Skip to main content

Deepness analysis: Bringing optimal fronts to triangular finite element method

  • Conference paper
  • First Online:
  • 144 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 805))

Abstract

A scheme is presented for analizing finite-element triangulations. The method takes a random triangulated planar graph and gives a multifrontal way to solve the corresponding physical problem, so that the maximum bandwidth of each front is guaranteed to be optimal. The interesting characteristic of this scheme is that it introduces large-grained parallelism dictated by the domain structure.

A way to extend these results to unsymmetric systems is given. Some experimental results are also presented.

This work was done while the author was at the McGill University, ACAPS Laboratory, under the supervision of Laurie Hendren

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.J. Dongarra, I.S. Duff, D.C. Sorensen and H.A. Van der Vorst. Solving Linear Systems on Vector and Shared Memory Computers. 1991.

    Google Scholar 

  2. I.S. Duff. Parallel implementation of multifrontal schemes. Parallel Computing, 3:193–204, 1986.

    Google Scholar 

  3. I.S. Duff, A.S. Erisman and J.K. Reid. Direct Methods for Sparse Matrices. Oxford Science Publications, 1986.

    Google Scholar 

  4. I.S. Duff and J.K. Reid. The multifrontal solution of indefinite sparse symmetric linear systems. ACM Trans. Math. Softw., 9:302–325, 1983.

    Google Scholar 

  5. I.S. Duff and J.K. Reid. The multifrontal solution of unsymmetric sets of linear equations. SIAM J. Sci. Stat. Comput., 5:633–641, 1984.

    Google Scholar 

  6. I.S. Duff and J.A. Scott. MA42 — A new frontal code for solving sparse unsymmetric systems. Rutherford Appleton Laboratory, Report RAL-93-064, September 93.

    Google Scholar 

  7. D.J. Evans. The use of preconditioning in iterative methods for solving linear equations with symmetric positive definite matrices. J. Inst. Maths. Applics., 4:295–314, 1967.

    Google Scholar 

  8. J. Galtier Deepness analysis: bringinig optimal fronts to triangular finite element analysis. ACAPS memo 73, ACAPS Lab., McGill University, Montreal, Canada.

    Google Scholar 

  9. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. Vol.10 No2, April 1973

    Google Scholar 

  10. A.J. Hoffman, M.S. Martin and D.J. Rose. Complexity bounds for regular finite difference and finite element grids. SIAM J. Numer. Anal., Vol.10 No2, April 1973

    Google Scholar 

  11. P. Hood. Frontal Solution Program for Unsymmetric Matrices. Int. J. num. Meth. Engng., 10:379–399, 1976.

    Google Scholar 

  12. B. Irons. A Frontal Solution Program for Finite Element Analysis. Int. J. num. Meth. Engng., 2:5–32, 1970.

    Google Scholar 

  13. D.A.H. Jacobs. Preconditioned conjugate gradient methods for solving systems of algebraic equations. Note No. RD/L/Nl93/80, CERL, Leatherhead, 1980.

    Google Scholar 

  14. P. King. Automatic reordering scheme for simultaneous equations derived from network systems. Int. J. num. Meth. Engng., 2:523–533, 1970.

    Google Scholar 

  15. R.J. Lipton, D.J. Rose and R.E. Tarjan. Generalized nested dissection. SIAM J. Numer. Anal., Vol. 16, No 2:346–358, 1979.

    Google Scholar 

  16. J.K. Reid. Frontal methods for solving finite-element systems of linear equations. Sparse Matrices and Their Uses, I.S. Duff (editor), Academic Press Inc. (London) LTD, 1981.

    Google Scholar 

  17. D.J. Rose. Triangulated graphs and the elimination process. J. of Math. Anal. and Appl., 32:597–609, 1970.

    Google Scholar 

  18. S.W. Sloan and M.F. Randolph. Automatic Element Reordering for Finite Element Analysis with frontal solution schemes. Int. J. num. Meth. Engng., 19:1153–1181, 1983.

    Google Scholar 

  19. W.F. Tinney and J.W. Walker. Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc. of the IEEE, Vol.55, No11, November 1967.

    Google Scholar 

  20. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth., Vol.2, No1, March 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Cosnard Afonso Ferreira Joseph Peters

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galtier, J. (1994). Deepness analysis: Bringing optimal fronts to triangular finite element method. In: Cosnard, M., Ferreira, A., Peters, J. (eds) Parallel and Distributed Computing Theory and Practice. CFCP 1994. Lecture Notes in Computer Science, vol 805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58078-6_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-58078-6_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58078-2

  • Online ISBN: 978-3-540-48435-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics