
Design principles for dedicated hash functions

Bart Preneel*

Katholieke Universiteit Leuven, Laboratorium ESAT-COSIC,
Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

bart. preneel~esat, kuleuven, ac. be

A b s t r a c t . Dedicated hash functions are cryptographically secure com-
pression functions which are designed specifically for hashing. They in-
tend to form a practical alternative for hash functions based on another
cryptographic primitive like a block cipher or modular squaring. About
a dozen of dedicated hash functions have been proposed in the literature.
This paper discusses the design principles on which these hash functions
are based.

1 I n t r o d u c t i o n

Cryptographic hash functions form an important building block for providing
information authentication. An efficient way to protect the authentici ty of a large
quanti ty of information consists of protecting only the short hashcode computed
f rom tha t information. If the authenticity is protected with a digital signature
scheme, one obtains a shorter signature, which is easier to compute.

For the t ime being there is no theory available to design efficient and secure
hash functions. The oldest proposals for hash functions were based on block
ciphers and on modular arithmetic. During the last years about a dozen of
proposals for dedicated hash functions have appeared in the literature. The goal
of this paper is to s tudy the design principles of these hash functions. It is not
our intention to give a description of these hash functions or to give an overview
of the latest attacks. For such an overview the reader is referred to [20, 21].

In Sect. 2 we give a definition of a hash function and we establish a general
model for an i terated hash function. Moreover, we discuss the two main theo-
retical results on the construction of i terated hash functions. In Sect. 3, we list
the hash functions which are the subject of this paper. Section 4 discusses the
security relevant criteria, and Sect. 5 t reats some performance related aspects.
In Sect. 6 it will be explained why a t rapdoor can also be a problem for hash
functions. The conclusions are presented in Sect. 7.

* N.F.W.O. postdoctoral researcher, sponsored by the National Fund for Scientific
Research (Belgium). Part of this work was done while visiting the Department of
Electrical Engineering and Computer Sciences of the University of California at
Berkeley.

72

2 D e f i n i t i o n a n d g e n e r a l m o d e l

In this paper we will only consider collision resistant hash functions, since all
dedicated hash functions intend to be of this type. The concept of collision
resistant hash functions dates back to the late seventies. We will give only an
informal definition; for a formal definition the reader is referred to the work by
I. Damgs [5, 6].

D e f i n i t i o n 1 A col l i s ion r e s i s t a n t h a s h f u n c t i o n is a function h satisfying
the following conditions:

1. The argument X can be of arbitrary length and the result h (X) has a fixed
length of n bits (with n > 128).

2. The hash function must be one-way in the sense that given a Y in the image
of h, it is "hard" to find a message X such that h (X) = Y , and given X
and h (Z) it is "hard" to find a message X ' ~ Z such that h(X ') = h(X) .

3. The hash function must be collision resistant: this means that it is "hard" to
find two distinct messages that hash to the same result.

The first part of the second condition corresponds to the intuitive concept of
one-wayness, namely that it is "hard" to find a preimage of a given value in
the range. Under certain conditions one can argue that this part of the one-
way property follows from the collision resistance property [6]. The second part
of this condition, namely that finding a second preimage should be hard, is a
stronger condition, that is relevant for most applications. Finding a (second)
preimage requires at most 2 n operations. Collision resistance is stronger than
one-wayness, since for any hash function with a n-bit result, a collision can be
found in about 2 n/2 operations with a birthday or square-root attack [31].

Several options are available to specify the word "hard". In the case of "ideal
security" [12], producing a (second) preimage requires 2 n operations and pro-
ducing a collision requires about 2 n/2 operations. For the purpose of this paper
it is sufficient to assume that both operations are computationally infeasible.

Almost all known hash functions are based on a compression function with
fixed size input; they process every message block in a similar way. This has been
called an "iterated" hash function in [12]. The information is divided into t blocks
X1 through Xt. If the total number of bits is no multiple of the block length,
the information has to be padded to the required length. The hash function can
subsequently be described as follows:

Ho = I V

Hi = f (X i , H i - 1) i = 1 , 2 , . . . t

h (X) = H , .

The result of the hash function is denoted with h(X) and I V is the abbreviation
for Initial Value. The function f is called the round function, and the H~'s are
called the chaining variables. Two iterations of an iterated hash function are
shown in Fig. 1.

