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Abstract: A new non-proprietary secret-key block-enciphering algorithm, SAFER K- 

64 (for Secure And Fast Encryption Routine with a Key of length 64 bits) is described. 

The blocklength is 64 bits (8 bytes) and only byte operations are used in the processes of 

encryption and decryption. New cryptographic features in SAFER K-64 include the use 

of an unorthodox linear transform, called the Pseudo-Hadamard Transform, to achieve 

the desired "diffusion" of small changes in the plaintext or the key over the resulting 

ciphertext and the use of additive key biases to eliminate the possibility of "weak keys". 

The design principles of K-64 are explained and a program is given, together with 

examples, to define the encryption algorithm precisely. 

1. Introduction 

This paper describes a new block encryption algorithm called SAFER K-64 

(for Secure And Fast Encryption Routine with a Key of length 64 bits) that the author 

recently developed for Cylink Corporation (Sunnyvale, CA, USA) as a non-proprietary 

cipher. SAFER K-64 is a byte-oriented block enciphering algorithm. The block length is 

8 bytes (64 bits) for plaintext and ciphertext; the user-selected key is also 8 bytes (64 bits) 

in length. SAFER K-64 is an interated cipher in the sense that encryption is performed 

by applying the same transformation repeatedly for r rounds, then applying an output 

transformation; r = 6 is recommended but larger values of r can be used if desired for 

even greater security. Each round uses two 8-byte (64-bit) subkeys determined by a key 

schedule from the secret 8-byte user-selected key. The output transformation uses 

another 8-byte subkey determined by the key schedule. One unusual feature of SAFER 

K-64 is that, in contrast to most recently proposed iterated block ciphers, encryption and 

decryption are slightly different (i.e., they differ by more than just the reversal of the key 
schedule). 



SAFER K-64 uses only byte operations in the processes of encryption and 

decryption, which makes it particularly useful in applications such as smart cards where 

very limited processing power is available. Some bit-level rotations of bytes are used in 

the key schedule, but this is done "once and for all", i.e., until the user-selected key is 

changed. To achieve security with such simple processing, SAFER K-64 exploits two 

new cryptographic concepts, namely: 

(1) an unorthodox linear transform, which we call the Pseudo-Hadamard 
Transform (PHT), that allows the cipher rapidly to achieve the desired "diffusion" of 

small changes in the plaintext or the key over the resulting ciphertext [It is usually the 

case in block cipher design that one struggles to obtain such diffusion by carefully 

selecting permutations to imbed within the cipher and then doing massive statistical 

testing to see which ones give acceptable diffusion. As will be seen, the PHT provides a 

systematic way to ensure that the cipher provides the necessary diffisuion--in fact, the 

diffusion provided by the PHT appears to be better than that in any other cipher that we 

know.] 

and (2) the use of additive key biases that eliminate the "weak keys" that plague most 

block ciphers. [SAFER K-64 includes a recursive procedure for generating these key 

biases that is easy to implement and that provides very "random" biases desired.] 

2. Description of the SAFER K-64 Algorithm 

The encrypting structure of the SAFER K-64 cipher is shown in Fig. 1. The 

enciphering algorithm consists of r rounds of identical transformations that are applied in 

sequence to the plaintext, followed by an output transformation, to produce the final 

ciphertext. Our recommendation is to use r = 6 for most applications, but up to 10 

rounds can be used if desired. Each round is controlled by two 8-byte subkeys and the 

output transformation is controlled by one 8-byte subkey. These 2r + 1 subkeys are all 

derived from the 8-byte user-selected subkey K1 in a manner that will be explained later. 

The plaintext, ciphertext and all subkeys are 8 bytes (64 bits) long. 
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Fig. 1: Encrypting Structure of SAFER K-64 

The output transformation of SAFER K-64 consists of the bit-by-bit XOR 

("exclusive or" or modulo-2 sum) of bytes 1, 4, 5 and 8 of the last subkey, K2r+l, with 

the corresponding bytes of the output from the r-th round together with the byte-by-byte 

byte addition (modulo-256 addition) of bytes 2, 3, 6 and 7 of the last subkey, K2r+l, to 

the corresponding bytes of the output from the r-th round. [Higher order bytes are 

considered to be those on the left, i.e., byte 1 is the most significant byte--this convention 

is used throughout this paper.] Hereafter, we refer to this particular combination of two 

eight-byte words as the Mixed XOR/Byte-Addition operation. 

The detailed encryption round structure of SAFER K-64 is shown in Fig. 2. The 

first step within the i th round is the Mixed XOR/Byte-Addition of the round input with 

the subkey K2i-1. The eight bytes of the result are then passed through a nonlinear layer 

and individually subjected to one of two different "highly nonlinear" transformations, 
namely: 

(1) the operation labelled "45(-)" in Fig. 2, which notation is to suggest that if the byte 
input is the integer j then the byte output is 45J modulo 257 (except that this output is 

taken to be 0 if the modular result is 256, which occurs for j = 128) [The reasoning 
behind the use of this transformation is the following. Because 257 is a prime, arithmetic 
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Fig. 2: Encryption round structure of  SAFER K-64 

modulo 257 is the arithmetic of  the finite field GF(257). The element 45 is a primitive 

element of  this field, i.e., its first 256 powers generate all 256 non-zero field elements. 

Thus the mapping "45(.)" is an invertible mapping from one byte to one byte that is very 

nonlinear with respect to the arithmetic of  GF(257) as well as with respect to the vector 

space of 8-tuples over the binary field GF(2) whose addition is bit-by-bit XOR.] 

and (2) the operation labelled "1og45" in Fig. 2, which notation is to suggest that if the 

byte is the integer j then the byte output is log45(J) (except that this output is taken to be 

128 if the input is j  = 0), i.e., the power to which one must raise 45 to obtain j modulo 

257. [The nonlinear features of  this mapping are similar to those described for 

exponentiation.] 



In the appended programs for implementing the SAFER K-64 cipher, these two nonlinear 

operations are realized with two look-up tables of 256 bytes each, i.e., simple byte-in 

byte-out look-up tables. 

The output of the eight nonlinear transformations is then combined with subkey 

K2i in an operation that consists of the byte-by-byte byte addition (modulo-256 addition) 

of bytes 1, 4, 5 and 8 of the subkey K2i to the corresponding bytes of the output from 

the nonlinear transformations together with the bit-by-bit XOR (modulo-2 sum) of bytes 

2, 3, 6 and 7 of the subkey K2i to the corresponding bytes of the output from the 

nonlinear transformations. Hereafter, we refer to this particular combination of two 

eight-byte words as the Mixed Byte-Addition/XOR operation. [It is important to note the 

distinction between this Mixed XOR/Byte-Addition operation and the previously 

described Mixed Byte-Addition/XOR operation.] 

The output of the Mixed Byte-Addition/XOR operation then passes through a 

three-level "linear layer" of boxes that are labelled "2-PHT" in Fig. 2. This notation 
indicates a 2-point PHT. If the two input bytes to a 2-PHT are (a 1, a2), where a 1 is the 

more significant byte, then the two output bytes are (b 1, b2) where 

b I = 2a 1 + a 2 

(1) 
b 2 = a 1 + a 2 

and where the arithmetic is normal byte arithmetic, i.e., arithmetic modulo 256. Between 

levels of the linear layer, the decknation-by-2 permutation [familiar from the Cooley- 

Tukey FFT and the ordinary discrete Hadamard Transform] is applied--as will be seen, 

this is what creates diffusion in the SAFER K-64 cipher. The output of this linear layer 

constitutes the round output. 

3. Decryption for SAFER K-64 

The decrypting structure of SAFER K-64 is shown in Fig. 3. The deciphering 

algorithm consists of an input transformation that is applied to the ciphertext block, 
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Fig. 3: Decrypting Structure of SAFER K-64 

followed by r rounds of identical transformations. The input transformation consists of 

the Mixed XOR/Byte-Subtraction of subkey K2r+l from the ciphertext block. A 

characterizing feature of SAFER K-64 is that decrypting rounds differ from encrypting 

rounds so that an encrypter cannot be converted to a decrypter by simply reversing the 

key schedule. 

The detailed decryption round structure of SAFER K-64 is shown in Fig. 4. The 

ith encryption round begins by passing the round input through the three-level inverse 

linear layer. It is easy to check from equations (1) that the Inverse PHT 0PHT) is given 

by 

a 1 = b 1 - b 2 

(2) 
a 2 = -b 1 + 2b 2. 

This IPHT is just as simple to compute as the direct PHT. The fan-out-by-two 

permutation between levels of'this inverse linear layer is the inverse of the decimate-by- 

two permutation used in the linear layer of an encryption round. 
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Fig. 4: Decryption round structure of SAFER K-64 

The next step within the i th decryption round is the Mixed Byte-SubtractionlXOR 

of the output of the inverse linear layer with the subkey K2r+2-2i, which consists of the 

byte-by-byte byte subtraction (modulo-256 subtraction) of bytes 1, 4, 5 and 8 of the 

subkey K2r+2-2i from the corresponding bytes of the output from the previous round 

together with the bit-by-bit XOR (modulo-2 sum) of bytes 2, 3, 6 and 7 of the subkey 

K2r+2-2i with the corresponding bytes of the output from the previous round. 

In the next step of the decrypfion round, the eight bytes from the previous step are 

passed through the "inverse nonlinear layer", which differs from the "nonlinear layer" in 



the encryption round by interchanging of the locations of the four exponentiating boxes 

and the four logarithm-taking boxes. 

The last step within the i th decryption round is the MixedXOR/Byte-Subtraction 
of the round input with the subkey K2r+l-2i, which consists of the bit-by-bit XOR 

(modulo-2 sum) of bytes 1, 4, 5 and 8 of the subkey K2r+l-2i with the corresponding 

bytes of the output from the previous round together with the byte-by-byte byte 

subtraction (modulo-256 subtraction) of bytes 2, 3, 6 and 7 of the subkey K2r+l-2i from 

the corresponding bytes of the output from the previous round. 

4. How SAFER K-64 Works and Why 

To see that the SAFER 1<-64 cipher correctly decrypts, we f'n-st note that the 

Mixed XOR/Byte-Subtraction of K2r+l in the Input Transformation for decryption (cf. 

Fig. 3) undoes the Mixed XOR/Byte-Additon of K2r+l in the Output Transformation for 

encryption (cf. Fig. 1). Then the inverse linear layer of the first decryption round (cf. 

Fig. 4) undoes the transformation performed by the linear layer in the last encryption 

round (cf. Fig. 2). Next, the Mixed Byte-SubtractiortD(OR of K2r in the first decryption 

round (cf. Fig. 4) undoes the Mixed Byte-Addition/XOR of K2r in the last encryption 

round (cf Fig. 2). Then the inverse nonlinear layer in the first decryption round (cf. Fig. 

4) undoes the transformation performed by the nonlinear layer in the last encryption 

round (cf. Fig. 2). Finally, the Mixed XOR/Byte-Subtraction of K2r-1 in the first 

decryption round (cf. Fig. 4) undoes the Mixed XOR/Byte-Addition of K2r-1 in the last 

encryption round (cf. Fig. 2). In the same way, decryption round i undoes the 

transformation performed by encryption round r + 1 - i for i = 2, 3 . . . . .  r so that 

decryption indeed recovers the original plaintext. 

SAFER K-64 was designed in accordance with Shannon's principles of 

confusion and diffusion for obtaining security in secret-key ciphers [1]. When a round 

subkey is not all-zero in SAFER K-64 encryption, its combination by Mixed XOR/Byte 

Addition (or Mixed Byte-Addition/XOR) with the signal within the round acts like a 

nonlinear combination with respect to the subsequent transformations in the nonlinear 

layer and in the linear layer. This gives the cipher the confusion required to make the 

statistics of the ciphertext depend in a complicated way on the statistics of the plaintext-- 

provided that small changes diffuse quickly through the cipher. To guarantee this 



diffusion in SAFER K-64 is, in fact, why we developed a new and unorthodox linear 

transform, the Pseudo-Hadamard Transform (PHT). 

The standard Hadamard Transform (HT) [sometimes called the "Walsh 

transform" or the "Walsh-Hadamard transform"] ha s in place of (1) the equations 

b 1 = a l +  a2 

b 2 = a 1 - a 2. 

(3) 

Notice that the determinant of the matrix of coefficients is -2, which makes these 

equations non-invertible for byte arithmetic (arithmetic modulo 256) where -2 = 254 has 

no multiplicative inverse. It also has the unpleasant effect of requiring a multiplication by 

1/2 in the inverse transform in those number systems where 2 has a multiplicative 

inverse. By choosing equations (1), whose matrix of coefficients has determinant 1, we 

avoid both of these problems--we can use normal byte arithmetic and there is no 

unpleasant scale factor in the inverse transform! Moreover, we can still mimic the HT in 

the multi-dimensional case, which is what the decimations by-two and fanning-outs by- 

two accomplish. We are in fact using a three-dimensional PHT, i.e., independent 2- 

PHTs in each of 3 dimensions, which is why there are 23 = 8 bytes in the input and 

output of the PHT within SAFER K-64. 

Just as for the HT in number systems appropriate to it, every digit (here read 

"byte") of the input to the PHT effects every output byte, i.e., the PHT provides 

guaranteed complete diffusion within one linear layer. In Appendix A, we show the PHT 

for the unit-vector inputs where one sees this diffusion over all eight output bytes very 

clearly. By linearity, the PHT of any vector can be computed as the corresponding linear 

combination of these unit-vector PHT's. The "guaranteed complete diffusion" within one 

layer does not hold fully when one considers single-bit changes in the input bytes. 

Because of the factor of 2 in equations (1), a few bits of the input will effect only 4 bytes 

(or 2 bytes or 1 byte) of the output within one linear layer, but their effect is immediately 

spread over all 8 bytes in the next linear layer encountered. This can be seen from the last 

three examples in Appendix A. For instance, because (1,0,0,0,0,0,0,0) has the PHT 

(8,4,4,2,4,2,2,1), it follows [from the fact that 2 * 128 = 0 mod 256] that 

(128,0,0,0,0,0,0,0), which contains a single non-zero bit, will have the PHT 

(0,0,0,0,0,0,0,128), which shows no diffusion at all. However, in turn 

(0,0,0,0,0,0,0,128) has the PHT (128,128,128,128,128,128,128,128), which shows 
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complete diffusion over output bytes. In fact, consideration of the unit-vector PHT's in 

Appendix A shows that (128,0,0,0,0,0,0,0) is the only vector that shows no diffusion 

under one application of the PHT. We know of no other cipherwith such rapid and 

guaranteed diffusion. This rapid diffusion is the main reason that r = 6 rounds of 

encipherment are enough to make SAFER K-64 crack-resistant. 

5. The Key Schedule for SAFER K-64 

The key schedule for SAFER K-64, i.e., the procedure for generating the 

subkeys K2, K3 . . . . .  K2r+l from the user-selected subkey K1, is indicated in Fig. 5. 

The quantities B2, B3 . . . . .  B2r-1 are the key biases that have the purpose of ensuring 

that the round subkeys appear individually "random" and, in particular, that no more than 

one round subkey can be all-zero. Letting b[i,j] denote the j-th byte of bias Bi, we can 

express this byte as the double exponential 

b[i,j] = 45"*[45"*(9i+j) mod 257] mod 257, (4) 

which equation defines the key biases used in SAFER K-64. We note here that we might 

have used the factor 8 instead of 9 in the exponent in (4)--we chose 9 to introduce an 

extra measure of "staccato" in the key schedule." A Table giving the precise values of the 

key biases for SAFER K-64 is given in Appendix B. Examination of the Table in 

Appendix B shows that the resulting sequence of biases is indeed very random 

appearing, which is all that is really needed. The use of such biases, which appears to be 

new, is clearly a good idea in general for iterated ciphers. The "weak keys" (also called 

"self-dual keys" and "keys with a dual") of the Data Encryption Standard (DES) [2] are a 

direct result of the fact that no key biases are used so that, for instance, all 16 round 

subkeys in DES can be all-zero.] 

