remains valid under timewise re�nement�

The untimed speci�cation of a bu�er which passes messages of type M may be given simply as
a predicate Sf �

Sf
tr �X � � tr � out � tr � in
� tr � out � tr � in � X � in�M � fg
� tr � out � tr � in � out �M �� X

��

The translation is equivalent to the following timed speci�cation�

strip
s� � out � strip
s� � in
� strip
s� � out � strip
s� � in � �
 t �m �
t ���	 fin�mg � �
� strip
s� � out � strip
s� � in � �
 t �
t ���	 out �M � �

which is the speci�cation of a timed bu�er�

As an example of an application of the theory� consider Roscoe�s �rst
untimed� bu�er law
presented in
Hoa���� which tells us that the chaining together of two bu�ers is again a bu�er�
The chaining operator is de�ned in terms of parallel� hiding� and renaming
where swapa�b
renames channel a to b and vice versa��

P� � P� b�
swapout�c
P�� fin�cgkfout �cg swapin�c
P��� n c

However� this law does not hold in general in the timed model� As we have seen� B� and B�

might fail to agree on a time to synchronise on their common internal channel� resulting in their
combination refusing ever to output�

In order to establish conditions under which the law does hold� we will make use of the fact that
untimed bu�ers are compact
since if some input can be refused� then so too can all possible
inputs�� and also of the fact that the re�nement relations in this paper are complete� which yields
that every timed bu�er is a re�nement of some untimed bu�er� We may then obtain conditions
under which a chain of bu�ers again yields a bu�er�

For example� if every timed bu�er Bi is eventually non�retracting on input� then the chain
B� � B� � � � � � Bn is again a bu�er� eventually non�retracting on input� This follows
from the fact that each Bi is a re�nement of some untimed bu�er Ai
by completeness of the
re�nement relation�	 that we have a condition which may be applied at every step of building
up the chain to ensure that the timed chain re�ned the untimed chain
in the general parallel
case� we require only non�retraction on the interface�	 and that the chain A� � A� � � � �� An
is an untimed bu�er
from Roscoe�s law�� from which it follows that any re�nement of it is a
timed bu�er� A similar result holds if each Bi is non�retracting on output	 or if odd
or even�
numbered bu�ers are non�retracting on both input and output� It follows that the combination
B� � COPY � B� � � �COPY � Bn is a bu�er� for any timed bu�ers Bi �

� An operational characterisation

A more immediately intuitive semantic approach often employed in the theory of process al�
gebra is that of operational semantics� processes are de�ned in terms of transitions that they
may perform and subsequent states that may be reached� Within this framework� equivalence
between processes may be characterised in terms of bisimulation relations
Mil���� or by means
of equivalence under some notion of testing
Hen����

In the testing approach� a test is de�ned to be a process T which also has the capacity to perform
a special success event �� which is considered to be distinct from the set of synchronisation events
�� An execution of a process P is a maximal
�nite or in�nite� sequence of transitions starting
from P � Then we say that P may T if there is some execution of
P k T � n � which passes
through a state from which � is a possible transition	 and P must T if every execution of

P k T � n � passes through such a state� Then P is equivalent to Q under may testing if
for any test T � P may T � Q may T 	 and P and Q are equivalent under must testing if
P must T � Q must T for any test T �

An operational semantics has been given for CSP in
BRW��� and
Ros���� Transitions are given

as P
	
� P �� indicating that a process P may perform a � event
i�e� an internal or visible event�

��

and then behave as P �� In this section we will subscript the transition with a u to indicate that
this is an untimed transition� Equivalence in the untimed traces modelMUT is exactly the same
as equivalence under may testing using the transitions given in
Ros���	 and equivalence in
the untimed in�nite traces model MUI is exactly the same as equivalence under must testing
using those transitions� More details may be found in
Hen��� BRW��� Ros���� The important
properties from our point of view is that each trace of P predicted by the traces model corresponds
to an execution of P in which that sequence of visible events is performed
as well as possibly
some internal events�	 that any divergence corresponds to an execution in which some pre�x of
the divergent trace is performed� followed by an in�nite sequence of internal � steps	 any failure

tr �X � corresponds either to a divergence
i�e� an in�nite sequence of � steps after some pre�x
of the trace� or to an execution in which the entire sequence tr of events is performed� and a
state is reached from which no internal progress can be made� and from which no event in the
refusal set X is possible	 and for every in�nite trace u there is an execution that either diverges
after some pre�x of u or performs the entire sequence of events u� And conversely� any execution
given by the operational semantics is recorded appropriately in the denotational semantics�

An operational semantics has also been provided for timed CSP in
Sch��� Sch���� where processes

may undergo timed transitions� P
�t�		

� P � indicates that the process P may perform event � at

time t � and subsequently behave as P �� We will subscript timed transitions with t to distinguish
them from untimed transitions� Evolutions� or time passing transitions� were also provided in
the operational semantics� Equivalence in the in�nite timed failures model MTI is the same as
equivalence under must testing using the transitions given in
Sch���� Again� timed failures

s��� are present in the denotational semantics of a process P precisely when there is some
execution of P in which events are performed at the times recorded in s� passing through states
in which the events recorded in the refusal set � were not possible�

Both may and must forms of testing can be de�ned for both untimed and timed CSP� We
will say P may

u
T if some execution of
P k T � n � in terms of untimed
�u transitions passes

through a state in which � is possible	 and we will use P mustu T � P may
t
T and P mustt T in

a similar fashion�

We may interpret a timed program Q also at the untimed level� Given a timed program Q � we
may de�ne an untimed program "
Q� whose untimed transitions are derived from the timed
ones�

Q
�t�		

�t Q

�

"
Q�
	
�u "
Q ��

Then FUT

"
Q���� FUD

"
Q���� FUF

"
Q���� andFI

"
Q��� can all be de�ned using the resulting
transition system�

In the traces model� P vUT Q is true exactly when �T �
Q may T � P may T �� By analogy�
we may characterise an operational version of timed re�nement� where if Q may pass a timed
test T � then P may pass the same T considered as an untimed test�

De�nition ��� P ��tQ is de�ned by

P ��tQ � �T � Q may
t
T � P may

u
"
T �

�

It turns out that this notion of re�nement is the same as the denotational version of traces
re�nement�

Theorem ��� P ��tQ � P v
UTRTI

Q �

��

Proof #�$ Assume P �v
UTRTI

Q � Then there is some trace s of Q such that strip
s� is not a
trace of P � Let s � h
t�� a��� � � � �
tn � an�i� Then de�ne the test T by