73

Ho = I V X 1

I
/

/-1"1 X2

/-/2

Fig. 1. Two rounds of an iterated hash function.

Two elements in this definition have an important influence on the security
of a hash function: the choice of the padding rule and the choice of the IV.
It is recommended that the padding rule is unambiguous (i.e., there exist no
two messages that can be padded to the same message), and that it appends at
the end the length of the message. The IV should be considered as part of the
description of the hash function. In some cases one can deviate from this rule,
but this will make the hash function less secure and may lead to trivial collisions
or second preimages.

An important problem in the context of hash functions is the relation between
the security of the hash function h and the security of the round function f . The
goal is to find conditions on f which are necessary and/or sufficient for h to have
certain properties: This can reduce the design and analysis of a hash function to
the study of a function with fixed length inputs.

It can be shown that the security of h and the security of f are equivalent if
one uses an unambiguous padding rule and if the attacker is allowed to modify
the initial values. This implies that he will look for a pseudo-preimage, a (second)
preimage with a different value of IV, or for a pseudo-coUision, which means that
for some IV' and IV" he finds a pair X', X" , such that hxy, (X') = hry,, (X").
It is clear that finding a real (second) preimage or collision cannot be easier than
finding a pseudo-preimage or pseudo-collision respectively.

If the IV's are fixed, these pseudo-attacks do not form a direct threat and
the situation is more complicated. I. Damggrd has shown that for h to be colli-
sion resistant it is sufficient that f is collision resistant [6]. X. Lai and J. Massey
showed that a similar property holds for one-wayness [12]. But, if the hash func-
tion has to be ideally one-way, they showed that is both necessary and sufficient
for f to be ideally one-way. A similar result for a different type of hash functions
was established in [19].

74

3 T h e d e d i c a t e d h a s h f u n c t i o n s

MDx (Message Digest x) is a series of hash functions designed by R. Rivest. The
ones which have been published are MD2, MD4, and MD5.

MD2 is a byte oriented algorithm published in 1990; a description can be
found in [11]. MD4 was designed to be fast on 32-bit machines [25, 26]. MD5 is
a variant of MD4 [27]. Two other variants of MD4 are the Secure Hash Algo-
rithm, which was published by NIST in the Secure Hash Standard - FIPS 180
[8], and RIPEMD which was developed in the framework of the EEC-RACE
project RIPE (Race Integrity Primitives Evaluation) [23]. HAVAL was proposed
by Y. Zheng, J. Pieprzyk, and J. Seberry [32]; it is a collection of extensions of
MD5.

N-hash is a hash function with N = 8 rounds designed by S. Miyaguchi,
M. Iwata, and K. Ohta [15, 17]. It is based on the same principles as FEAL [16].
An extended version of N-hash appeared in [18]: the roles of Xi and Hi-1 can
be interchanged, and the number of rounds is now a parameter which should be
at least 8. Four rounds are claimed to be sufficient for a one-way hash function,
for which the collision resistant property does not have to hold (condition 3 in
Definition 1).

FFT-Hash I and II are hash functions suggested by C.P. Schnorr [28, 29]
based on the Fast Fourier Transform. A contribution towards a third version is
presented in these proceedings [30].

Snefru is a software oriented hash function proposed by R. Merkle [14]. It is
based on large random substitution tables (2 Kbyte per pass). While initially 2
to 4 passes were recommended, it is currently advised to use at least 8 passes.

I. Damgs has proposed a hash function based on a cellular automaton in
[6]. After breaking this scheme, J. Daemen, J. Vandewalle, and R. Govaerts put
forward Cellhash [2]; an improved version was called Subhash [3]. These schemes
are hardware oriented.

Boognish is a hash function published by the same authors as Cellhash [4];
it mixes the design principles of Cellhash with those of the MD4 variants.

One of the first requirements for a hash function is that its description should
be concise and clear. This will make the hash function more attractive to evaluate
and implement. We will leave it up to the reader to judge whether the proposed
dedicated hash functions and their descriptions satisfy this (subjective) criterion.