Fig. 5 shows how K1, the user-selected 64-bit subkey, is used to generate the 

additional 64-bit subkeys K2, K3 . . . . .  K2r+l that are required within the r-round 

SAFER K-64 algorithm. Note that, in the generation process, the subkey register is 

byte-wise rotated by 3-bits to the left between additions of a new bias. [The addition of a 

bias is always byte-by-byte byte addition (modulo-256 addition).] Ideally, one wishes 

the entire subkey sequence K1, K2, K3 . . . . .  K2r+l to have the character of a sequence 

of independently-chosen uniformly-random subkeys. Of course, this cannot be achieved 

in a strict sense because all of the subkeys in this sequence are determined entirely by the 
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f'trst (user-selected) subkey, K1. The real goal in the design of the key schedule is to 
make the departure from independence so complicated that it cannot be exploited by an 
attacker--and this is the purpose of both the byte rotations and tile addition of subkey 
biases within the key schedule for SAFER K-64 

User Selected Eight-Byte Key K1 [ 

B2 l [ Rotate Each Byte Left by 3 Bits [ 
J 
-I 

I Rotate Each Byte Left by 3 Bits I 

I Rotate Each Byte Left by 3 Bits I 

I 

I 

Rotate Each Byte Left by 3 Bits I 

Byte-by-Byte 
mod 256 add K2 

B3 l 
Byte-by-Byte ~ K3 

- I  mod 256 add 

B4 l 
ILl Byte-by-Byte ~I~K4 I mod 256 add 

B2r+l l 

,..._1 Byte-by-Byte [ 
v [  mod256add ~ K 2 r + l  

Fig. 5: Key Schedule for SAFER K-64 

6. SAFER K-64 Program and Examples 

Appendix C gives a TURBO PASCAL program that implements the full r- 
round SAFER K-64 cipher, both for encryption and decryption.. This program should 
be taken as the definition of the SAFER K-64 enciphering algorithm. Appendix C also 
gives examples of r = 6 round encryption (the recommended number of rounds) for use 
in checking implementations of SAFER K-64. 
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7. Security Considerations for SAFER K-64 

In Section 4, we indicated how SAFER K-64 achieves both good diffusion and 

good confusion, the two basic features that contribute to the security of a block cipher. 

The best measure of security available today for an iterated block cipher is its resistance to 

attack by differential cryptanalysis [3]. It is easy to show that, for the appropriate 

def'mition of difference between a pair of plaintext blocks (or a pair of ciphertext blocks), 

SAFER K-64 is a Markov cipher [4], a fact that greatly simplifies its analysis for 

resistance to differential cryptanalysis. Cylink Corporation has contracted for such an 

analysis of SAFER K-64 by a group of cryptanalysts that does not include the designer 

of the algorithm. A considerable effort has been invested in this effort, whose conclusion 

is that six-round SAFER K-64 appears to be secure against differential cryptanalysis. 

This group of cryptanalysts has also done extensive statistical testing of SAFER K-64 

with no detection of any weakness. The evidence available today suggests that SAFER 

K-64 is a strong cipher whose strength is well measured by the length (64 bits) of its 

user-selected key. 
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Table of Key Biases for SAFER K-64 Cipher. 

(Biases B2 to B21 are listed here although only B2 to B13 are required when r 
= 6 rounds are used with SAFER K-64.) 

Bias B2 is 

Bias B3 is 

Bias B4 is 

Bias B5 is 

Bias B6 is 

Bias B7 is 

Bias B8 is 

Bias B9 is 

Bias BI0 is 

Bias BII is 

Bias BI2 is 

Bias BI3 is 

Bias BI4 is 

Bias BI5 is 

Bias BI6 is 

Bias BI7 is 

Bias BI8 is 

Bias BI9 is 

Bias B20 is 

Bias B21 is 

22 115 59 30 142 112 189 134 

71 126 36 86 241 119 136 70 

177 186 163 183 16 i0 197 55 

201 90 40 172 I00 165 236 171 

198 103 149 

102 220 5 

106 233 54 

88 13 248 154 246 

61 211 138 195 216 

73 67 191 235 212 

155 104 160 i01 93 87 146 31 

113 92 187 34 193 190 123 188 

99 148 95 42 97 184 52 50 

253 251 23 64 230 81 29 65 

143 41 221 4 128 222 231 49 

127 1 162 247 57 218 Iii 35 

254 58 208 28 209 48 62 18 

205 15 224 168 175 130 89 44 

125 173 178 239 194 135 206 117 

19 2 144 79 46 114 51 133 

141 207 169 129 226 196 39 47 

122 159 82 225 21 56 43 252 

66 199 8 228 9 85 94 140 
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APPENDIX C: 
Examples of Six-Round SAFER K-64 Encryption and Program for 
Implementation 