T � a�
� � � �
� an
� �
� Stop

Since the timed operational semantics are equivalent to the denotational semantics� there is some
execution of Q giving rise to trace s� so there is some execution of
Q k T � n � which reaches a
state in which T can perform �� However� there is no such execution of
P k "
T �� n �� since
if there were then this would correspond to P performing the events in strip
s�� which would
mean that strip
s� is a trace of P � yielding a contradiction� Thus Q may

t
T but �
P may

u
T ��

and so �
P ��tQ�

#�$ Assume P v
UTRTI

Q � and consider a test T for which Q may
t
T � Then there is some

execution of
Q k T � n � which leads to a state in which
�
�t is possible� The contribution

of Q to this execution corresponds to some timed trace s� Then strip
s� is a trace of P � so P

has some execution giving rise to strip
s�� Thus
P k "
T �� n � has an execution which takes
"
T � through states corresponding to the timed states that T passes through in the successful

execution of
Q k T � n �� and so it reaches a state in which an
�
�u transition is possible� Thus

P may
u
T � �

In the failures divergences model� P vUI Q is equivalent to P must T � Q must T for any T �
Again by analogy� we characterise an operational version of timed re�nement�

De�nition ��� P ��fQ is de�ned by

P ��fQ � �T � P mustu "
T �� Q mustt T

�

This formulation of re�nement is equivalent to the denotational version of failures re�nement�

Theorem ��� P ��fQ � P v
UIRTI

Q �

Proof #�$ If P �v
UIRTI

Q then either
�� there is some
s�
t ���� 	 X � � FTI

Q �� with

f �
strip
s��X �� �� FUI

P ��� or
�� there is some in�nite trace s such that
s� fg� � FTI

Q �� and
strip
s� �� FUI

P ���

� Let s � h
t�� a��� � � � �
tn � an�i� and let t� � �� Assume without loss of generality that
t � � tn � De�ne

Ti � Wait
ti
 ti��� 	

ai
� Ti���
�
� �
� Stop�� � � i � n

Tn�� � Wait
t �
 tn � 	 x � X
� �
� Stop

If
P k "
T��� n � has an execution that is not successful� then the contribution from P

must correspond to the failure
strip
s��X �� yielding a contradiction� Thus P mustu T��
On the other hand� Q has an execution corresponding to
s�
t ����	X �� and so
Q k T�� n
� does have an unsuccessful execution� thus �
Q mustt T���

� Let s � h
t�� a��� � � � �
ti� ai�� � � �i� Then let the trace during an interval
n� n � �� be given
by h
tn��� an���� � � � �
tn�m� an�m�i� This must be �nite for any interval� since the trace s is
�nitely variable� i�e� its restriction to any �nite interval is �nite� De�ne

Tn�i � Wait
tn�i
 tn�i��� 	

an � i
� Tn�i���
�
� �
� Stop� � � i � m

Tn�m�� � Stop

Tn � Tn�� jjjWait � 	Tn��

��

Each Tn�i is well�de�ned� so each of the equations for the Ti is ��guarded�� Then if

P k "
T��� n � has an unsuccessful execution� the contribution of P must correspond
to strip
s�� yielding a contradiction	 thus P mustu "
T��� However�
Q k T�� n � does
have an unsuccessful execution� driven by an execution of Q corresponding to s� Thus
�
Q mustt T���

#�$ Assume that P v
UIRTI

Q � and that �
Q mustt T �� It will be enough to prove that
�
P mustu "
T ��� Consider an unsuccessful execution of
Q k T � n �� There are a number of
possibilities	 we consider the events that were internalised by the n � abstraction�

� Q k T performs in�nitely many events from �� Then there is a corresponding in�nite trace
s of both Q and T � Since P v

UIRTI
Q � the trace strip
s� is an in�nite trace of P � If P

diverges at some point along strip
s�� then this will give rise to an unsuccessful execution
of
P k T � n �� Otherwise there is an in�nite untimed execution of "
T � performing
the same events� and passing through corresponding states to those reached in the timed
execution� Hence there is an in�nite execution of
P k "
T �� n � where � is not possible
in any state
since the possibility of � depends purely on the state reached by "
T ��� and
so �
P mustu "
T ���

� Q k T performs �nitely many events from ��

� If T performs in�nitely many timed � transitions� then "
T � may perform in�nitely
many untimed ones� passing through corresponding states� so if P does not diverge

which itself leads to an unsuccessful execution� then this will yield an unsuccessful
execution of
P k "
T �� n ��

� If T performs �nitely many � actions� then it will come to arrive in a �nal state T ��
Any events that T � is able to perform are blocked by Q for all time� and so P
if
it does not diverge� may reach a stable state P � in which none of those events are
possible� Also� "
T � may by untimed transitions reach a state "
T ��� which is also
unable to perform those events that T � was unable to perform� and so P � k "
T �� will
be unable to progress� Thus the execution from P k "
T � to P � k "
T �� is maximal�
and unsuccessful�

�

These results may also be used to establish that any untimed description of a system in CSP is
re�ned by the same description considered as a timed description�

We �rst provide an untimed operational semantics for the timeout operator� The timeout may
always be resolved by its left�hand argument performing a visible action� but any internal progress
made by that argument does not resolve the timeout�

P
a
�u P

�

P
t
� P ��

a
�u P
�

P

�u P

�

P
t
� P ��

�u P
�
t
� P ��

Furthermore� the timeout may occur�

P
t
� P ��

�u P
��

Lemma ��	 Any timed process P has "
P� v
UTRTI

P and "
P� v
UIRTI

P � �

Proof
sketch� This follows from the above�mentioned equivalence of the denotational and
operational semantics in both the untimed cases and the timed case� In the �rst case� if there is

��

a timed trace s of P � then there is some execution of P which gives rise to this trace� But then
every step of this execution can be matched by an untimed step� so there is an equivalent untimed
execution of "
P�� which corresponds to the trace strip
s�� Since the untimed operational and
denotational semantics are equivalent� the trace strip
s� appears in the trace set of "
P��

In the case of failures re�nement� similar reasoning shows that in�nite timed traces will be
matched by in�nite untimed ones	 and a timed failure
s�
t ��� 	 X � with �nite trace s will
correspond to some execution of P � After the trace s has been performed there are two possibil�
ities� The execution may contain an in�nite sequence of internal events	 these can be matched
by "
P�� leading to a divergence and the inclusion of
f �
strip
s��X �� as a failure of "
P�� The
other possibility is that a �nal state is reached from which no event in X � or any further internal
progress� is possible
since X is refused from that point onwards�	 in this case a corresponding
untimed state in which X may be refused is reachable from "
P� by means of a corresponding
execution� and the failure
f �
strip
s��X �� again appears as a failure of "
P�� �

De�nition ��
 De�ne relation R to be a failures simulation if whenever R
P��P��� then

�� If P�
	
�u P

�
� then there is some P �� such that P�

	
�u P
�
� and R
P ���P

�
��

�� If P�
	
�u then there are processes P ��� P

�
�� such that P�

	
�u P
�
� and P�

	
�u P
�
� and

R
P ���P
�
���

We say that P� failures simulates P� if there is some failures simulation between them� �

Lemma ��� If P� failures simulates P� then P� vUI P� �

Proof It follows from the de�nition of failures simulation that any trace� in�nite trace� or
divergent trace of P� must also be a trace� in�nite trace� or divergent trace respectively� of P��
Furthermore� any refusal of P�
not arising from divergence� is also a refusal of P�� since if