Additionally one would like to have a motivation for all design decisions, and
a comparison with alternatives that were rejected; a particularly good example
of this is the description of Snefru. This will avoid the situation where the person
who is evaluating the hash function has to duplicate a large part of the effort
already done by the designer. The reverse of the medal is that the evaluator
will loose part of this freshness when looking at the algorithm. Unfortunately
some designer seem to be reluctant to give away know-how on designing and
evaluating hash functions.

75

4 Security Relevant Criteria

The following security relevant properties will be discussed: should the round
function be collision resistant and one-way or not, should the round function be
partially bijective and one-way, how to protect beginning and end of the hashing
operation, the use of redundancy in the message. Subsequently, a t reatment of
some specific attacks will be given.

4.1 C o l l i s i o n r e s i s t a n t a n d o n e - w a y .

The main issue faced by the designer is whether he will base his dedicated hash
function on a round function that is both collision resistant and one-way or not.
A first argument in favor of a collision resistant and one-way round function has
been discussed in Sect. 2: if the construction satisfies certain restrictions, the
security of the hash function can be studied by analyzing the round function.
The advantage of this construction is also that the choice of a specific IV is
not very important: the scheme should be secure with any IV. Indeed, if a
perfectly secure compression function is used, finding a pseudo-preimage or a
pseudo-collision is not easier than finding a preimage or a collision. Another
advantage of this approach is that the size of the chaining variables can be
increased at the cost of a decreased performance. This corresponds to a trade-off
between security and speed. Moreover, the round function can be used directly
in applications where the size of the input is fixed. Finally hashing can be done
in a parallel way using a tree construction [6, 20].

On the other hand, from analyzing the hashing process, it follows that the
roles of Hi and Xi are essentially different. This means that it seems natural to
impose different conditions on both inputs of the round function. E.g., if finding
a pseudo-preimage is relatively easy, one can find a preimage faster than 2 n
operations, but this does not mean that finding a preimage becomes feasible.
One can hope that loosening the requirements will improve the performance of
the hash function.

An argument against this approach is that if this construction results in a
collision resistant hash function, it will also give a collision resistant function (just
fix the input size), which can be used as the round function in a construction of
the first type. Note that this new hash function will be slower than the first one.

If the option is taken to design a collision resistant function, one should be
consistent and design the round function such that it is symmetric with respect
to message and chaining variable. Unfortunately, not all proposed schemes follow
this logic.

Designs along these lines are MD2, FFT-hash, Snefru, and the Damgs
scheme based oil a cellular automaton. Designs that t reat chaining variables
and message blocks differently are N-hash, Cellhash, Subhash, Boognish, and
MD4 and its variants. On the other hand, the only round functions for which no
collisions were found are those of MD2, Snefru with more than 6 passes, MD4,
SHA, and RIPE-MD (MD5 is excluded). This is rather surprising, as the MD4
variants are designs of the second type.

76

4.2 B i j e c t i v i t y a n d on e -way n es s .

A second related issue is the question whether the round function or part of the
round function should be bijective and one-way. On the one hand, bijectivity for
part of the round function seems to be a desirable property: this avoids attacks
where the entropy of the internal variables or chaining variables decreases, and
one can show that at certain places no collision can occur. On the other hand,
one would like to have a one-way mapping: if an attacker can go backwards
easily, he will be able to use meet-in-the-middle techniques. In practice however
it seems hard to combine both properties: it is a well known open problem to
find a very efficient one-way permutation. Proving that a scheme is bijective
is in most cases done by proving that one can go backwards. Examples based
on number theoretic problems do exist (e.g., RSA [24], and a scheme based on
elliptic curves [10]), but are rather slow. This seems to be an intrinsic problem,
which is linked to the fact that it is very difficult to find efficient public-key
cryptosystems. In order to get around this dilemma, many schemes combine a
bijection with a fcedforward of the data input or the chaining variable input or
both. Of course this destroys the bijectivity. In the study of these properties, a
distinction has to be made between schemes that t reat chaining variables and
message blocks symmetrically and schemes that do not have this property.

In the first case FFT-hash and Snefru are based on a bijective mapping,
where the output size is reduced by chopping part of the bits (for FFT-hash
and Snefru). In Snefru the round function is made one-way by exoring the input
to the output. The security of the Damgs cellular automata scheme is based
on the one-wayness of the round function. With respect to this criterion, MD2
behaves a bit differently: the mapping is one-way, but part of the internal state
can be recovered.