PLAINTEXT is 1 2 3 4 5 6 7 8 
The KEY is 0 0 0 0 0 0 0 0 
after round 1 0 46 170 144 255 118 2 238 
after round 2 35 175 193 103 246 87 43 202 
after round 3 64 252 4 38 1 140 36 104 
after round 4 2 62 127 41 25 97 179 196 
after round 5 59 221 9 152 113 50 224 52 
after round 6 242 255 38 130 179 219 71 133 
CRYPTOGRAM is 125 40 3 134 51 185 46 180 

PLAINTEXT is 0 0 0 0 0 0 0 0 
The KEY is 1 2 3 4 5 6 7 8 
after round 1 240 174 18 192 79 214 2 46 
after round 2 51 154 197 181 138 198 236 83 
after round 3 178 36 41 77 26 13 222 86 
after round 4 iii 39 188 122 73 216 30 i00 
after round 5 132 78 244 157 225 84 106 144 
after round 6 197 105 114 54 196 i01 227 80 
CRYPTOGRAM is 90 178 127 114 20 163 58 225 

PLAINTEXT is 
The KEY is 
after round 1 
after round 2 
after round 3 
after round 4 
after round 5 
after round 6 
CRYPTOGRAM is 

1 2 3 4 5 6 7 8 
8 7 6 5 4 3 2 1 

i01 42 122 106 63 iii 225 227 
102 122 66 171 75 196 228 30 
114 219 165 207 71 24 132 155 
117 53 164 99 161 204 201 48 
132 77 246 149 5 187 182 27 
199 89 95 137 71 106 55 152 
200 242 156 221 135 120 62 217 

PLAINTEXT is 
The KEY is 
after round 1 
after round 2 
after round 3 
after round 4 
after round 5 
after round 6 
CRYPTOGRAM is 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

203 244 158 176 123 197 ii 39 
27 47 1 53 133 49 233 187 

134 147 160 151 93 5 125 185 
190 249 153 140 109 203 139 58 
143 72 176 126 51 175 84 69 
140 255 43 205 142 9 196 78 

3 40 8 201 14 231 171 127 
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PROGRAM Full_r_Rounds_max 10 of SAFERK64_cipher; 

VAR al, a2, a3, a4, a5, a6, a7, a8, bl, b2, b3, b4, b5, b6, b7, b8, r: byte; 
k: ARRAY[1..21,1..8] OF byte; kl: ARRAY[1..8] OF byte; 
logtab, exptab: ARRAY[0..255] OF integer;, i, j, flag: integer;, 

PROCEDURE matl(VAR al, a2, bl, b2: byte); 
BEGIN b2:= al + a2; bl:= b2 + al; END; 

PROCEDURE invmatl(VAR al, a2, bl, b2: byte); 
BEGIN bl:= al - a2; b2:= -bl + a2; END; 

BEGIN 
{ The program here computes the powers of the primitive element 45 of the 
f'mite field GF(257) and stores these in the table "exptab". Corresponding 
logarithms to the base 45 are stored in the table "logtab". } 
logtab[1]:= 0; exptab[0]:= 1; 
FOR i:= 1 TO 255 DO 
BEGIN 

exptab[i]:= (45 * exptab[i - 1]) rood 257; 
logtab[exptab[i]]:= i; 

END; 
exptab[128]:= 0; logtab[0]:= 128; exptab[0]:= 1; 

flag:= 0; writeln; 
writeln('Enter number of rounds r (max 10) desired then hit CR'); readln(r); 

