
On finite automaton one-key cryptosystems 

T ao  Ren j i  

I n s t i t u t e  o f  S o f t w a r e , A c a d e m i a  S in ica ,Be i j lng  1 0 0 0 8 0 , P R C  

Abstract  

This paper reviews some works on finite automaton one-key cryptosystems and 
related topics such as autonomous finite automata and Latin arrays. 

It is well known that shift registers are important sequence generators in stream 
ciphers. But shift registers are merely a special kind of autonomous finite automata. 
Finite automata were considered as suitable mathematical models of cryptosystems 
from structural viewpoint long ago [1, 2, 3, 4, 5]. And invertibility theory of finite au- 
tomata had been used to design one-key, two-key and identity-based cryptosysatems 
[6, 7, 8, 9,10, 11,12,13,14, 15]. In this paper we give a survey of some works of ours on 
finite automaton one-key cryptosystems and related topics such as autonomous finite 
automata and Latin arrays. In w we recite some basic definitions and results in in- 
vertibllity theory of finite automata. We then in w mention two important results on 
bounded error propagation and feedforward invertibility. In w we explain a canonical 
form for one-key cryptosystems implemented by finite automata without expansion of 
the plaintext and with bounded propagation of decoding errors. w is devoted to Latin 
arrays. And w deals with autonomous finite automata. 

1 Basic definitions and results 

Recall some definitions. A finite automaton, say M, is a quintuple < X, Y, S, 6, A >, 
where X is a nonempty finite set (the input aIphabetof M}, Y a nonempty finite set ( the 
output alphabet of M), S a nonempty finite set ( the state alphabet of M), 5 : S • X ~ S a 
single'valued mapping (the next state function of M), and A : S • X ~ Y a single-valued 
mapping (the output function of M). 

For any set A, by A* denote the set of all words (finite sequences) over A including 
the empty word r and by A ~ the set of all infinite-length words ( infinite sequences) over 
A. Expand the domains of ~ and A to $ • X* and S • (X* UX'~), respectively, as follows. 

~(~,~) =~, ~(s,x~')=~(~,x)~(6(~,~),~'), 

8ES,  z E X ,  a E X * ,  al E X * U X  ~. 

In other words, on an initial state s(0) of M an input sequence z(0), z(1) . . . .  of M causes 
a state sequence s(0), s(1) . . . .  of M and an output sequence y(0), y(1) , . . ,  of M according 
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to 

s(i + i) = 
y(i) = 

i = O,l, . . . .  

Let M = <  X,  i/., B, 6, ~ > and M '  = <  Y, X,  S', 6', ~' > be two finite automata, and r 
a nonnegative integer. 

In his seminal paper [1] D.Hutfman introduced the concept of r-order information- 
lossless that  we call weakly invertible with delay r . . M  is said to be weakly invertible with 
delay r (or r-order information-lossless) if for any s in S and zi in X, i = O, 1 , . . . ,  r, 
xo can be uniquely determined by s and ~(s, z o . . .  xr). 

M is said to be weakly invertible if for any s in S and r, in X ~, c~ can be uniquely 
determined by 8 and ~(8, a).  

P r o p o s i t i o n  1 (a). If M in weakly invertible with delay r, then M is weakly invertible. 
(b). I f  M is weakly invertible , then there exists a nonnegative integer r such that M 

is weakly invertible with delay r .  

For any states s E S and 8' E S' ,  if 

then (s', s) is said to be a raateh pair with delay r or say that s' r-matches 8. 
M ~ is said to be a weak inverse with delay r of J~r i f  for any s in S there exists s ~ in 

S'  such that  (8', s) is a match pair with delay r. 

P r o p o s i t i o n  2 M is weakly invertible with delay r if and only if there exists a finite 
automaton M '  such that M'  is a weak inverse with delay r of M.  

In an unpublished paper [16] we introduced the concept of invertible with delay r 
which occurs in public literature [17]. M is said to be invertible with delay r if for any 
s in S and xi in X, i = 0 ,1 , . . .  ,r ,  zo can be uniquely determined by ~(s, x o . . . x r ) .  

