
Design principles for dedicated hash functions 

Bart  Preneel* 

Katholieke Universiteit Leuven, Laboratorium ESAT-COSIC, 
Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium 

bart. preneel~esat, kuleuven, ac. be 

A b s t r a c t .  Dedicated hash functions are cryptographically secure com- 
pression functions which are designed specifically for hashing. They in- 
tend to form a practical alternative for hash functions based on another 
cryptographic primitive like a block cipher or modular squaring. About 
a dozen of dedicated hash functions have been proposed in the literature. 
This paper discusses the design principles on which these hash functions 
are based. 

1 I n t r o d u c t i o n  

Cryptographic  hash functions form an important  building block for providing 
information authentication. An efficient way to protect  the authentici ty of a large 
quanti ty of information consists of protecting only the short hashcode computed 
f rom tha t  information. If the authenticity is protected with a digital signature 
scheme, one obtains a shorter signature, which is easier to compute.  

For the t ime being there is no theory available to design efficient and secure 
hash functions. The oldest proposals for hash functions were based on block 
ciphers and on modular  arithmetic. During the last years about  a dozen of 
proposals for dedicated hash functions have appeared in the  literature. The goal 
of this paper  is to s tudy the design principles of these hash functions. It  is not 
our intention to give a description of these hash functions or to give an overview 
of the latest attacks.  For such an overview the reader is referred to [20, 21]. 

In Sect. 2 we give a definition of a hash function and we establish a general 
model for an i terated hash function. Moreover, we discuss the two main theo- 
retical results on the construction of i terated hash functions. In Sect. 3, we list 
the hash functions which are the subject of this paper.  Section 4 discusses the 
security relevant criteria, and Sect. 5 t reats  some performance related aspects. 
In Sect. 6 it will be explained why a t rapdoor  can also be a problem for hash 
functions. The  conclusions are presented in Sect. 7. 

* N.F.W.O. postdoctoral researcher, sponsored by the National Fund for Scientific 
Research (Belgium). Part of this work was done while visiting the Department of 
Electrical Engineering and Computer Sciences of the University of California at 
Berkeley. 
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2 D e f i n i t i o n  a n d  g e n e r a l  m o d e l  

In this paper we will only consider collision resistant hash functions, since all 
dedicated hash functions intend to be of this type. The concept of collision 
resistant hash functions dates back to the late seventies. We will give only an 
informal definition; for a formal definition the reader is referred to the work by 
I. Damgs [5, 6]. 

D e f i n i t i o n  1 A col l i s ion r e s i s t a n t  h a s h  f u n c t i o n  is a function h satisfying 
the following conditions: 

1. The argument X can be of arbitrary length and the result h (X)  has a fixed 
length of n bits (with n > 128). 

2. The hash function must be one-way in the sense that given a Y in the image 
of h, it is "hard" to find a message X such that h (X)  = Y ,  and given X 
and h (Z )  it is "hard" to find a message X '  ~ Z such that h(X ' )  = h(X) .  

3. The hash function must be collision resistant: this means that it is "hard" to 
find two distinct messages that hash to the same result. 

The first part  of the second condition corresponds to the intuitive concept of 
one-wayness, namely that  it is "hard" to find a preimage of a given value in 
the range. Under certain conditions one can argue that  this part  of the one- 
way property follows from the collision resistance property [6]. The second part  
of this condition, namely that  finding a second preimage should be hard, is a 
stronger condition, that  is relevant for most applications. Finding a (second) 
preimage requires at most 2 n operations. Collision resistance is stronger than 
one-wayness, since for any hash function with a n-bit result, a collision can be 
found in about 2 n/2 operations with a birthday or square-root attack [31]. 

Several options are available to specify the word "hard". In the case of "ideal 
security" [12], producing a (second) preimage requires 2 n operations and pro- 
ducing a collision requires about 2 n/2 operations. For the purpose of this paper 
it is sufficient to assume that  both operations are computationally infeasible. 