The optimal configuration in this case seems to be a number of bijective
mappings, interleaved with feedforwards in order to avoid a meet-in-the-middle
attack. The security can also be increased by not simply selecting the output
bits but applying a simple compression.

If message blocks and chaining variables are treated in a different way, the
schemes that contain a mapping that is bijective if one of the inputs is fixed
can be treated in the same way as single length hash functions based on a block
cipher [22]. Cellhash, Subhash, and Boognish have a round function which is
bijective for a fixed message and for a fixed chaining variable, but the mapping
can be inverted easily if one of the inputs is fixed. It is equivalent to a CFB
mode, but it derives its strength from the specific redundancy scheme in the
message. MD4 and its variants are based on a function that is bijective for a
fixed message block, while the one-way property is introduced by a feedforward
of the previous chaining variable. Tim first variant of N-hash is bijective for a
fixed chaining variable, and the other one is bijective for a fixed message block.
In both variants the chaining variable and the message are added modulo 2 to
the output of the function. From [22] it follows that fixed points can be found
easily for MD4, N-hash, and their variants. The impact of these fixed points is
however limited; they pose no threat if the padding scheme adds the message
length.

77

4 . 3 B e g i n n i n g a n d e n d .

It is well known that the beginning and the end of the hashing operation arc
critical for the security of a hash function. We repeat the main recommendations
of Sect. 2:

- choose a single IV or a limited set of IV's,
- use an unambiguous padding rule that comprises the addition of the length

of the message.

For some schemes it can be useful to impose a maximal message length.
Many hash functions are vulnerable to attacks where one goes backwards

or to attacks that concentrate on the end of the message like correcting block
attacks. Their security can be increased without reducing the performance by
adding at the end a limited number of blocks that are a function of all message
blocks. An example is the first hashcode that is used in MD2. Other solutions are
the addition of zero blocks (Subhash, Boognish) or the use of cyclic redundancy
in the message (Cellhash).

Adding a first block that is dependent on IV can have as effect that find-
ing a pseudo-preimage is not easier than finding a preimage: this is especially
interesting in case of schemes where going backwards is very easy, and the use
of different IV's is still necessary.

Another principle that seems to increase the security is to work with two
independent chains with a limited interaction in every round: in this way the
security margin caused by the additional internal memory can "wipe out" certain
weaknesses in the round function. This principle has been applied in RIPE-MD.

4 . 4 R e d u n d a n c y i n t h e m e s s a g e .

It seems to be a good design principle to use every message bit as many times as
possible, and in such a way that it is hard to compensate changes in one message
block. From this it follows that the same bit should be used at different locations
and in different functions. This calls for a structure like MD4 where the message
is used as "key" to "encrypt" in a reversible way the chaining variables. The
"key scheduling" should guarantee that every key bit is used a sufficient number
of times.

Instead of duplicating every message bit, the idea of using an error correct-
ing code as in SHA is very promising: in this way one can guarantee t h a t - -
independently of the selection of the m e s s a g e - t h e actual input to the hash
function will differ in at least d locations, with d the minimum distance of the
code.

There are several arguments to avoid making more than a single "pass" over
the message: the performance decreases, it might be that additional storage is
necessary, if the round function is invertible a generalized meet-in-the-middle
at tack may be applied [9], and finally in implementations one has to verify tha t
it is indeed the same message that enters the hashing process.

78

4.5 Specific attacks.

A variety of attacks have to be considered when designing a dedicated hash
function. In this respect a hash function is not very different from a stream
cipher or a block cipher. Attacks that have to be studied are differential attacks,
linear attacks, and analytical attacks. In case of a differential attack, a single pair
tha t yields an output exor equal to zero is sufficient to break the hash function.

The first evaluation that has to be performed on an algorithm is certainly
a statistical evaluation: it should be checked whether any irregularities can bc
found in the distribution of the output, and whether input differences affect the
complete output. Special attention can be paid here to weaknesses occurring
in most and least significant bits, to the relation between parity of inputs and
outputs, and to other linearities.

Differential and linear cryptanalysis appear to be very powerful techniques,
especially against schemes based on S-boxes [1, 13]. In case of hash functions,
one will look for two inputs for which the output difference is zero, or for which
the output difference is equal to the input difference (if a fecdforward exists of
the input to the output).

Fixed points are certainly not usable in practice, but in absence of bet ter
criteria, they can be used to discriminate between several schemes.

5 Efficiency

The discussion in this section is not specific for hash functions; the same criteria
apply to block ciphers and stream ciphers.

In general a choice is made between software and hardware implementations.
In software implementations, one will t ry to update variables sequentially, i.e.,
use the output of a calculation immediately in the next step. An important con-
straint is the limitation of the memory access, which exists at two levels. In the
first place, one will t ry to keep as many variables as possible in the registers.
Secondly, one will t ry to optimize the use of the cache memory. These considera-
tions become more and more important as the access time to the memory seems
to decrease more slowly than the cycle time of the processors. This suggests that
faster hash functions will rather make use of logic and arithmetic operations
available on a standard processor, than of S-boxes. However, the advantage of
S-boxes is that they yield a strong nonlinear relation between input and out-
put. Other less important aspects are word size, byte ordering, and problems
with carries. Finally it should be remarked that one should not t ry to optimize
the design towards a single processor: designing and reviewing a dedicated hash
function will take several years, and by that time the processor will probably be
outdated. On the other hand, it is acceptable to tune an algorithm, Which uses
common instructions, to be very fast on a recent processor; it is very likely to
achieve a high speed on most other processors as well. The MD4 family is clearly
optimized to be fast in software: these algorithms run at more than 10 Mbit /sec
on present day computers, which makes them about one order of magnitude
faster than other schemes that are not yet broken.

79

For hardware oriented hash functions, one will t ry to make use of parallelism.
Nonlinearity in hardware can be generated efficiently by S-boxes. The diffusion
can be increased by bit permutations, that simply correspond to wire crossings.
Ideally, such a dedicated hash function should also take a very limited area: this
will decrease the cost of the IC, and will make it possible in the near future
to integrate the hash function as a basic component in other IC's. A design
that consumes too much area will very likely go the same way as most ASIC
(Application Specific IC) designs for RSA during the eighties: they were never
built for economical reasons. The only dedicated hardware hash function seem
to be Cellhash and its variant Subhash. The expected speed is about 1 Gbit /sec
with a 33 MHz clock, but the area will probably be much larger than the area
for a DES implementation.

In order to limit the evaluation effort, one might ask the question whether
a single hash function can be designed that would offer a good compromise be-
tween hardware and software implementation criteria. In that case the design
rule should be a compromise between software and hardware. A limited degree
of parallelism is necessary in order to make hardware implementations efficient,
and this will be advantageous as well on computer architectures with several
processors. In order to make software implementations fast, permutations at bit
level should be designed in a structured way (byte or word structure), or it should
be possible to combine them together with the S-boxes, as the permutat ion P of
the DES. Moreover S-boxes seem to be a promising component, as they are ac-
ceptable in both hardware and software. These S-boxes should be optimal rather
than large and random, and should have a size of at most a few Kilobytes. They
could also degenerate to parallel Boolean functions, which reduces the memory
access; this corresponds to simple arithmetic (addition) and logic operations.
In this way, one can achieve a speed of more than 10 Mbit/sec in software and
more than 100 Mbit /sec in hardware (both estimates are for current s tandard
technology), which is about twice as fast as the current DES implementations.
So far, the only proposal for a hash function in this class is Boognish.

To conclude this section, Table 1 gives an overview of the speed of some hash
functions in software. All timings were performed on a 16 MHz IBM PS/2 Model
80 with a 80386 processor. On a more recent PC with a 66 MHz 80486, these fig-
ures will be improved with almost one order of magnitude. The implementations
were writ ten by A. Bosselaers. Most of them use additional memory to improve
the speed. The C-code was compiled with a 32-bit compiler in protected mode.
In order to allow for a comparison with hash functions based on the DES, speed
of a software implementation of the DES [7] is indicated, as well as the timings
for a modular squaring and exponentiation with a short exponent. In this case
a 512-bit modulus was chosen, and no use was made of the Chinese remainder
theorem to speed up the computations. Some algorithms like Snefru and SHA
would perform relatively bet ter on a RISC processor, where the complete inter-
nal state can be stored in the registers. On this type of processor, SHA is only
about 15% slower than MD5.

80

Table 1. Performance of several hash functions on an IBM PS/2 (16 MHz 80386).

type hash function C language Assembly language
(Kbit/sec) (Kbit/sec)

dedicated MDC MD2
MD4
MD5
SHA
RIPEMD

78 78
2669 6273
1849 4401
710 1370
1334 3104

N-hash
FFT-hash I
Snefru-6
Snefru-8

266 477
212 304
358 358
270 270

block cipher DES (§ key schedule) 130 200
DES (fixed key) 512 660
squaring
exponentiation (216 + 1)

modular
arithmetic

50 273
1.8 14

6 Trapdoors in Hash Funct ions

It is very common to check proposed encryption functions for trapdoors. These
are weaknesses that are built in the system on purpose, and that allow the person
who knows of these weaknesses to break the algorithm much faster. This risk is
certainly larger in case of proprietary algorithms, where the algorithm can only
be reviewed by a limited number of persons. Although one would not expect that
this issue comes up in the design of hash functions, it is clear that here also this
problem arises. An obvious weakness would be the choice of the IV: one could
select it in such a way that a particular plaintext block yields a fixed point.

The most obvious place to look for trapdoors are S-boxes. In order to avoid
any allegations, designers tend to generate these S-boxes in a random way: the S-
boxes from Snefru are derived from random numbers that were published in 1955,
and the S-box from MD2 is derived from the digits of the number 7~. However,
this solution is not completely effective: breaking the hash function might be
more easy if a certain property is present. If this event has probability 10 -9,
the designer can easily come up with 109 "straightforward" ways to generate
the S-box from the public string, while the :'random" permutat ion still has the
required property. In some cases, the security of the scheme might bc increased
if certain properties are built into the S-boxes. It is then even harder to show
that no other criteria were applied.

7 C o n c l u s i o n

For the time being there is no agreement on the design principles for a dedicated
hash function. Although some theory exists, several designs deviate from the

81

basic principles in order to improve the performance. In addition, using the
available theory is no guarantee for a secure scheme. This paper a t tempted to
describe the different approaches and to assess their merits. Hopefully it can give
some guidance to future designers of hash functions.

R e f e r e n c e s

1. E. Biham and A. Shamir, "Differential Cryptanalysis of the Data Encryption Stan-
dard~" Springer-Verlag, 1993.

2. J. Daemen, R. Govaerts, and J. Vandewalle, "A framework for the design of one-
way hash functions including cryptanalysis of Damg~rd's one-way function based
on a cellular automaton," Advances in Cryptology, Proc. Asiaerypt'91, LNCS 739,
H. Imai, R.L. Rivest, and T. Matsumoto, Eds., Springer-Verlag, 1993, pp. 82-96.

3. J. Daemen, R. Govaerts, and J. Vandewalle, "A hardware design model for cryp-
tographic algorithms," Computer Security - ESORICS 92, Proc. Second Euro-
pean Symposium on Research in Computer Security, LNCS 648, Y. Deswarte,
G. Eizenberg, and J.-J. Quisquater, Eds., Springer-Verlag, 1992, pp. 419-434.

4. J. Daemen, R. Govaerts, and J. Vandewalle, "Fast hashing both in hard- and soft-
warc," Presented at the Rump Session of Eurocrypt'93.

5. I.B. Damgs "Collision free hash functions and public key signature
schemes," Advances in Cryptology, Proe. Euroerypt'87, LNCS 304, D. Chanm and
W.L. Price, Eds., Springer-Verlag~ 1988, pp. 203-216.

6. I.B. Damgs "A design principle for hash functions," Advances in Cryptology,
Proe. Crypto'89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 416-427.

7. "Data Encryption Standard," Federal Information Processing Standard (FIPS),
Publication 46, National Bureau of Standards, U.S. Department of Commerce,
\u D.C., January 1977.

8. "Secure Hash Standard," Federal Information Processing Standard (FIPS), Pub-
lication 180, National Institute of Standards and Tcchnology, US Department of
Commerce, Washington D.C., 1993.