REPEAT 
BEGIN 

writeln; writeln('Enter plaintext in 8 bytes with spaces'); 
writeln(' between bytes, then hit CR.'); 
writeln('(A byte is an integer between 0 and 255 inclusive.)'); 
readln(al, a2, a3, a4, a5, a6, a7, a8); 
writeln('Enter a key in 8 bytes'); 

readln(k[1,1],k[1,2],k[1,3],k[1,4],k[1,5],k[1,6],k[1,7],k[1,8]); 
kl [1]:= k[1,1]; kl[2]:= k[1,2]; kl[3]:= k[1,3]; kl[4]:= k[1,4]; 
k115]:= k[1,5]; kl[6]:= k[1,6]; kl[7]:= k[1,7]; kl[8]:= k[1,8]; 
writeln('PLAINTEXT is ', al:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,a8:4); 
writeln('The KEY is ', k[1,1]:8,k[1,2]:4,k[1,3]:4,k[1,4]:4, 

k[ 1,5]:4,k[ 1,6]:4,k[ 1,7] :4,k[ 1,8] :4); 
{The next instructions implement the key schedule needed to derive keys 
K2, K3 .... K2r+l from the user-selected key K1. } 

FOR i:= 2 TO 2*r + 1 DO 
FOR j:= 1 TO 8 DO 
BEGIN 

{Each byte of the key K1 is further left rotated by 3.} 
kl[j]:= (kl[j] shl 3) + (kl[j] shr 5); 
{The key bias is added here. } 
k[i,j]:= kl[j] + exptab[exptab[9*i+j]]; 

END; 

{The r rounds of encryption begin here. } 
FOR i:= 1 TO r DO 
BEGIN 

{ Key 2i-1 is mixed bit and byte added to the round input. } 
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a l : - a l  xor k[2"i-1,1]; a2:= a2 + k[2"i-1,2]; 
a3:= a3 + k[2"i-1,3]; a4:= a4 xor k[2"i-1,4]; 
a5:= a5 xor k[2"i-1,5]; a6:= a6 + k[2"i-1,6]; 
a7:= a7 + k[2"i-1,7]; a8:= a8 xor k[2"i-1,8]; 

{The result now passes through the nonlinear layer. } 
bl:= exptab[al]; b2:= logtab[a2]; b3:= logtab[a3]; b4:= exptab[a4]; 
b5:=exptab[a5]; b6:= logtab[a6]; b7:= logtab[a7]; b8:= exptab[a8]; 
{Key 2i is now mixed byte and bit added to the result.} 
bl:= bl + k[2*i,1]; b2:= b2 xor k[2"i,2]; 
b3:= b3 xor k[2"i,3]; b4:= b4 + k[2"i,4]; 
b5:= b5 + k[2"i,5]; b6:= b6 xor k[2"i,6]; 
b7:= b7 xor k[2"i,7]; b8:= b8 + k[2"i,8]; 

{ The result now enters the first level of the linear layer.} 
matl(bl ,  b2, al, a2); matl(b3, b4, a3, a4); 
matl(b5, b6, a5, a6); matl(b7, b8, a7, a8); 
{The result now enters the second level of the linear layer. } 
matl(al,  a3, bl ,  b2); matl(a5, a7, b3, b4); 
matl(a2, a4, b5, b6); matl(a6, a8, b7, b8); 
{The result now enters the third level of the linear layer. } 
matl(bl,  b3, al, a2); matl(b5, b7, a3, a4); 
matl(b2, b4, a5, a6); matl(b6, b8, a7, a8); 

{The round is now completed! } 
writeln('after round',i:2,a1:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,a8:4); 

END; 

{Key 2r+l is now mixed bit and byte added to produce the cryptogram.} 
al:= al xor k[2*r+l,1]; a2:= a2 + k[2*r+l,2]; 
a3:= a3 + k[2*r+l,3]; a4:= a4 xor k[2*r+l,4]; 
a5:= a5 xor k[2*r+l,5]; a6:= a6 + k[2*r+l,6]; 
a7:= a7 + k[2*r+l,7]; a8:= a8 xor k[2*r+l,8]; 
writeln('CRYPTOGRAM is',a1:8,a2:4,a3:4,a4:4,a5:4,a6:4,a7:4,a8:4); writeln; 
writeln('Type 0 and CR to continue or -1 and CR to stop run.'); read(flag); 

END 
UNTIL flag < 0; 

END. 