Almost all known hash functions are based on a compression function with 
fixed size input; they process every message block in a similar way. This has been 
called an "iterated" hash function in [12]. The information is divided into t blocks 
X1 through Xt.  If the total number of bits is no multiple of the block length, 
the information has to be padded to the required length. The hash function can 
subsequently be described as follows: 

Ho = I V  

Hi = f ( X i , H i - 1 )  i = 1 , 2 , . . . t  

h ( X )  = H , .  

The result of the hash function is denoted with h(X)  and I V  is the abbreviation 
for Initial Value. The function f is called the round function, and the H~'s are 
called the chaining variables. Two iterations of an iterated hash function are 
shown in Fig. 1. 



73 

Ho = I V  X 1 

I 
/ 

/-1"1 X2 

/-/2 

Fig. 1. Two rounds of an iterated hash function. 

Two elements in this definition have an important  influence on the security 
of a hash function: the choice of the padding rule and the choice of the IV.  
It is recommended that  the padding rule is unambiguous (i.e., there exist no 
two messages that  can be padded to the same message), and that  it appends at 
the end the length of the message. The IV  should be considered as part  of the 
description of the hash function. In some cases one can deviate from this rule, 
but  this will make the hash function less secure and may lead to trivial collisions 
or second preimages. 

An important  problem in the context of hash functions is the relation between 
the security of the hash function h and the security of the round function f .  The 
goal is to find conditions on f which are necessary and/or  sufficient for h to have 
certain properties: This can reduce the design and analysis of a hash function to 
the study of a function with fixed length inputs. 

It  can be shown that  the security of h and the security of f are equivalent if 
one uses an unambiguous padding rule and if the attacker is allowed to modify 
the initial values. This implies that  he will look for a pseudo-preimage, a (second) 
preimage with a different value of IV,  or for a pseudo-coUision, which means that  
for some IV'  and IV"  he finds a pair X',  X" ,  such that  hxy, (X') = hry,, (X"). 
It is clear that  finding a real (second) preimage or collision cannot be easier than 
finding a pseudo-preimage or pseudo-collision respectively. 

If the IV's  are fixed, these pseudo-attacks do not form a direct threat  and 
the situation is more complicated. I. Damggrd has shown that  for h to be colli- 
sion resistant it is sufficient that  f is collision resistant [6]. X. Lai and J. Massey 
showed that  a similar property holds for one-wayness [12]. But,  if the hash func- 
tion has to be ideally one-way, they showed that  is both necessary and sufficient 
for f to be ideally one-way. A similar result for a different type of hash functions 
was established in [19]. 
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3 T h e  d e d i c a t e d  h a s h  f u n c t i o n s  

MDx (Message Digest x) is a series of hash functions designed by R. Rivest. The 
ones which have been published are MD2, MD4, and MD5. 

MD2 is a byte oriented algorithm published in 1990; a description can be 
found in [11]. MD4 was designed to be fast on 32-bit machines [25, 26]. MD5 is 
a variant of MD4 [27]. Two other variants of MD4 are the Secure Hash Algo- 
rithm, which was published by NIST in the Secure Hash Standard - FIPS 180 
[8], and RIPEMD which was developed in the framework of the EEC-RACE 
project RIPE (Race Integrity Primitives Evaluation) [23]. HAVAL was proposed 
by Y. Zheng, J. Pieprzyk, and J. Seberry [32]; it is a collection of extensions of 
MD5. 

N-hash is a hash function with N = 8 rounds designed by S. Miyaguchi, 
M. Iwata, and K. Ohta [15, 17]. It is based on the same principles as FEAL [16]. 
An extended version of N-hash appeared in [18]: the roles of Xi and Hi-1 can 
be interchanged, and the number of rounds is now a parameter which should be 
at least 8. Four rounds are claimed to be sufficient for a one-way hash function, 
for which the collision resistant property does not have to hold (condition 3 in 
Definition 1). 

FFT-Hash I and II are hash functions suggested by C.P. Schnorr [28, 29] 
based on the Fast Fourier Transform. A contribution towards a third version is 
presented in these proceedings [30]. 

Snefru is a software oriented hash function proposed by R. Merkle [14]. It is 
based on large random substitution tables (2 Kbyte per pass). While initially 2 
to 4 passes were recommended, it is currently advised to use at least 8 passes. 