M is said to be invertible if for any s in S and c~ in X ~, ~, can be uniquely determined 
by 

P r o p o s i t i o n  3 (a). If  M is invertible with delay r, then M is invertible. 
(b). I f  M is invertible , then there exists a nonnegative integer r such that M is 

invertible with delay r. 

M I is said to be an inverse with delay r of M if for any s in S and any s! in S ' ,  
(8 I, 8) is a match pair with delay r. 

If ~a is a mapping from Y~ • X h+l to Y, and a finite automaton M = <  X, Y, Y~ • 
X h, 6, ~ > can be defined by 

y(i) = p(y( i - -  1 ) , . . . , y ( i - ~  k) ,=( i ) , . . . ,=( i - -  h)), i = 0 ,1 , . . . ,  

i.e., 

6(< Y-1,. . - ,Y-k,z-1, . . . ,x-h >, Xo) 

~.(< Y- I , . . . ,  Y-k, = - i , . . . ,  x-h >, =o) 

yo 

---- YO, 

= Io(y-1 . . . . .  y-k,  xo, x -1  . . . . .  x -h ) ,  
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then M is said to be an (h, k)-order memory finite automaton, denoted by Mv. In ease 
of k = O, M~, is said to be an h-order input-memory finite automaton. 

P r o p o s i t i o n  4 M is invertible with delay r i f  and only i f  there exists a v-order input- 
memory finite automaton M'  such that M I is an inverse with delay r of M ,  i f  and only 
i / there exists a finite automaton M'  such that M '  is an inverse with delay v o / M .  

2 B o u n d e d  e r r o r  p r o p a g a t i o n  a n d  f e e d f o r w a r d  i n -  

v e r t i b i l i t y  

In [18], J.L. Massey and M.K. Sain introduced the concept of feedforwaxd invertible 
for linear finite au tomata .  For the general case, we introduced the concept of feedfor- 
ward invertible with delay r in [7] to pursue the structural character on  bounded error 
propagation.  

A finite automaton M = <  X, Y, S, 6, A > is said autonomous, if for any s E S and 
any z , ~  E X, 5Cs, z ) = 5Cs, z' ) and A(s,x) = A(s,:~') hold. We use < Y,S ,  5, A > to 
denote an autonomous finite automaton, where domains of ~ and A are S. 

Let M* = <  Y~ X, B*, 6*, A* > be a finite automaton. M* is said to be a e-order semi- 
input-memory finite automaton if there exists an autonomous finite automaton Ma = <  
Ya, Sa,6a,A~ > and a single-wlued mapping f : y~+1 x Aa(Sa) ~ X such that 

S* = y c  x S~, 

5"(< yo,...,yo-l,s >, yo) = < ul,...,yo,5oCs) >, 
A*(< y0 , . . . , yo_ l , s  >, yo) = /(y0,...,yo,~o(s)). 

Denote M* by C(Ma, f}. 
A finite automaton M is said to be feedforward invertible with delay v if there exists 

a finite order semi-input-memory finite automaton M ~ such that M ~ is a weak inverse 
with delay r of M. 

Let M t = <  Y, X, S',  6', A n > be a weak inverse with delay v of M = <  X, Y, S, 6, A >. 
If there exists a nonnegative integer c such that 

(Vs)s(3sl)s , I ( (s~,s)  is a match pair with delay v)& 

(W,)x.  (v/~},.. (W)>o(/~ =~ ~,(s, ~.) --, A'Cs',/~) =(~+~) ~ '[ , ' ,  J,(~, o,}))], 

then we say that propaqation of weakly decodin9 errors of M ~ for M is bounded, where 
aoax . . .  =n bobx . . .  means anan+l . . . .  bnbn+l . . . .  

The following Theorem gives a characterization in structure for bounded error prop- 
agation [7]. 

Theorem 1 A finite automaton M is feedforward invertible with delay v i f  and only i f  
there exists a finite automaton M'  such that M e is a weak inverse with delay v o/ M and 
the propagation o f  decoding errors o / M '  for M is bounded. 