R
P��P�� and �P� 	
�u then �P� 	
�u 	 it follows that any failure of P� is a failure of P�� �

Lemma ��� Any CSP process P has P failures simulates "
P�� �

Proof Let the relation R hold between two programs P and "
Q� if P and Q are syntactically
identical up to the values of timeouts� A straightforward structural induction on P shows that
R is a failures simulation�

As an illustration we will establish the case of the timeout operator�

Assume that P and Q are syntactically identical up to the values of timeouts� If P � P�
t
� P��

then Q � Q�
t �

� Q�� where Pi is syntactically identical to Qi up to the values of timeouts for
i � �� ��

The operational rules required to establish this case are the following

Q
�t ��a	

�t Q

�

 t � � t �

Q
t
� Q �� �t ��a	

�t Q

�

Q
�t �
	

�t Q

�

 t � � t �

Q
t
� Q �� �t ��
	

�t Q

�
t�t �

� Q ��

Furthermore� the timeout may occur if Q can evolve for t units of time�

Q
t
�

Q
t
� Q �� �t �
	

�t Q

��

��

There are two clauses that de�ne failures simulation�

Clause �� If "
Q�
	
�u R then Q

�t ��		

�t Q
� for some t �� Q � by the de�nition of "� There are

three possibilities to be considered� one for each of the above operational rules� We will consider

only the second	 the other cases are entirely similar� In this case we have Q�
�t ��
	

�t Q

�
�� The

inductive hypothesis states that P�

�u P

�
� with P �� identical to Q �

� up to the values of timeout�

so it follows that P ��
t
� P� is identical to Q �

�

t�t �

� Q� up to the value of timeouts� as required�

Clause �� If P
	
�u then there are two possibilities� either � � � or � �� � � In the latter case

the proof is straightforward� In the case where � � � � it is a result from
Sch��� that any timed

process can either evolve or perform a � transition� either
�� Q�
t
� or
�� Q�

�t ��
	

�t Q
�
� for

some t � � t �

In case
��� the third operational rule is applicable� and so Q
�t�
	

�t Q�� Hence "
Q�

�u "
Q���

The third untimed rule for timeout has that P

�u P�� and by the inductive hypothesis on the

relationship between P� and Q� it follows that R
P��"
Q��� as required�

In case
��� the inductive hypothesis for P� and Q� states that there are processes P �� and Q �
�

such that P�

�u P

�
� and "
Q��

� Q �
� with R
P ���Q

�
��� Hence there are processes P ��

t
� P� and

Q �
�

t�t �

� "
Q�� which are related by R� and for which P

�u P

�
�

t
� P� and "
Q�

�u Q
�
�

t�t �

�

"
Q��� as required�

Thus the case is established�

Hence P failures simulates "
Q� whenever P and Q are identical up to the values of timeouts�
The lemma follows from the special case P � Q � �

Theorem ��� Any process P has P v
UTRTI

P and P v
UIRTI

P � �

Proof Lemmas ���� ���� ��� yield that

P vUI "
P� v
UIRTI

P

and Lemma ��� yields that

P v
UIRTI

P

as required� �

� Examples

A stop and wait protocol

The well�known alternating bit protocol is a useful common example� since it has been treated
by so many di�erent formalisms that it provides a means of comparing and contrasting them�
We will use it here simply to illustrate some of the techniques presented earlier�

The untimed alternating bit protocol consists of a sender and receiver communicating over two
lossy channels� The nature of a generic lossy channel may be speci�ed at the untimed level using
the in�nite traces model� The speci�cation SM on a medium Min�out with input in and output
out consists of three parts� two on the trace refusal observations� and one on the in�nite traces�

SM �
tr �X � tr � out � tr � in
SM �
tr �X � out �M �� X in�M �X � fg

SM �
u� �
u �j in� ��� �
u �j out� ��

��

SM �
tr �X � simply states that the sequence of messages passed on channel out should be a
not
necessarily contiguous� subsequence of those passed on channel in� so messages may be lost but
not corrupted	 SM �
tr �X � states that at least one of input and output should not be refused

where X is the refusal set�	 and SM �
u� is a fairness condition that requires that output should
not be lost in�nitely often�

The requirement we have of the entire system is that it should behave as a
one�place� bu�er�
Our speci�cation is

SPEC
tr �X � � tr � out �� tr � in
� tr � out � tr � in � in�M �X � fg
� tr � out � tr � in � out �M �� X

The network used is pictured as follows�

S

M�

M�

R�

� �

�

� �

in

a b

out

d c

The basic idea of the protocol is to add an extra bit to each of the messages sent along the
lossy channels which alternates between � and �� The sending process sends multiple copies of
each message until it receives an acknowledgement� As soon as the receiving process gets a new
message it sends acknowledgements of it until the next message arrives� The two ends can always
spot a new message or acknowledgement because of the alternating bit�

The two media are described as M � � Ma�b and M � � Mc�d � passing messages from a to b� and
from c to d

This strategy may be captured by the following CSP descriptions of the sender S and the receiver
R� We set R � R
�� and S � S
��� where for s � f�� �g and x in the set of messages M we
de�ne

S
s� � in%x
� S �
s� x �

S �
s� x � � a&
s� x �
� S �
s� x �
� d%s
� S
s�
� d%s
� a&
s� x �
� S �
s� x �

R
s� � b%
s� x �
� out &x
� c&s
� R
s�
� b%
s� x �
� c&s
� R
s�

The entire network consists of the parallel combination of the sender and receiver together with
the two media	 and the channels a�b�c� and d are all made internal�

NETWORK �

S fin �a�dgkfout�b�cg R� �kfa�b�c�dg
M � fa�bgkfc�dg M ��� n fa� b� c� dg

The network is considered as the parallel combination of the protocol and the media�

An analysis at the untimed level establishes that the system is livelock�free� essentially because of
the fairness of the media which cannot lose an in�nite sequence of messages� It is also deadlock�
free� if S cannot make progress� then it must be waiting for both media� which must therefore
both be ready to interact with R� and so R is able to make progress� Finally� it is straightforward
to show that it is functionally equivalent to a one�place bu�er�

��

Timed descriptions of the alternating bit protocol commonly employ a timeout in the description
of the sender process� since the intention is that the sender should wait for an acknowledgement
and then retransmit a message if this does not arrive within a certain interval� But in fact there
is no need to withdraw the capability of receiving a message on the acknowledgement channel
simply because a retransmission has been enabled� and so at the untimed level this behaviour
may be modelled as a choice�

To provide a timed re�nement of the protocol� we wish to preserve correctness of the system�
The most general form of correctness that could be preserved by a timewise re�nement would
be for timed versions of the media to meet simply the translations of the untimed speci�cations
with no further constraints� Thus we prefer not to impose the restriction on the media that they
are non�retracting�

A timed version TS of the sender process may be obtained simply by including a delay t before
retransmission of a message� The length of this delay will be in�uenced by such factors as the
length of time before an acknowledgement would be expected to arrive� and the reluctance to
send unnecessary messages� The timed receiver process TR still behaves sequentially� and has
no time�critical behaviour�

Some small delays � are introduced to ensure that the recursive loops are time�guarded�
These
play the role of the original � delay enforced by event pre�x in earlier versions of timed CSP

ReR�����

TS
s� � in%x
� TS �
s� x �

TS �
s� x � � Wait t 	 a&
s� x �
� TS �
s� x �

� d%s
�
� TS
s�

� d%s
�
� a&
s� x �
� TS �
s� x �

TR
s� � b%
s� x �
�
� out &x
� c&s
� TR
s�

� b%
s� x �
�
� c&s
� TR
s�

Given two timed media TM � and TM � that meet the timed translation of SM � by completeness
there are two untimed media M � and M � which meet SM and which are re�ned by TM �
and TM �� Then M � fa�bgkfc�dg M � v

UIRTI
TM � fa�bgkfc�dg TM � by Lemma ����� since the

intersection of the interface sets is empty� so both TM � and TM � are trivially non�retracting
on it� Also� by Theorem ���� and since delays may be introduced into an untimed description to
produce a timed re�nement� and the intersection of the two interface sets is empty� we have that
S fin �a �dgkfout �b�cg R v

UIRTI
TS fin �a�dgkfout �b�cg TR� Furthermore� both the sender and the

receiver are non�retracting and prompt� and so TS fin�a�dgkfout�b�cg TR is also non�retracting
and prompt� Thus the timed network

TNETWORK �

TS fin �a�dgkfout�b�cg TR� �kfa�b�c�dg
TM � fa�bgkfc�dg TM ��� n fa� b� c� dg

is a timewise re�nement of the untimed network� and so it must be a one�place bu�er� Thus the
functional correctness of the timed network may be deduced from an untimed analysis�

Of course� to do an analysis of the timing behaviour of the network it would be necessary to use
the full power of the timed model� To consider the maximum time between input and output it is
necessary to know for how long it is necessary to input messages into the media before output can
be guaranteed	 and to optimise the value of the timeout t it is necessary to know the expected
delay in the media of a successfully transmitted message� The technique of timewise re�nement
cannot contribute to these concerns	 its role is rather to complement them by allowing the
appropriate use of more abstract methods for some analysis of aspects of a system�s behaviour�
even when other aspects require the use of the more complicated timed models�

��

A railroad crossing

This example was originally presented in
Lev���� It gives an extremely simple model of a railroad
crossing which is nevertheless complex enough to illustrate a number of aspects of the modelling
and veri�cation of timed systems�

The system is described as consisting of three components� a train� a gate� and a gate controller�
The gate should be up to allow tra�c to pass when no train is approaching� but should be
lowered to obstruct tra�c when a train is close to reaching the crossing� It is the task of the
controller to monitor the approach of a train� and to instruct the gate to be lowered within the
appropriate time� The train is modelled at a high level of abstraction� the only relevant aspects
of the train�s behaviour are when it is nearing the crossing� when it is entering it� when it is
leaving it	 and the delays between these events�

A number of safety conditions are formulated� These require the gate to be down when the train
enters the crossing	 the gate not to change state for ten time units before the train enters the
crossing	 and the train to have left the crossing by the time the gate goes up� We also require
the liveness property that the crossing is deadlock�free� A system that deadlocked with the gate
down would meet the safety conditions� but would not be satisfactory�

We begin with an untimed description and analysis of the system� to investigate which of these
properties may be veri�ed at the untimed level� We keep the process descriptions as simple as
possible� including only those events that are relevant to consideration of these properties�

The gate controller Controller receives two types of signal from the crossing sensors� near �ind �
which informs the controller that the train is approaching� and out �ind � which indicates that
the train has left the crossing� It sends two types of signal to the crossing gate mechanism�
down�command � and up�command � which instruct the gate to go down and up respectively�
These four events form the alphabet C of the controller�

The gate� modelled by Gate� responds to the commands sent by the controller� We include
additional events up and down to model the position of the gate� These two events� together
with up�command and down�command form the alphabet G of the gate�

This leaves us with the following description of the crossing mechanism�

Crossing � Controller C kG Gate

The controller responds to sensory inputs by issuing gate command signals�

Controller � near �ind
� down�command
� Controller

�

out �ind
� up�command
� Controller

The gate process responds to the controller�s signals by raising and lowering the gate�

Gate � down�command
� down
� Gate

�

up�command
� up
� Gate

To reason about the behaviour of the system as a train approaches and reaches the crossing�
we model the e�ect of such a happening via the crossing sensors� The train triggers the sen�
sors by means of the near �ind and out �ind events� The events train�near � enter �crossing and
leave�crossing model respectively the situations where the train is close to the crossing� the train
enters the crossing� and the train leaves the crossing� These �ve events are all that are required
for the sake of this analysis� they form the alphabet T of the train�

��

We will use the process Train to model the approach of the train� and its e�ect upon the crossing
system�

Train � train�near
� near �ind
� enter �crossing
�
leave�crossing
� out �ind
� Train

The crossing system� in conjunction with the train� is described as follows�

System � Train TkC�G Crossing

We are now able to express the properties we gave earlier in terms of the events we have chosen
to model the system�

If the train enters the crossing� then the gate should have gone down more recently than it went
up�

Safety�
tr� � last
tr� � enter �crossing � last
tr �j fdown� upg� � down�

If the train enters the crossing at time t � then no down or up events should have occurred in the
preceding ten time units	 the projection of the trace to those events over that interval is empty�

Safety�
s��� � h
t � enter �crossing�i � s �
s �j fdown� upg �
t
 ��� t �� � hi

If the gate goes up� then the train must have left the crossing more recently than it entered it�

Safety�
tr� � last
tr� � up �
last
tr �j fenter �crossing � leave�crossingg� � leave�crossing

Finally� the system must be deadlock�free�

Liveness�
tr ��� � deadlock�freedom

Each of these properties has been expressed at the highest possible level of abstraction� In each
case� the simplest model has been used to capture the required property� Safety properties � and
� are expressible in the untimed traces model� Safety property � concerns explicit timing issues�
so the timed model is required in order to express it� Deadlock�freedom is expressible using the
untimed failures model�

Safety properties � and �� and the liveness property� are candidates for being established by
the untimed system description� They may be established by use of algebraic laws� or by use
of proof rules� An alternative approach would be to use model�checking for these properties
directly
Ros���� The states of the system are shown in Figure �
where internal transitions cor�
responding to unwinding of recursions have been elided�� Examination of the diagram reveals
that at any point where up is possible� there must have been a leave�crossing event more re�
cently than an enter �crossing event� Thus Safety� is satis�ed� On the other hand� there are
enter �crossing transitions where up is more recent than down� showing that in fact Safety� is
not satis�ed� Even though it is expressible as an untimed requirement� it turns out that its
validity rests upon timing properties of the system
in particular� that the gate goes down in less
time than it takes for the train to reach the crossing�� Finally� every state has some transition
out of it� so the system is deadlock�free� meeting the liveness requirement� Both Safety� and
Liveness� are easily checked by the Failures Divergences Re�nement checker FDR
FSE����

Timewise re�nement allows timing information to be added to the description of the system
while preserving the properties already established� We �rstly include the timing information

��

train.near

near.ind

enter.crossing

leave.crossing

down.com

down.com

down.com

down

down

down

down

enter.crossing

enter.crossing

leave.crossing

leave.crossing

out.ind

out.ind

up.com

train.near

train.near

near.ind

up up.com

up

up

States violating Safety1

Figure �� States and transitions for an untimed railway crossing

��

we have about the train� that it takes at least � minutes from triggering the near �ind sensor to
reach the crossing	 and that it takes at least �� seconds to get across the crossing�

TTrain � train�near
� near �ind
���
� enter �crossing

��
�
leave�crossing
� out �ind
� TTrain

The controller takes a negligible amount of time � from receiving a signal from a sensor to relaying
the corresponding instruction to the gate�

TController � near �ind
�
� down�command
� TController

�

out �ind
�
� up�command
� TController

The timed gate process TGate process takes a non�negligable amount of time to get the gate
into position following an instruction�

TGate � down�command
���
� down
� TGate

�

up�command
���
� up
� TGate

However� this is still considerably less time than it takes for the train to reach the crossing� so the
timed description is su�ciently detailed to establish Safety�� under the additional assumption
that the events up and down are entirely under the control of the Gate� For further discussion of
environmental assumptions� see
Sch���� This environmental assumption is captured as
����	
fup� downg � �� and so the speci�cation met by the system is

����	 fup� downg � � � Safety�

The timed description is also su�cient to establish Safety��

The timed process descriptions are simply the untimed process descriptions with times added�
The results of Section ��� guarantee that the timed system trace re�nes the untimed one� ensuring
that the timed system meets Safety��

Finally� the three component timed processes are all non�retracting� Lemma ��� ensures that the
system consisting of their parallel combination is a failures re�nement of the untimed system� so
it retains the untimed property Liveness��

� Discussion

We have seen how veri�cations of speci�cations can be mapped up the CSP hierarchy of models�
and also an example of how general laws might be translated� Other properties
such as deter�
ministic or compact� do not translate in general� For example� the deterministic untimed process
a
� Stop is re�ned by the non�deterministic timed process a
� Stop u Wait � 	 a
� Stop�
which can perform or refuse to perform a at time ��

Comparisons

There has also been some work in this area in the contexts of timed CCS and of timed ACP� Larsen
and Yi
LaY��� have proposed a notion of time�abstracting bisimulation� which speci�es when
timed processes are equivalent modulo timing behaviour� Thus one process may be used to specify
simply the functional behaviour of a system by requiring that any proposed implementation
should be time�abstracting bisimilar to it� They prove that time�abstracting equivalence is

��

decidable for a timed CCS calculus
Wan���� in contrast to the re�nement relation presented
in this paper� which is not decidable� Interestingly� they also establish that time�abstracting
congruence
i�e� equivalence in all contexts� is standard timed bisimulation� The corresponding
result for this paper is that untimed traces congruence for timed processes is the same as
�nite�
timed failures equivalence�

Baeten and Bergstra
BaB��� have considered the embedding of untimed ACP into real time ACP�
They propose a translation of untimed ACP into the timed setting� for example translating a

to
R
t	� a
t�� an untimed a process speci�es nothing about the time the a should occur� so it

translates to the timed process that can perform an a at any time� This is also the philosophy
of this paper� They also consider the translation of certain identities of ACP into the timed
framework	 this permits reasoning at a higher
untimed� level of abstraction to be incorporated
when detailed reasoning about timing issues is also required�

Urgent events

Events in timed CSP are treated as non�urgent� processes are described in terms of when events
become enabled and disabled� A process does not have complete control over the performance
of
visible� events� since the cooperation of its environment is always required for an event to
occur� The approach taken in timed CSP� and some other process algebras� is that the process
therefore is not given responsibility for the performance of events	 the most that can be expected
of a process is that it is willing to go along with the occurrence of an event�

The other principal approach to events in timed process algebras� taken by Timed LOTOS

QuF��� BoL��� among others� is to assume that the environment of a process will permit certain
events to occur when the process wishes to perform them� Thus actions of a process may be
treated as urgent� in that they occur as soon as they are enabled by the process� However� since
the environmental assumption is not always justi�ed'the process may be placed in parallel with
a process which is unwilling to allow an urgent action to occur'it is possible that a catastrophic
timelock occurs and no progress can be made� It is the responsibility of the system designer to
ensure that no timelocks occur in a particular design� Alternatively� the parallel operator may
treat urgent events as observable signals� In this treatment non�urgent events may synchronise
with urgent ones but may not block them� This approach was taken in
DJS��� Dav����

In fact� urgent and non�urgent actions are incorporated within a single framework in
BoL����
where actions are initially non�urgent� but may be made urgent by an urgency operator�

The question arises� how do the techniques developed here apply in the case of urgency%

The natural timed denotational semantics for systems with urgent actions is in terms of timed
traces� Thus we might hope that the traces re�nement discussed in this paper would remain
applicable in the presence of urgent actions� Indeed� the may testing characterisation of the
re�nement relation yields the same results� and all of the timed LOTOS operators preserve the
re�nement relation� Also� the urgency operator �
U � preserves re�nement� in the sense that if
P is re�ned by Q � then it is also re�ned by �
U �
Q�	 making events urgent does not remove any
safety properties� We might expect to use timewise re�nement techniques when the requirements
on a system split naturally into untimed safety properties� and timing requirements�

The notion of a timed failure is inapplicable to an urgent action� since it is performed as soon
as it becomes possible� All the information about when a process was ready to perform it is
contained in the timed trace	 refusal information is redundant
though it remains appropriate
for non�urgent actions�� Thus the failures re�nement relation is not appropriate when dealing
with urgent timed systems� This is re�ected by the relation obtained by considering the relation
��f de�ned in terms of must testing� If process Q has an urgent action a to be performed at

time t � then the test T � Wait
t � �� 	 �
� Stop will yield a timelock at time t � since it will
not cooperate with Q on the action a� However� any untimed process P
except an immediately

��

divergent one� has P must "
T �� Thus no useful process P has P ��f
Q � The re�nement relation

collapses in the face of urgent actions� holding only when the untimed process is divergent�

In systems where both urgent and non�urgent events are present� it appears that the results for
traces re�nement apply as easily as in the pure non�urgent case of timed CSP� Failures re�nement
as discussed here will be useful only as far as the �rst urgent action� It is not even clear whether
there is any more appropriate notion of failures style re�nement� since timed liveness properties in
urgent systems do not appear to have any untimed counterpart� The archetypical timed liveness
property is that of timelock�freedom� and it is unlikely that this could be established by untimed
analysis�

Current and future work

Earlier work
Sch��� investigated the relationship between the untimed models and the standard
timed failures model of
Ree���� The di�culties encountered in using that model to treat in�nite
behaviour led to the development of the in�nite failures model� which supports a more natural
treatment of timewise re�nement from the untimed models�

Other re�nement relations are also under investigation� In particular� a relation between the
failures divergences model and the timed failures stabilities model that treats instability as di�
vergence has that all CSP operators preserve re�nement	 and this re�nement relation is complete
for stable processes� When stability considerations are important then this relation would be the
natural one to use� Of particular interest is the relationship between the timed models and the
timed probabilistic models for CSP developed by Lowe
Low���� Work has already been done in
this direction
see e�g�
Low����� which it seems should �t into the framework presented in this
paper�

The underlying theory presented here is of course more general than simply CSP� and should
be applicable wherever processes are modelled in terms of the behaviours they may exhibit�
It may for example be applicable to Gerth and Kuiper�s interface re�nement
GKS���� I feel
that the theory will be useful only if re�nement relations can be established at the syntactic
level� since if re�nement can be shown only by examining the semantics directly� then verifying
abstract speci�cations of processes via re�nement is unlikely to be much easier than performing
the veri�cation directly�

Acknowledgements

Thanks are due to Mike Mislove� Bill Roscoe� Mike Reed� Jim Davies� Dave Jackson� Michael
Goldsmith� and members of the ESPRIT SPEC� REACT and CONCUR projects for useful
discussions on this material� In particular Bill Roscoe was responsible for the formulation of the
alternating bit protocol presented here� Thanks are also due to the anonymous referees whose
thorough reading and careful comments have been extremely useful�

This work was funded under SERC research fellowship B�� RFH ���� Additional funding was
received from EC Basic Research Action ���� concur �� and the U�S� O�ce of Naval Research�

References

�BaB	�
 J�C�M� Baeten and J�A� Bergstra� Discrete time process algebra� University of Amsterdam�
Report P	���b� �		��

�BoL	�
 T� Bolognesi and F� Lucidi� Timed process algebras with urgent interactions and a unique

powerful binary operator� LNCS
��� �		��

��

�BrR��
 S�D� Brookes and A�W� Roscoe� An improved failures model for communicating sequential

processes� Proceedings� Seminar on Concurrency� LNCS �	�� �	���

�BRW	�
 S�D� Brookes� A�W� Roscoe� and D�J� Walker� An operational semantics for CSP� submitted
for publication� �		��

�ClZ	�
 R� Cleaveland and A�E� Zwarico� A theory of testing for real�time� North Carolina SU and
Johns Hopkins� �		��

�DaS	�
 J�W� Davies and S�A� Schneider� Recursion induction for real�time processes� Formal Aspects
of Computing� � �
�� �		��

�DaS	�
 J�W� Davies and S�A� Schneider� A brief history of timed CSP� Theoretical Computer Science�
���� �		��

�Dav	�
 J�W� Davies� Speci�cation and proof in real�time CSP� Cambridge University Press� �		��

�DJS	�
 J�W� Davies� D�M� Jackson� and S�A� Schneider� Making things happen in Timed CSP� PRG
Technical Report ��	�� Oxford� �		��

�FSE	�
 Formal Systems �Europe� Ltd� The Failures Divergences Re�nement User Manual� �		��

�GKS	�
 R� Gerth� R� Kuiper� and J Segers� Interface re�nement in reactive systems� Proceedings of
CONCUR �	�� LNCS
��� �		��

�Hen��
 M� Hennessy� Algebraic Theory of Processes� MIT Press� �	���

�Hoa��
 C�A�R� Hoare� Communicating Sequential Processes� Prentice�Hall� �	���

�LaY	�
 K�G� Larsen and Wang Yi� Time abstracted bisimulation� implicit speci�cations and decid�

ability� Proceedings of MFPS �	�� LNCS� �		��

�Lev��
 N� G� Leveson and J� L� Stolzy� Safety Analysis Using Petri Nets� IEEE Transactions on
Software Engineering� �	���

�Low	�
 G� Lowe� Prioritized and probabilistic models of timed CSP� Oxford University Computing
Laboratory Technical Report PRG�TR����	�� �		��

�Low	�
 G� Lowe� Relating the prioritized model of timed CSP to the timed failures model� Oxford
University Computing Laboratory� �		��

�LyV	�
 N� Lynch and F� Vaandrager� Forward and backward simulations for timing�based systems�

Proceedings� Real�time� theory in practise� LNCS
��� �		��

�Mil�	
 R� Milner� Communication and Concurrency� Prentice�Hall� �	�	�

�MRS	�
 M�W� Mislove� A�W� Roscoe� and S�A� Schneider� Fixed points without completeness� Theo�
retical Computer Science� ���� �		��

�QuF��
 J� Quemada and A� Fernandez Introduction of quantitative relative time into LOTOS� in

�Protocol Speci�cation� Testing and Veri�cation VII� North Holland� �	���

�Ree��
 G�M� Reed� A Uniform Mathematical Theory for Real�Time Distributed Computing� Oxford
University DPhil thesis� �	���

�ReR�

 G�M� Reed and A�W� Roscoe� A timed model for communicating sequential processes� Pro�
ceedings� ��th ICALP� LNCS ��
� �	�
�

�Ros��
 A�W� Roscoe� Unbounded Nondeterminism in CSP� Oxford University Computing Laboratory
technical monograph PRG�
�� �	���

�Ros	�
 A�W� Roscoe� Model�checking CSP� in A Classical Mind edited by A�W� Roscoe� Prentice�Hall�
�		��

��

�Sch�	
 S�A� Schneider� Correctness and Communication in Real�Time Systems� Oxford University
DPhil� thesis �	�	�

�Sch	�
 S�A� Schneider� An operational semantics for timed CSP� Proceedings of the Workshop on
Concurrency� Report
�� Programming Methodology Group� Chalmers University� �		��

�Sch	�
 S�A� Schneider� Unbounded nondeterminism for real�time processes� Oxford University Tech�
nical Report ���	�� �		��

�Sch	�
 S�A� Schneider� An operational semantics for timed CSP� Information and Computation� ��

���� �		��

�Sch	

 S�A� Schneider� Speci�cation and veri�cation in Timed CSP� in Real�time Systems� Speci�ca�

tion� Veri�cation and Analysis� Prentice�Hall �		

�Wan	�
 Wang Yi� Real�time behaviour of asynchronous agents� Proceedings of CONCUR �	�� LNCS
���� �		��

A Semantic models and functions

Traces

The traces modelMUT is de�ned to be those sets of traces that are non�empty� and closed under
pre�xing� They are ordered under set containment�

The semantic function FUT

The space of environments is de�ned as

EUT � V �MUT

The semantic function

FUT � CSP
� EUT
�MUT

is de�ned by the following set of equations�

FUT

Loop��� b� ftr � ��g
FUT

Stop��� b� fhig
FUT

Skip��� b� fhi� hpig
FUT

P 	Q ��� b� ftr j tr � FUT

P ��� � tr �j fpg � hig

�
ftrP�trQ j trP

�hpi � FUT

P ��� �
trP �j fpg � hi � trQ � FUT

Q ���g

FUT

P
t�
� Q ��� b� FUT

P ��� � FUT

Q ���

FUT

P � Q ��� b� FUT

P ��� � FUT

Q ���

FUT

a � A
� Pa ��� b� S
a�Afhai�tr j tr � FUT

Pa ���g

FUT

u
i�I

Pi ��� b� S
i�I FUT

Pi ���

��

FUT

P AkB Q ��� b� ftr �
A � B�� j tr �j A � FUT

P ��� �
tr �j B � FUT

Q ���g

FUT

P jjj Q ��� b� ftr j
 trP � FUT

P ���� trQ � FUT

Q ��� �
tr interleaves
trP � trQ�g

FUT

P n A��� b� ftr n A j tr � FUT

P ���g
FUT

f
P���� b� ff
tr� j tr � FUT

P ���g

FUT

f ��
P���� b� ftr j f
tr� � FUT

P ���g
FUT

Y ��� b� �
Y �

where interleaves is de�ned on sequences m�m��m� � �� ��� as follows�

m interleaves
m��m�� � �m � �m� ��m�

�
 f� �
����m����
����m�� f� �
����m����
����m� �
ran
f�� � ran
f�� � fg
� ran
f�� � ran
f�� � ����m

� � n � ����m� � m�(n � m(f�
n�

� � n � ����m� � m�(n � m(f�
n�

where ���n � fj j � � j � ng ���� � N� A�� B is the set of monotonically increasing injective
total functions from A to B � ran
f � is the range of function f � and m(n is the nth element of
sequence m�

The semantics FUT

�Y � P ��� of a recursive term is de�ned to be the least �xed point of the
function

� S � FUT

P ��
�
S�Y �� �MUT �MUT

where substitution in an environment is de�ned by

�
S�Y �
Z � � �
Z � Z �� Y

�
S�Y �
Y � � S

Untimed in�nite traces� failures� and divergences

The process axioms given in
Ros��� correspond to the following properties required of a set S
for it to correspond to the set of observations of some process� Thus the semantic model MUI

is the collection of sets

S � ff g 	
�� 	P
��� � fdg 	�� � fig 	 ��

ordered under reverse containment� that meet these eight axioms�

��
f �
tr��tr�� fg�� � S �
f �
tr�� fg�� � S

��
f �
tr �X �� � S � Y � X �
f �
tr �Y �� � S

��
f �
tr �X �� � S � � a � Y �
f �
tr�hai� fg�� �� S �
f �
tr �X �Y �� � S

��
d � tr�� � S �
d � tr��tr�� � S

��
d � tr�� � S �
f �
tr��tr��X �� � S

��
i � tr�u� � S �
f �
tr � fg�� � S

��
d � tr� � S �
i � tr�u� � S

��
f �
tr�� fg�� � S �
T �
� tr� � T �

f �
tr�

�tr�� fa j tr��hai �� Tg�� � S � f
i � tr��u� j u � Tg � S �

��

Here T � fu � �� j � tr � u � tr � Tg� where T ranges over �nite pre�x closed sets of �nite
traces�

The semantic function FUI

The function FUI is de�ned in terms of three functions FUD � FUF � and FI � yielding divergences�
failures� and in�nite traces respectively� It is then given by