I. Damgs has proposed a hash function based on a cellular automaton in 
[6]. After breaking this scheme, J. Daemen, J. Vandewalle, and R. Govaerts put 
forward Cellhash [2]; an improved version was called Subhash [3]. These schemes 
are hardware oriented. 

Boognish is a hash function published by the same authors as Cellhash [4]; 
it mixes the design principles of Cellhash with those of the MD4 variants. 

One of the first requirements for a hash function is that  its description should 
be concise and clear. This will make the hash function more attractive to evaluate 
and implement. We will leave it up to the reader to judge whether the proposed 
dedicated hash functions and their descriptions satisfy this (subjective) criterion. 

Additionally one would like to have a motivation for all design decisions, and 
a comparison with alternatives that  were rejected; a particularly good example 
of this is the description of Snefru. This will avoid the situation where the person 
who is evaluating the hash function has to duplicate a large part of the effort 
already done by the designer. The reverse of the medal is that  the evaluator 
will loose part of this freshness when looking at the algorithm. Unfortunately 
some designer seem to be reluctant to give away know-how on designing and 
evaluating hash functions. 
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4 Security Relevant Criteria 

The following security relevant properties will be discussed: should the round 
function be collision resistant and one-way or not, should the round function be 
partially bijective and one-way, how to protect beginning and end of the hashing 
operation, the use of redundancy in the message. Subsequently, a t reatment  of 
some specific attacks will be given. 

4.1  C o l l i s i o n  r e s i s t a n t  a n d  o n e - w a y .  

The main issue faced by the designer is whether he will base his dedicated hash 
function on a round function that  is both collision resistant and one-way or not. 
A first argument in favor of a collision resistant and one-way round function has 
been discussed in Sect. 2: if the construction satisfies certain restrictions, the 
security of the hash function can be studied by analyzing the round function. 
The advantage of this construction is also that  the choice of a specific IV  is 
not very important:  the scheme should be secure with any IV. Indeed, if a 
perfectly secure compression function is used, finding a pseudo-preimage or a 
pseudo-collision is not easier than finding a preimage or a collision. Another 
advantage of this approach is that  the size of the chaining variables can be 
increased at the cost of a decreased performance. This corresponds to a trade-off 
between security and speed. Moreover, the round function can be used directly 
in applications where the size of the input is fixed. Finally hashing can be done 
in a parallel way using a tree construction [6, 20]. 

On the other hand, from analyzing the hashing process, it follows that  the 
roles of Hi and Xi are essentially different. This means that  it seems natural  to 
impose different conditions on both inputs of the round function. E.g., if finding 
a pseudo-preimage is relatively easy, one can find a preimage faster than 2 n 
operations, but  this does not mean that  finding a preimage becomes feasible. 
One can hope that  loosening the requirements will improve the performance of 
the hash function. 

An argument against this approach is that  if this construction results in a 
collision resistant hash function, it will also give a collision resistant function (just 
fix the input size), which can be used as the round function in a construction of 
the first type. Note that  this new hash function will be slower than the first one. 

If the option is taken to design a collision resistant function, one should be 
consistent and design the round function such that  it is symmetric with respect 
to message and chaining variable. Unfortunately, not all proposed schemes follow 
this logic. 

Designs along these lines are MD2, FFT-hash,  Snefru, and the Damgs 
scheme based oil a cellular automaton. Designs that  t reat  chaining variables 
and message blocks differently are N-hash, Cellhash, Subhash, Boognish, and 
MD4 and its variants. On the other hand, the only round functions for which no 
collisions were found are those of MD2, Snefru with more than 6 passes, MD4, 
SHA, and RIPE-MD (MD5 is excluded). This is rather surprising, as the MD4 
variants are designs of the second type. 
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4.2 B i j e c t i v i t y  a n d  on e -way n es s .  

A second related issue is the question whether the round function or part  of the 
round function should be bijective and one-way. On the one hand, bijectivity for 
part  of the round function seems to be a desirable property: this avoids attacks 
where the entropy of the internal variables or chaining variables decreases, and 
one can show that  at certain places no collision can occur. On the other hand, 
one would like to have a one-way mapping: if an attacker can go backwards 
easily, he will be able to use meet-in-the-middle techniques. In practice however 
it seems hard to combine both properties: it is a well known open problem to 
find a very efficient one-way permutation. Proving that  a scheme is bijective 
is in most cases done by proving that  one can go backwards. Examples based 
on number theoretic problems do exist (e.g., RSA [24], and a scheme based on 
elliptic curves [10]), but are rather slow. This seems to be an intrinsic problem, 
which is linked to the fact that  it is very difficult to find efficient public-key 
cryptosystems. In order to get around this dilemma, many schemes combine a 
bijection with a fcedforward of the data  input or the chaining variable input or 
both. Of course this destroys the bijectivity. In the study of these properties, a 
distinction has to be made between schemes that  t reat  chaining variables and 
message blocks symmetrically and schemes that  do not have this property. 

In the first case FFT-hash and Snefru are based on a bijective mapping, 
where the output  size is reduced by chopping part  of the bits (for FFT-hash  
and Snefru). In Snefru the round function is made one-way by exoring the input 
to the output.  The security of the Damgs cellular automata  scheme is based 
on the one-wayness of the round function. With respect to this criterion, MD2 
behaves a bit differently: the mapping is one-way, but part  of the internal state 
can be recovered. 

The optimal configuration in this case seems to be a number of bijective 
mappings, interleaved with feedforwards in order to avoid a meet-in-the-middle 
attack. The security can also be increased by not simply selecting the output  
bits but applying a simple compression. 

If message blocks and chaining variables are treated in a different way, the 
schemes that  contain a mapping that  is bijective if one of the inputs is fixed 
can be treated in the same way as single length hash functions based on a block 
cipher [22]. Cellhash, Subhash, and Boognish have a round function which is 
bijective for a fixed message and for a fixed chaining variable, but the mapping 
can be inverted easily if one of the inputs is fixed. It is equivalent to a CFB 
mode, but it derives its strength from the specific redundancy scheme in the 
message. MD4 and its variants are based on a function that  is bijective for a 
fixed message block, while the one-way property is introduced by a feedforward 
of the previous chaining variable. Tim first variant of N-hash is bijective for a 
fixed chaining variable, and the other one is bijective for a fixed message block. 
In both variants the chaining variable and the message are added modulo 2 to 
the output  of the function. From [22] it follows that  fixed points can be found 
easily for MD4, N-hash, and their variants. The impact of these fixed points is 
however limited; they pose no threat  if the padding scheme adds the message 
length. 
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4 . 3  B e g i n n i n g  a n d  e n d .  

It is well known that  the beginning and the end of the hashing operation arc 
critical for the security of a hash function. We repeat the main recommendations 
of Sect. 2: 

- choose a single IV or a limited set of IV's, 
- use an unambiguous padding rule that  comprises the addition of the length 

of the message. 

For some schemes it can be useful to impose a maximal message length. 
Many hash functions are vulnerable to attacks where one goes backwards 

or to attacks that  concentrate on the end of the message like correcting block 
attacks. Their  security can be increased without reducing the performance by 
adding at the end a limited number of blocks that  are a function of all message 
blocks. An example is the first hashcode that  is used in MD2. Other solutions are 
the addition of zero blocks (Subhash, Boognish) or the use of cyclic redundancy 
in the message (Cellhash). 

Adding a first block that  is dependent on IV can have as effect that  find- 
ing a pseudo-preimage is not easier than finding a preimage: this is especially 
interesting in case of schemes where going backwards is very easy, and the use 
of different IV's is still necessary. 

Another principle that  seems to increase the security is to work with two 
independent chains with a limited interaction in every round: in this way the 
security margin caused by the additional internal memory can "wipe out" certain 
weaknesses in the round function. This principle has been applied in RIPE-MD. 

4 . 4  R e d u n d a n c y  i n  t h e  m e s s a g e .  

It seems to be a good design principle to use every message bit as many times as 
possible, and in such a way that  it is hard to compensate changes in one message 
block. From this it follows that  the same bit should be used at different locations 
and in different functions. This calls for a structure like MD4 where the message 
is used as "key" to "encrypt" in a reversible way the chaining variables. The 
"key scheduling" should guarantee that  every key bit is used a sufficient number 
of times. 

Instead of duplicating every message bit, the idea of using an error correct- 
ing code as in SHA is very promising: in this way one can guarantee t h a t - -  
independently of the selection of the m e s s a g e - t h e  actual input to the hash 
function will differ in at least d locations, with d the minimum distance of the 
code. 

There are several arguments to avoid making more than a single "pass" over 
the message: the performance decreases, it might be that  additional storage is 
necessary, if the round function is invertible a generalized meet-in-the-middle 
at tack may be applied [9], and finally in implementations one has to verify tha t  
it is indeed the same message that  enters the hashing process. 
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4.5 Specific attacks. 

A variety of attacks have to be considered when designing a dedicated hash 
function. In this respect a hash function is not very different from a stream 
cipher or a block cipher. Attacks that  have to be studied are differential attacks, 
linear attacks, and analytical attacks. In case of a differential attack, a single pair 
tha t  yields an output  exor equal to zero is sufficient to break the hash function. 

The first evaluation that  has to be performed on an algorithm is certainly 
a statistical evaluation: it should be checked whether any irregularities can bc 
found in the distribution of the output,  and whether input differences affect the 
complete output.  Special attention can be paid here to weaknesses occurring 
in most and least significant bits, to the relation between parity of inputs and 
outputs, and to other linearities. 

Differential and linear cryptanalysis appear to be very powerful techniques, 
especially against schemes based on S-boxes [1, 13]. In case of hash functions, 
one will look for two inputs for which the output  difference is zero, or for which 
the output  difference is equal to the input difference (if a fecdforward exists of 
the input to the output).  

Fixed points are certainly not usable in practice, but in absence of bet ter  
criteria, they can be used to discriminate between several schemes. 

5 Efficiency 

The discussion in this section is not specific for hash functions; the same criteria 
apply to block ciphers and stream ciphers. 

In general a choice is made between software and hardware implementations. 
In software implementations, one will t ry  to update variables sequentially, i.e., 
use the output  of a calculation immediately in the next step. An important  con- 
straint is the limitation of the memory access, which exists at two levels. In the 
first place, one will t ry  to keep as many variables as possible in the registers. 
Secondly, one will t ry to optimize the use of the cache memory. These considera- 
tions become more and more important  as the access time to the memory seems 
to decrease more slowly than the cycle time of the processors. This suggests that  
faster hash functions will rather make use of logic and arithmetic operations 
available on a standard processor, than of S-boxes. However, the advantage of 
S-boxes is that  they yield a strong nonlinear relation between input and out- 
put. Other less important  aspects are word size, byte ordering, and problems 
with carries. Finally it should be remarked that  one should not t ry  to optimize 
the design towards a single processor: designing and reviewing a dedicated hash 
function will take several years, and by that  time the processor will probably be 
outdated. On the other hand, it is acceptable to tune an algorithm, Which uses 
common instructions, to be very fast on a recent processor; it is very likely to 
achieve a high speed on most other processors as well. The MD4 family is clearly 
optimized to be fast in software: these algorithms run at more than 10 Mbit /sec 
on present day computers, which makes them about one order of magnitude 
faster than other schemes that  are not yet broken. 
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For hardware oriented hash functions, one will t ry  to make use of parallelism. 
Nonlinearity in hardware can be generated efficiently by S-boxes. The diffusion 
can be increased by bit permutations, that  simply correspond to wire crossings. 
Ideally, such a dedicated hash function should also take a very limited area: this 
will decrease the cost of the IC, and will make it possible in the near future 
to integrate the hash function as a basic component in other IC's. A design 
that  consumes too much area will very likely go the same way as most ASIC 
(Application Specific IC) designs for RSA during the eighties: they were never 
built for economical reasons. The only dedicated hardware hash function seem 
to be Cellhash and its variant Subhash. The expected speed is about 1 Gbit /sec 
with a 33 MHz clock, but  the area will probably be much larger than the area 
for a DES implementation. 

In order to limit the evaluation effort, one might ask the question whether 
a single hash function can be designed that  would offer a good compromise be- 
tween hardware and software implementation criteria. In that  case the design 
rule should be a compromise between software and hardware. A limited degree 
of parallelism is necessary in order to make hardware implementations efficient, 
and this will be advantageous as well on computer architectures with several 
processors. In order to make software implementations fast, permutations at bit 
level should be designed in a structured way (byte or word structure), or it should 
be possible to combine them together with the S-boxes, as the permutat ion P of 
the DES. Moreover S-boxes seem to be a promising component, as they are ac- 
ceptable in both hardware and software. These S-boxes should be optimal rather 
than large and random, and should have a size of at most a few Kilobytes. They 
could also degenerate to parallel Boolean functions, which reduces the memory 
access; this corresponds to simple arithmetic (addition) and logic operations. 
In this way, one can achieve a speed of more than 10 Mbit/sec in software and 
more than 100 Mbit /sec in hardware (both estimates are for current s tandard 
technology), which is about twice as fast as the current DES implementations. 
So far, the only proposal for a hash function in this class is Boognish. 

To conclude this section, Table 1 gives an overview of the speed of some hash 
functions in software. All timings were performed on a 16 MHz IBM PS/2  Model 
80 with a 80386 processor. On a more recent PC with a 66 MHz 80486, these fig- 
ures will be improved with almost one order of magnitude. The implementations 
were writ ten by A. Bosselaers. Most of them use additional memory to improve 
the speed. The C-code was compiled with a 32-bit compiler in protected mode. 
In order to allow for a comparison with hash functions based on the DES, speed 
of a software implementation of the DES [7] is indicated, as well as the timings 
for a modular squaring and exponentiation with a short exponent. In this case 
a 512-bit modulus was chosen, and no use was made of the Chinese remainder 
theorem to speed up the computations. Some algorithms like Snefru and SHA 
would perform relatively bet ter  on a RISC processor, where the complete inter- 
nal state can be stored in the registers. On this type of processor, SHA is only 
about  15% slower than MD5. 
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Table 1. Performance of several hash functions on an IBM PS/2 (16 MHz 80386). 

type hash function C language Assembly language 
(Kbit/sec) (Kbit/sec) 

dedicated MDC MD2 
MD4 
MD5 
SHA 
RIPEMD 

78 78 
2669 6273 
1849 4401 
710 1370 
1334 3104 

N-hash 
FFT-hash I 
Snefru-6 
Snefru-8 

266 477 
212 304 
358 358 
270 270 

block cipher DES (§ key schedule) 130 200 
DES (fixed key) 512 660 
squaring 
exponentiation (216 + 1) 

modular 
arithmetic 

50 273 
1.8 14 

6 Trapdoors in Hash Funct ions  

It is very common to check proposed encryption functions for trapdoors.  These 
are weaknesses that  are built in the system on purpose, and that  allow the person 
who knows of these weaknesses to break the algorithm much faster. This risk is 
certainly larger in case of proprietary algorithms, where the algorithm can only 
be reviewed by a limited number of persons. Although one would not expect that  
this issue comes up in the design of hash functions, it is clear that  here also this 
problem arises. An obvious weakness would be the choice of the IV: one could 
select it in such a way that  a particular plaintext block yields a fixed point. 

The most obvious place to look for trapdoors are S-boxes. In order to avoid 
any allegations, designers tend to generate these S-boxes in a random way: the S- 
boxes from Snefru are derived from random numbers that  were published in 1955, 
and the S-box from MD2 is derived from the digits of the number 7~. However, 
this solution is not completely effective: breaking the hash function might be 
more easy if a certain property is present. If this event has probability 10 -9, 
the designer can easily come up with 109 "straightforward" ways to generate 
the S-box from the public string, while the :'random" permutat ion still has the 
required property. In some cases, the security of the scheme might bc increased 
if certain properties are built into the S-boxes. It is then even harder to show 
that  no other criteria were applied. 

7 C o n c l u s i o n  

For the time being there is no agreement on the design principles for a dedicated 
hash function. Although some theory exists, several designs deviate from the 
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basic principles in order to improve the performance. In addition, using the 
available theory is no guarantee for a secure scheme. This paper a t tempted to 
describe the different approaches and to assess their merits. Hopefully it can give 
some guidance to future designers of hash functions. 
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