A finite automaton M I is said to be a feedforward inverse with delay r if there exists 
a finite automaton M such that M'  is a feedforward inverse with delay r of M. 

We obtained a characterization for structure of feedforwaxd inverses with small delay 
[8, 19, 38]. In case of delay free, we have the following [8]. 
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T h e o r e m  2 Let M* = <  Y,X,S* ,5* ,$*  > be a c-order semi-input-memory finite au- 
tomaton C(Ma, f ) ,  where Ma = <  Ya, tJa, 5a,~a > iS an autonomous finite automaton, 
f : yr • ~a(Sa) --* X a single-valued mapping. Let r < c. If  the cardinal number of 
X is the same as of Y ,  then M* is a/eedforward inverse with delay free if and only if 
there exist p l , . . . , p k  e S~ such that 5a(pi) = Pi+l, i = 1 , . . . , k  - 1, 5a(p~) = Pz, and 
the cardinal number of I(Y0,..., yo-~, E ~~ is the same as of X for any i = Z , . . . ,  i: 
and any Yo, . . . ,  Yc-t E Y.  

3 C a n o n i c a l  f o r m  f o r  f i n i t e  a u t o m a t o n  o n e - k e y  c r y p -  

t o s y s t e m s  

Using Theorem 2, for one-key cryptosystems implemented by finite automata  without 
expansion of the plaintext and with bounded propagation of decoding errors, we give a 
kind of canonical form as follows [101. 

The decoder M '  = <  Y, X,  S' ,  5', $' > is a c-order semi-input-memory finite automa- 
ton C(Ma, f) ,  where X = Y,  Ma = <  Y~, S~, 5~, $~ > is an autonomous finite automaton, 
f : yc+z • )~(S~) --* X a singie-valued mapping such that  the cardinal number of 
f ( yo , . . . , yc - z ,Y ,$~(s~) )  is the same as of X for any s~ ES~ and any Yo, . . . ,Yc-z  E Y.  
For any y~ ~ Sa(S~) and any y0 , . . . ,  Yo-1 ~ Y, define fy0,...,yo-l,y. : Y ~ X 

/~o,...,~o-,,~,(y4 =/(yo, . . . ,  yo, yo). 

Clearly, )r is a permutation on Y (or X). Then there exists a single-valued 
mapping h : y c  x )~a(Sa) -'4" W such that  

f(yo,...,  yo_l,yo,yo) = g~o,....~~ 

yo z ~~ yo,...,yo e r 
for some finite set W and some permutation family {g~l : y __. X, w E W}. Fig.1 (b) 
gives a pictorial form of the decoder M ~. For any initial state 

s'(o) =< y(-1), . . . ,  y(-c), s,(o) > 

and any input sequence Cciphertext) 

y(o),..., y ( l -  1) 

of Me, the output sequence (plaintext) x(O) . . . . .  x(1 - 1) of M '  can be computed by 

soCi+ 1) = 6a( , , ( i ) ) ,  
yoCi) = ~oCs~,(i)), 
~ ( i )  = h ( y ( i -  c ) , . . . ,  y C i -  1), yo(i)), 
�9 (i) = g=~,)(yCi)), 

i nO, I , . . . , / - -  1. 
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Corresponding encoder may be chosen as a finite automaton M = <  X, Y,Y~ x 
Sa, 6, A > of which a pictorial form is given by Fig.1 (a)~ where 

6 ( <  v - 1 , . . . , v - o , s ~  > ,  =o) = < v o , v - 1 , . . . , V - o §  > ,  

~ ( < Y - 1 , . . . , Y - o , S a > ,  xo) = Yo, 

vo = g= ,o (ZO) ,  

~o = h ( V - o , . . . , V - l , ~ o ( s o ) ) ,  
< y-z,...,Y-c, sa >6Y r x Sa, xo 6X. 

That  is to  say, for any initial state s(0) = <  y ( - 1 ) , . . . ,  y ( - c ) ,  S~(0) > and any input se- 
quence (plaintext) z (O) , . . . ,  zC/-1) of M, the output sequence (ciphertext) y(O) , . . . ,  y(l- 
1} of M can be computed by 

,o(~+ 1) = 

v , ( 0  = 
~(~) = 

v (0  = 

As a special case ( c = 0 ), for one-key 
without expansion of the plaintext and 
canonical form is as follows [21]. 

The decoder M '  = <  IF, X, Sa, g', M > 
ton CCMa , g-l) ,  where X = Y, 

6'(so,.v) = 

~'(s~, v) = 

6o(so(O), 
~(so(~)), 
h(uCi - ~ ) , . . . ,  v(i - 1), uo(i)), 
g~(o(=(O),  
/ = 0 , 1 , . . . , / -  1. 

cryptosystems implemented by finite au tomata  
without propagation of decoding error% the 

is a O-order semi-input-memory finite automa- 

g:?(v),  
,x,,(,~ 
s,, e $,,, v e Y ,  

Ma - -<  W, Ba, Sa, Aa > is an autonomous finite automaton, g~l  : y __. X is a per- 
mutat ion on Y, w E W, and g~l(y) = g - l ( w , y ) .  For any initial state sa{O) and any 
input sequence (ciphertext) y (O) , . . . , y ( l  - 1) of M' ,  the output sequence (plaintext) 
= ( 0 ) , . . . ,  = ( l -  1) of  M'  can be computed by 

s ~ ( ~ +  1) = 6o(s~(0) ,  

,~(~) -- ~oCso(O), 
=(~) = g;~,l(y(O),  

i = 0 , 1 , . . . , / -  1. 

Corresponding encoder may be chosen as a finite automaton M = <  X, Y, Sa, 6, A >, 
where X = Y, 

~(~o,~) = ~o(,o), 
~ ( ~ , ~ )  = g,~(~), 

= ,X, , (~ , , ) ,  

s,~ E S~,, z E X .  
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That is to say, M =< X, Yj Sa, 6, ~ > is also a 0-order semi-input-memory finite automa- 
ton C(Ma, g), where g(w, x) = g= (x). For any initial state sa(0) and any input sequence 
(plaintext) x(O),..., z(i  - 1) of M, the output sequence (ciphertext) y(O),..., y(l - I) of 
M can be computed by 

sa( i+ 1) ---- 6a(saCi)), 
~ ( i )  = ~ . (8 . (d) ) ,  

y(~) = g .c0(x(~) ) ,  
i = 0 , 1 , . . . , I - 1 .  

h ( y~ -c , . . . , y~ - i , t l )  ~ g ~ , ( z i )  14 

Fig.1 (a). Encoder M 

D, 

Xi 

h(y~-c, � 9  y~-l,t~) ~ g j ~ S ( y ~ )  I 

Fig.1 (b). Decoder M I 

Y~ 
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Fig.2 (a). Encoder M Fig.2 (b). Decoder M '  

Block ciphers, rotor ciphers and stream ciphers (in a narrow sense) are special cases 
of above canonical form. For block ciphers~ 6a is the identity function. For binary stream 
ciphers , gw (z) -- w ~ z~ where ~ stands for addition modulo two, i.e., exclusive OR. 

E x a m p l e .  Let X and Y be 256 bytes. Take c = 6. Ma consists of a binary 
shift register with characteristic polynomial z 12s ~B z s ~B z and an autonomous finite 
automaton with identity next star function, w~ ranges over 16 bits words, g ~ 2  (z) = 
~(wl -- (w2 �9 (wl -- ~(z)))), where ~o is a permutation on X,  and -- stands for subtraction 
modulo 256. The key consists of the initial state of Ma and ~o. 

4 L a t i n  a r r a y  

The problem of designing one-key cryptosystems which can be implemented by finite 
au tomata  without expansion of the plaintext and with bounded propagation of decoding 
errors lies on choosing suitable parameters such as the size of alphabets and the length 
c of ciphertext history and designing three components in above canonical form (Fig.l)  

- an autonomous finite automaton Ma, a transformation h and a permutat ion family g~ 
- such that  the systems are both efficient and also secure. 

For studying the family of permutations used in previous canonical form, we intro- 
duced the concept of Latin arrays and investigated their enumeration and generation 
problems [22, 23J. 

Let gw,w in W, be a family of permutations on X. For resisting the known plaintext 
attack~ a natura l  requirement is to possess the property 1. 

Property 1. For any x ,y  in X ,  ]{w[w in W, gw(x) = y}[ = constant. 

From the viewpoint of uniformity of permutat ions,  it is desirable to have the property 
2 additionally. 

Property 2. For any w' in W, [{w]w in W, gw = gw'}] = constant. 

Specify an order for elements of X and of W, say x l , ' - "  ,z~ and wl , ' .  ",w~, respec- 
tively. Let A = (a~y) be an n • m matrix, where a~y = gws(z~). Then each column of A 
is a permutat ion of elements of X. Clearly, fixing orders of elements for X and W, the 
family of permutations g~, w in W, is one-one correspondent with A. Corresponding to 
property 1 and to properties 1-2, we introduced the following concepts. 
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Let A be an n x nk matrix on N = {1, . . . ,  n} . If each element of N occurs exactly 
once in each column of A and k times in each row of A, then A is said to be an (n, k)-Latin 
array. 

Let A be an (n, k)-Latin array. If each column of A occurs exactly r times in columns 
of A repeatedly, then A is said to be an (n, k, r)-Latin array. 

Latin arrays is a kind of generalization of Latin squares. 
Let A and B be n x m matrices on N. If B can be obtained from A by rearranging 

rows, rearranging columns and renaming elements, then A and B is said to be isotopic. 
Clearly, if A is an (n, k)-Latin array and isotopic with B, then B is an (n, k)-Latin 

array; and if A is an (n, k, r)-Latin array and isotopic with B, then B is an (n, k, r)-Latin 
array. 

For i n, k)-Latin arrays or (n, k, r)-Latin arrays, the equivalence class partitioned by 
isotopy relation is called isotopy class. 

By U(n,/r denote the number of all (n,/r arrays, U(n, k, r) the number of all 
(n,/~, r)-Latin arrays, I(n, k) the number of all isotopy classes of (n, /:)-Latin arrays, and 
I(n, Ir r) the number of all isotopy classes of (n,/r r)-Latin arrays. We have [22,23] 

P r o p o s i t i o n  5 (a). l(n, k, r) = l(n, It~r, i); 
(b). u (n ,  k, r) = u (n ,  ~/r,  1)(nk)V(nk/r)~(rD"~/" . 

P r o p o s i t i o n  6 Let 1 < k < (n - 1)!. We then have : 
Ca). Z(n, ]r 1) = Z(n, (n - 1)! - / r  1); 
(b). u ( . ,  (n - 1)! - ~, 1) = v ( . ,  k, 1) (~!  - nk ) ! / (nk ) ! ;  
(e). l(n, (n - 1)!, 1) = 1, U(n, (n - 1)I, 1) = (n!)I. 

T h e o r e m  3 

I(2, k) = 1, U(2,/r -- (2k)l/(/r 2, 

1(3, 1, 1) = I, ,U(3, I, I) = 12, 

( k + 1 ) / 2  if/: is odd 
I(3, k) = k/2 + 1 otherwise, 

I(4, 1) ---- 2, U(4,1) = (4]) 2, 
1(4, 2) -- 11, U(4, 2) = 12640320, 

I(4, 3) = 46, U(4, 3) = 805929062400, 

1(4, 4) = 201, 

I(4, 4, 1) = 6, 

I ( 2 , 1 , 1 )  = 1, ~ ( 2 , 1 , 1 )  = 2; 

u(3 ,  k) = E ~ = 0 C 3 k ) ! / ( h ! ( k  - h)!)  3, 

I(4, 1, 1) = 2, U(4, 1, 1) = (4t) 2, 

I (4,  2, 1) = 6, U(4, 2, 1) ---- 10281600, 

I(4, 3, 1) = 11, U(4, 3,1) = 306561024000, 

U(4, 4) = 87285061904040000, 

U(4, 4, 1) = 10281600 X 16!/8!. 

Among others, some of useful permutation family corresponding to (2 r, 2r)-Latin 
a r r a y s  are g~1 w2 (x) = iO(Wl - (w2 (B (t/)l - (p(z) ) ) ) ,  gwlw2 (z)  = (p(t/) 1 (3)(t0 2 - (to I (~ (p (z ) ) ) ) ,  
gwzw,  (= )  ~-~ tO 1 (~) ~O(W 2 - -  ~O(tO 1 (~ ; ; ) ) ,  gte, tu,  (•) ---~ 1/11 --  ~O(tO 2 (~ ~O(tO 1 --  2;)), e tc . .  I n  case 
of invo lu t ion to, such g= are involut ions and corresponds to so-called involutional Latin 
arrays[24]. 

E x a m p l e .  An m-sequence plus (4,4)-Latin array cipher I25]. 
In Fig.2, let X and Y be (0, 1) 2. Ma is an m-sequence generator, gw corresponds to 

(4,4)-Latln array (w E (0,1)4). The key consists of gw, Ma and its initial state. Contrary 
to the case of gw (z) = w (B z, this cipher seems secure. 

For larger alphabets, we can choose so-called linear independent Latin arra~ 26'27] 
and the initial state of Ma as key. 
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5 A u t o n o m o u s  f i n i t e  a u t o m a t a  

Autonomous finite automata are considered as sequence generators. For the general 
case, the set of output sequences of an autonomous finite automaton are consisted of ul- 
timately periodic sequences and closed under translation operation. From mathematical 
viewpoint, such sets have clearly characterized, although such a characterization is not 
very useful to cryptology. On the other hand, nonlinear autonomous finite automata can 
be linearized. So we confine ourself to linear case in this section. Notice that each lin- 
ear autonomous finite automaton with output dimension 1 is equivalent to a linear shift 
register. And linear shift registers as a special case of linear autonomous finite automata 
have been so intensively and extensively studied. Hereafter, we focus our attention on 
the case of arbitrary output dimension. 

Let M = <  II, S, 6, A > be a linear autonomous finite automatonj where Y and S 
are column vector space of dimension m and n over G_F{q) respectively, 6(s} = As, and 
A(s} = Cs. A and C are referred as the state transition matrix and the output matrix of 
M respectively, and rn, n the structure parameters of M. If the state transition matrix 
of M is a companion matrix of some monic polynomial over GF(q}, then M is said to 
be a shift register. 

For any s E S, the infinite output sequence YoYl.. .  Y~ . . . . . .  , where yi = A(61(s)) 
for i > 0, is denoted by r and its x-transformation ~ 0  yiz' by r  Denote 
r = {r s 6 S} and r = {r 6 S}. Clearly, CM and CMCZ) are linear 
spaces over GF(q) and isomorphic. It is known that for any linear autonomous finite 
automaton M over GF(q}, there exist some linear autonomous shift registers M~ over 
GF(q), i = 1 , . . . , h  such that ~ M  = ~ M , $  " '" $ CMh" 

We turn on autonomous shift register. Let M = <  Y, S, 6, A > be a linear shift register 
over OF(q), where A and C = [c~k],~x,~ are the state transition matrix and the output 
matrix of M respectively, and m, n the structure parameters of M. 

h i Consider (gener~ed) polynon~al over CF(q). Let r = E~=k 04z, where h > k 
are integers, and 04 6 GF(q}, i = h, h + 1,. . .  ,k. maxi[a~ ~ 0] is referred as the high 
degree of r and mini[04 ~ 0] is referred as the low degree of r I n  case of zero 
polynomial, its high degree is co and low degree is - co .  For any polynomial r and 
nonzero polynomial ~o, there exist uniquely polynomials q(z) and r(z) such that 

r  

r(z) = 0 or the low degree of r(z) >_ the low degree of ~o(z), and q(z) = 0 or the high 
degree of q(z) < 0. Denote the unique r(z) by Res'(r ~o(z)). 

Let f(z) be the characteristic polynomial of M, i.e., IzE - A I. Let 

c~(z) = ~ e d k z  l -k ,  i = 1 , . . . , m .  
k=l  

c~(z),i = 1 , . . . ,  rn is said to be the output polynomials of M. And 

/'(z) =/(z) /gcd(f(~) ,  o1(~-1),..., c,~(~-1)) 

is said to be the second characteristic polynomial of M. 
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T h e o r e m  4 Let M be a shift register over GF(q) with structure parameters m ,n .  Let 
/ (z)  be th~ ~haracteristic poly.omial and ek(z), k = : , . . . , m  the o~tput potynomials of 
M, and g(z) = zn f ( z -1 ) .  Denote the degree of the'second characteristic polynomial of 
M by n'. Then the dimension of~M(Z) is n', and 

[ Res'(c:(.). ~-"'+k, g(.l)Ig(.) 
p~(z) ---- : , k = 0 , 1 , . . . , n ' - -  1 

Res' (c., (~)~"-"'+~, g(~))/g(.) 

a basis of r  

This basis is said to be a polynomial basis of UM(Z). For any s E S, if UM(S,z)  = 

En '-I k=0 h~pk(z) for some hlo, .. ., h',,,_l e GF(q), then [h~, . .  . , h ' , , _ : , I r  is said to be 
the polynomial coordinate of @M(S, z). It can be computed  as follows. Denote  f ( z )  --  

~t n - -1  r / - - 1  t h i - - l - -  i __ n- -1  Zr , - -1-- i  t z + a,~-lz 4 . . .  +alz  + no. Then ~i=o hiz - ~i=o h~ (rood f (z)), 
where [,o] 

! = 

h~_: 

1 

~ (In-- 1 

; ~ ~ 

a I �9 an_ 1 

8. 

1 

Assume tha t  GF(q*) is a spl i t t ing field of the second character is t ic  p o l y n o m i a l / ' ( z )  
of M .  Let  M* be an extension of M over GF(q*), i.e., A and C are the s ta te  t rans i t ion  
ma t r ix  and the ou tpu t  mat r ix  of M*, respectively. Let  

i ~  r ftl 
/ ' (z)  -- z,o f ( ~ ) "  = ~,o I 1 1 1 (  ~ - - ,  ,,oq;-'~', (i)  

i----1 i~1 J'~1 

where f'(=) is �9 moni~ irreducible polynomial over aF(q) with non,ero consist term, 
,~ is it~ degree, ~, E CF(e') is its root, I~ ' (~),  . . . ,  f'(z) are cop~-~e, and Zo _> 0, l~ > 0, 
. . . ,  l~ > O. Let 

1 

rock) = i ' 
z lo  --1 

i/(: - ~;- ' . )  (2) 
r , j ( z )  = : , 

I / ( I  - ~;-'~)', 
i = 1 , . . . , r ,  
] = 1 , . . . ,  n~. 

Then there exist uniquely n'  column vectors of dimension rn over GF(q*), Rok, ]c = 
1 , . . . , / o ,  P~yk, i = 1, . . . , r ,  3" = 1 , . . . , n l ,  1r = 1 , . . . , l i  such tha t  

: = E + E E E '.)". 
Cm(Z)Z,--I/g(,) kml i,.~--1J'= l k =  1 
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T h e o r e m  5 Assume that the second characteristic polyr~omial f (z) of the autonomous 
shift register M has the decomposition as (1). A.~sume that (3) holds. Let 

~(k) = [RO(,o+~-k). . .  Ro,oO.. .o] ,~• ~ = i , . . .  lo, 

P ~ i ( k )  = [ R i i 0 , + i - k )  �9 �9 R41~,0 . . .  0], ,~x,, ,  i = 1 , . . . ,  r, 3" = 1 , . . . , , ~ ,  k = 1 , . , . ,  l i .  

T h , n  Ro(~)ro(~),~ = i , . . . , l o ,  ~;(~)r,,(z), i = 1 , . . . , r ,  j = 1 , . . .  , n l ,  k = 1 , . . . , l l  is 
a basis ofr whets ro(z) and r,;(z) are d,~nsd by (2). 

This basis is said to be a ( s z , . . . , s r )  root basis of @M*(Z). For any state s of M*, 
if there exist ~k E GF(q*), k = 0, . . . ,  10, ~iyk E GF(q*), i = 1, . . . ,  r, 3" = 1, . . . ,  nl,  
k = 1, . . . ,  Ii such that  

10 r " i  l i  

r  (s, z) = ~ ~k_~Ro(~)ro(~) + ~ ~ ~ ~,,~;(~)r,;(~), 
k=l i=I j=l k=l 

t h e n  

= [flO,.-.,J~/0-1,fl11I,...,fli,il,.-.,flll/i,-..,~ini,l, 

...... , ~rli, ..., ~,n,i,..., b~ril,t ... , ~rn,l,] r 

~d to be the (,,,..., ~) .oot coordi.aU of C..(s, ~). 
Notice that if the (si,..., ~,) root coordinate of @M* (s, z) is fl, then the rth coefficient 

of CM* (s) is 

,o ( ) 
E /~lo+,-kRok + E E ( E  ' 6 "Y( l '+h -MR' i#~)  "r + h - 1 rqY- '  h - 1 si 

k=v+l /=i j=l h=l k=h 

for r = 0, 1, . . . .  

T h e o r e m  6 Let fiCz ) e r  Then nCz ) e @M(Z) if and only if in the Csl , . . . , e , )  

root coordinat, ~ of n (z ) ,  ?k e GF(q), k = 0 , . . . ,  lo, ~j~ ~ OF(q",) and ~Sk = ~'1-~, 
i = 1 , . . . , r ,  j = 1 , . . . , ,~ ,  k =  1 , . . . , l l .  

For any nonnegat ive integer c, the c-translation of a infinite sequence (ao, a l , . . . )  
co i means the infinite sequence (ac, a t + l , . . . ) .  Correspondingly, )-~-/=0 ai+cz is said to be 

the c-translation of ~~ aiz i. 

Theorem T Let ~ and 

fl' = [,8~, ' ' ' ' ' ~I"I/I ) �9 " " ~ ~II/i J 

...... , #'rll,"""' ~'r.rl'" "" ,~'rll.,''" '~;.rlr] T 
be th~ (~, ..... ~) ~oot coordinate of n(~) and n'(~) i~ o~.(~), r~smti,~ly. Th~, 
n'Cz ) is the c - t r a n s l a t i o n  o f  fl(z) q and only q 

fl'k = ~ * + k ,  k = O, 1 , . . . , 1 o  --  c -  1, 

f l ~ = 0 ,  k = lo - c, . . . , lo - 1 ,  

'( ) 
k -- h PiYk~i , 

k = h  

i = 1 , . . . , r , ]  = 1 , . . . , h i , h =  1 , . . . , / i .  
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For the (e l , . . . , e r )  root coordinate fl, let liy = minh [h _> 0, flo'k = 0 if h < k < 
l~], i = 1 , . . . ,  r, j = 1 , . . . ,  nl. max{lly, i = 1 , . . . ,  r, j = 1 . . . .  ,hi } is said to be the 
efficient multiplicity of/~. Let the different elements in {i I 3]l<y<n,(liy > 0), 1 <_ i <_ r} 
axe i l , . , . , i r : .  Denote the order of er by el, i = 1 . . . . .  r. lcm(ei~,..., el,x) is said to be 
the basic period of ft. 

Theo rem 8 Assume that the state transition matrix of M is nonsingular. Then any 
fl(z) 6 ~M. (z) is periodic and its period is ep", where p is the characteristic of GF(q), e 
is the basic period of the ( e l , . . . ,  er) root coordinate fl of fl(z), a = [logp l] and l is the 
e~cient  multiplicity of ft. 

Notice that if the (el,..., er) root coordinate of a periodic flCz) in r is fl, then 
the linear complexity of fl equals to ~'~.ir__1 nilil, where the linear complexity of i2 means 
the minimal state space dimension of linear shift registers over GF(q) which generate fl. 

The detail proofs of above results are in [6, chapter 3]. Topics on linearization of linear 
feedback autonomous finite automata and decimation of linear shift register sequences, 
reader is referred to [6,28]. 
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