9. M. Girault, R. Cohen, and M. Campana, "A generalized birthday attack," Ad-
vances in Cryptology, Proc. Eurocrypt~88, LNCS 330, C.G. Giinther, Ed., Springer-
Verlag, 1988, pp. 129-156.

10. B.S. Kaliski, "One-way permutations on elliptic curves," Journal of Cryptology,
Vol. 3, No. 1, 1991, pp. 187 q99.

11. B.S. Kaliski, "The MD2 Message-Digest algorithm," Request for Comments (RFC)
1319~ Internet Activities Board: Internet Privacy Task Force, April 1992.

12. X. Lai and J.L. Massey, "Hash functions based on block cipher%" Advances in
Cryptology, Proc. Eurocrypt'92, LNCS 658~ R.A. Rueppel~ Ed., Springer-Verlag,
1993, pp. 55--70.

13. M. Matsui, "Linear cryptanalysis method for DES cipher," Advances in Cryptol-
ogy, Proe. Euroerypt'93, LNCS, Springer-Verlag, to appear.

14. R. Merkle, "A fast software one-way hash function," Journal of Cryptology, Vol. 3,
No. 1~ 1990, pp. 43 58.

15. S. Miyaguchi, M. Iwata~ and K. Ohta, "New 128-bit hash function," Proc. 4th In-
ternational Joint Workshop on Computer Communications, Tokyo, Japan, July
13-15, 1989, pp. 279-288.

16. S. Miyaguchi, "The FEAL cipher family," Advances in Cryptology, Proc.
Crypto~90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 627-638.

82

17. S. Miyaguchi, K. Ohta, and M. Iwata, "128-bit hash function (N-hash)," Proc.
Securicom 1990, pp. 127-137.

18. S. Miyaguchi, K. Ohta, and M. Iwata, "128-bit hash function (N-hash)," N T T
Review, Vol. 2, No. 6, 1990, pp. 128-132.

19. M. Naor and M. Yung, "Universal one-way hash functions and their cryptographic
applications," Proc. 21st ACM Symposium on the Theory of Computing, 1990,
pp. 387-394.

20. B. Preneel, "Analysis and design of cryptographic hash functions," Doctoral Dis-
sertation, Katholieke Universiteit Leuven, 1993.

21. B. Preneel, "Cryptographic hash functions," Kluwer Academic Publishers, 1994.
22. B. Preneel, R. Govaerts, and J. Vandewalle, "Hash functions based on block ci-

phers: a synthetic approach," Advances in Cryptology, Proc. Crypto'93, LNCS,
Springer-Verlag, to appear.

23. "Race Intcgrity Primitives Evaluation (RIPE): final report," RACE 1040, 1993.
24. R.L. Rivest, A. Shamir, and L. Adleman, "A method for obtaining digital signa-

tures and public-key cryptosystems," Communications ACM, Vol. 21, February
1978, pp. 120-126.

25. R.L. Rivest, "The MD4 message digest algorithm," Advances in Cryptology, Proe.
Crypto'gO, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 303-311.

26. R.L. Rivest, "The MD4 message-digest algorithm," Request for Comments (RFC)
1320, Internet Activities Board, Internct Privacy Task Force, April 1992.

27. R.L. Rivest, "The MD5 message-digest algorithm," Request for Comments (RFC)
1321, Internet Activities Board, Internet Privacy Task Force, April 1992.

28. C.P. Schnorr, "An efficient cryptographic hash function," Presented at the Rump
Session of Crypto '91.

29. C.P. Schnorr, "FFT-Hash II, efficient cryptographic hashing," Advances in Cryp-
tology, Proc. Euroerypt'92, LNCS 658, R.A. Rueppel, Ed., Springer-Vcrlag, 1993,
pp. 45-54.

30. C.P. Schnorr and S. Vaudenay, "Parallel FFT-Hashing," These Proceedings.
31. G. Ynval, "ttow to swindle Rabin," Cryptologia , Vol. 3, 1979, pp. 187-189.
32. Y. Zheng, J. Pieprzyk, and J. Seberry, "HAVAL a one-way hashing algo-

rithm with variable length output," Advances in Cryptology, Proc. Ausc~Tpt'92,
LNCS 718, J. Seberry and Y. Zheng, Eds., Springer-Verlag, 1993, pp. 83-104.