FUI

P ��� � f
d � tr� j tr � FUD

P ���g
�f
f �
tr �X �� j
tr �X � � FUF

P ���g
�f
i � u� j u � FI

P ���g

The semantic function FUD
De�ne EUD � V �MUD � The semantic function

FUD � CSP � EUD �MUD

is de�ned by the following set of equations�

FUD

Loop��� b� ftr j tr � ��g
FUD

Stop��� b� fg
FUD

Skip��� b� fg
FUD

P 	Q ��� b� ftr�tr � j tr � FUD

P ��� � p �� 	
tr� � tr � � ��g

�
ftr�tr � j
tr�hpi� fg� � FUF

P ��� � p �� 	
tr�

� tr � � FUD

Q ���g

FUD

P
t�
� Q ��� b� FUD

P ��� � FUD

Q ���

FUD

P � Q ��� b� FUD

P ��� � FUD

Q ���

FUD

a � A
� Pa ��� b� S
a�Afhai�tr j tr � FUD

Pa ���g

FUD

u
i�I

Pi ��� b� S
i�I FUD

Pi ���

FUD

P AkB Q ��� b� ftr�tr � j tr �
A � B��

�

tr �j A� fg� � FUF

P ��� � tr �j B � FUD

Q ���
 tr �j A � FUD

P ��� �
tr �j B � fg� � FUF

Q ���g

FUD

P jjj Q ��� b� ftr j
 trP � FUD

P ����
trQ � fg� � FUF

Q ��� �
tr interleaves
trP � trQ�g

�
ftr j

trP � fg� � FUF

P ���� trQ � FUD

Q ��� �

tr interleaves
trP � trQ�g
FUD

P n A��� b� ftr n A�tr � j tr � FUD

P ���g

�
fu n A�tr � j u � FI

P ��� � �
u n A� ��g

��

FUD

f
P���� b� ff
tr��tr � j tr � FUD

P ���g
FUD

f ��
P���� b� ftr j f
tr� � FUD

P ���g

FUD

Y ��� b� �
Y �

The semantic function FI
De�ne EI � V �MI � The semantic function

FI � CSP � EI �MI

is de�ned by the following set of equations�

FI

Loop��� b� fu j u � �� ���g
FI

Stop��� b� fg
FI

Skip��� b� fg
FI

P 	Q ��� b� fu j u � FI

P ��� �

p
�� 	
u�g

�
ftr�u� j
tr�hpi� fg� � FUF

P ��� � p �� 	
tr�

� u� � FI

Q ���g
�
ftr�u j tr � FUD

P 	Q ���g

FI

P
t�
� Q ��� b� FI

P ��� � FI

Q ���

FI

P � Q ��� b� FI

P ��� � FI

Q ���

FI

a � A
� Pa ��� b� S
a�Afhai�u j u � FI

Pa ���g

FI

u
i�I

Pi ��� b� S
i�I FI

Pi ���

FI

P AkB Q ��� b� fu j u �
A � B��

� u �j A � FI

P ���
u �j A� fg� � FUF

P ���
� u �j B � FI

Q ���
u �j B � fg� � FUF

Q ���
g

�
ftr�u j tr � FUD

P AkB Q ���g

FI

P jjj Q ��� b� fu j
 uP � uQ �
�uP �� �uQ ���

� u interleaves
uP � uQ�

�
uP � fg� � FUF

P ��� uP � FI

P ���
�
uQ � fg� � FUF

Q ��� uQ � FI

Q ���g

�
ftr�u j tr � FUD

P jjj Q ���g

FI

P n A��� b� fu n A j u � FI

P ��� � �
u n A� ��g
�
ftr�u j tr � FUD

P n A���g

��

FI

f
P���� b� ff
u�� j u � FI

P ���g
�
ftr�u j tr � FUD

f
P����g

FI

f ��
P���� b� fu j f
u� � FI

P ���g
FI

Y ��� b� �
Y �

The semantic function FUF
De�ne EUF � V �MUF � The semantic function

FUF � CSP � EUF �MUF

is de�ned by the following set of equations�

FUF

Loop��� b� f
tr �X � j tr � �� � X � �g
FUF

Stop��� b� f
hi�X � j X � �g
FUF

Skip��� b� f
hi�X � j p �� X g

�
f
hpi�X � j X � �g

FUF

P 	Q ��� b� f
tr �X � j p
�� 	
tr� �

tr �X � fpg� � FUF

P ���g
�
f
tr�tr ��X � j p

�� 	
tr�
�
tr�hpi� fg� � FUF

P ���
�
tr ��X � � FUF

Q ���g

�
f
tr �X � j tr � FUD

P 	Q ���g

FUF

P
t�
� Q ��� b� FUF

Q ��� � f
tr �X � j
tr �X � � FUF

P ��� � tr �� hig

FUF

P � Q ��� b� f
hi�X � j
hi�X � � FUF

P ��� � FUF

Q ���g
�
f
tr �X � j tr �� hi �
tr �X � � FUF

P ��� � FUF

Q ���g

FUF

a � A
� Pa ��� b� f
hi�X � j X �A � fgg
�S
a�Af
hai�tr �X � j
tr �X � � FUF

Pa ���g

FUF

u
i�I

Pi ��� b� S
i�I FUF

Pi ���

FUF

P AkB Q ��� b� f
tr �Z � j
X �Y �
tr �j A�X �j A� � FUF

P ��� �

tr �j B �Y �j B� � FUF

Q ��� �

X �j A� �
Y �j B� � Z �j A � B �
tr � tr �j
A � B�g

�
f
tr �X � j tr � FUD

P AkB Q ���g

��

FUF

P jjj Q ��� b� f
tr �X � j
 trP � trQ � tr interleaves
trP � trQ�
�
trP �X � � FUF

P ���
�
trQ �X � � FUF

Q ���g

�
f
tr �X � j tr � FUD

P jjj Q ���g

FUF

P n A��� b� f
tr n A�X � j
tr �X �A� � FUF

P ���g
�
f
tr �X � j tr � FUD

P n A���g

FUF

f
P���� b� f
f
tr��X � j
tr � f ��
X �� � FUF

P ���g
�
f
tr �X � j tr � FUD

f
P����g

FUF

f ��
P���� b� f
tr �X � j
f
tr�� f
X �� � FUF

P ���g
FUF

Y ��� b� �
Y �

The semantics FUI

�Y � P ��� of a recursive term is de�ned to be the least �xed point of the
function

F � � S � FI

P ��
�
S�Y �� �MUI �MUI

It is established in
Ros��� that this is well�de�ned� and that this is equal to F�
�� for some
ordinal �� where � � FUI

Loop����

In�nite Timed Failures

The information ordering on behaviours is de�ned as follows�

s ����� �
s��� �
 s �� � s � s��s �� � �� � � � begin
s���

We formally de�ne MTI to be those subsets S of T��
� 	 IRSET satisfying axioms ��� given

below� and axiom � to follow�

��
hi� fg� � S

��
s��� � S �
s����� �
s����
s����� � S

��
s��� � S �

�� � IRSET � � � �� �
s���� � S � �
t � a� � R� 	
 �

t � a� �� �� �
s � t�h
t � a�i���
� t� � S

�

t � � � �
 � � � �

t
 �� t�	 fag � ����
�
s
� t�h
t � a�i���
� t� � S

Axioms � and � require that an element of MTI must be a non�empty downward closed set of
behaviours� Axiom � requires that on every execution� timed events must be either possible or
refusable�

A set of behaviours T is �nitely variable if for every time t � the set T
� t is a complete partial
order under �� A set of behaviours T is closed if

T � T � f
s��� j � t �
s���
� t � Tg

��

Let CL be the set of �nitely variable closed sets of behaviours satisfying axioms ���� Then axiom
� states that

�� S �
SfQ � CL j S � Qg

The semantic function FTI

De�ne ETI � V �MTI � The semantic function

FTI � CSP � ETI �MTI

is de�ned by the following set of equations�

FTI

Loop��� b� f
s��� j s � T��
� � � � IRSETg

FTI

Stop��� b� f
hi��� j � � IRSETg
FTI

Skip��� b� f
hi��� j p �� 	
��g

�
f
h
t �p�i��� j t � � � p �� 	
� �
�� t��g

FTI

P 	Q ��� b� f
s��� j p �� 	
s� �

s�� �

�� end
s���� 	 fpg�� � FTI

P ���

s � sP

�sQ � p �� 	
sP � �

sQ ���
 t � FTI

Q ��� �

sP�h
t �p�i��
�t �

�� t�	fpg�� � FTI

P ���g

FTI

P
t�
� Q ��� b� f
s��� j begin
s� � t� �
s��� � FTI

P ���g

�
f
s��� j begin
s� � t� �
hi��
� t�� � FTI

P ���

�

s���
 t� � FTI

Q ���g

FTI

P � Q ��� b� f
hi��� j
hi��� � FTI

P ��� � FTI

Q ���g
�
f
s��� j s �� hi �
s��� � FTI

P ��� � FTI

Q ���

�

hi��
� begin
s�� � FTI

P ��� � FTI

Q ���g

FTI

a � A
� Pa ��� � f
hi��� j A � 	
�� � fgg
�
f
h
t � a�i�
s � t���� j

a � A � t � � � A � 	
�
� t� � fg
�
s��
 t� � FTI

Pa ���g

FTI

u
i�I

Pi ��� b� S
i�I FTI

Pi ���

FTI

P AkB Q ��� b� f
s��� j
 �P ��Q �
� �j
A � B� �
�P �j A� �
�Q �j B�
� s � s �j
A � B�
�
s �j A��P � � FTI

P ���
�
s �j B ��Q � � FTI

Q ��� g

��

FTI

P jjj Q ��� b� f
s��� j
 sP � sQ � � t � strip
s � t�interleaves
strip
sP � t�� strip
sQ � t�� �

sP ��� � FTI

P ��� �

sQ ��� � FTI

Q ���g

FTI

P n A��� b� f
s n A��� j
s�� �

����	A� � FTI

P ���g
FTI

f
P���� b� f
f
s���� j
s� f ��
��� � FTI

P ���g

FTI

f ��
P���� b� f
s��� j
f
s�� f
��� � FTI

P ���g
FTI

Y ��� b� �
Y �

The semantics FTI

�Y � P ��� for a recursive term is de�ned to be the least �xed point of the
function

� S � FTI

P ��
�
S�Y �� �MTI �MTI

It is established in
MRS��� that this is well�de�ned�

��

