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Abs t rac t  

We propose two families of scalable hash functions for collision-resistant hashing that  are highly 

parallel and based on the generalized fast Fourier transform (FFT). FFT-hashing is based on multiper- 

mutations. This is a basic cryptographic primitive for perfect generation of diffusion and confusion which 

generalizes the boxes of the classic FFT. The slower FFT-hash functions iterate a compression function. 

For the faster FFT-hash functions all rounds are alike with the same number of message words entering 

each round. 

1 Introduction and surview 

We propose two families of hash functions for collision-resistaa~t hashing. These hash functions are 

scalable, highly parallel  and based on the generalized fast Fourier t ransform (FFT) .  In comparison to 

F F T - H a s h  II  we discard the polynomial  i teration over a finite field. This  yields an extremely simple and 

highly parallel  design which is entirely defined by the FFT-graph .  The only free parameters  are the order 

2 k of the FFT,  the number  of rounds and the boxes which we require to be mul t ipermuta t ions .  

Our first and slower family of hash functions i terates a compression function. For this  hashing we have 

determined, by black box cryptanalysis,  the minimal number of rounds tha t  is necessary for collision- 

resis tant  hashing. Black box cryptaalalysls shows tha t  i tera t ing a compression function is not the best 

method for FFT-hash ing .  Our second and faster family of hash functions uses mul t ip le  fan- in  of message 

words. A message word enters four t imes within the same round. The same number  of message words enters 

each round so tha t  all  rounds are alike. 

Mul t ipermuta t ions  are a new cryptographic primitive for perfect generation of diffusion and confusion. For 

an a rb i t ra ry  set E we call a permuta t ion  B : E 2 ---, E 2 , B(a,  b) = (B1 (a,b),  B2(a, b)) a multipermutation 

if for every a,b E E the mappings  Bi (a ,* ) ,B i (* ,b )  for i = 1,2 are permuta t ions  on E .  Our hashing 

uses a vector space E = ]F m over the Galols field iF = {0, 1}, e.g. IF a, iF 16, IF 3~. There is a large variety 

of mul t ipermuta t ions  for these E ,  both l inear and non-l inear  over iF. Non-l inear  mnl t ipermuta t ions  can b e  

generated by composing l inear ones with non- l inear  permuta t ions  on E .  We can use for this  composit ion 

the mult ipl icat ion modulo 2 m + 1. 
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We present in section 2 a family of compression functions based on FFT-networks.  In section 3 we report 

on black box attacks on these compression functions. In section 4 we propose fast FFT  hash algorithms that 

do not iterate a compression function. In section 5 we present multipermutations for the case that E is a 

linear space over the field IF. An example hash algorithm is proposed in section 6. 

2 A family of compression functions. 

N o t a t i o n  1. We let iF denote the Galois field of order 2 and let E = IF'~ be the linear sp~ce over the 

field iF with dimension m, e.g. m = 8,16,32,64. We call the elements of E words. 

2. Let k be a fixed integer, k > 0  and let i E  {0 . . . . .  2 k - l } .  Let ij E{0,1}  for j = 0 , . . . , k - 1  denote 

the j - th  bit of i = io + 2il + . . .  + 2k-lik-1. Let the integer i ( j )  be obtained from i by negating the bit 

ij. For our purposes it is convenient to define for j > k that i~ = ij(moak) , i ( j )  = i ( j  mod k ) .  

T h e  c o m p r e s s i o n  f u n c t i o n  gk,s : E2k --+ E2k-1 

INPUT el 6 E for i = 0 , . . . , 2  k -  1 

(We call H = [el I i0 = 0] the hash input and 1]r = [el ] io = 1] the message input) 

FOR j = 0 , . . . , s  DO 

(ei,ei(j)) := Bi j (e i ,  ei(j)) for all i, 0 < i < 2 k with ij = 0, in parallel 

OUTPUT gk,s(H, M )  = [ei l is = 0] E E 2*-a. 

T h e  choice o f  t h e  b o x e s  BI j  : We require that the boxes Bi,j perform multipermutations on E 2. 

We call a permutation B : E 2 --* E 2, B(a,b) = (Bl(a,b) ,  B2(a,b)), a multipermutation if for every fixed 

a,b E E the mappings Bi(a,*),  B;(*,b) for i = 1,2 are permutations on E.  We call the component 

mappings Bi : E 2 --* E i = 1,2 a bipermutation because they act as a permutation on both inputs. A 

permutation B : E 2 --* E 2 is a multipermutation iff both component mappings B1, B2 are bipermutations. 

It  is important that  the message inputs e2i+l and hash inputs e21 are mixed by the boxes Bi,0 of the first 

round j = 0. The hash outputs are from distinct boxes Bi,s of the last round j = s. 

It  may be of interest that  gk,, transforms the uniform distribution on E 2k into the uniform distribution 

on E 2k-~. This is because the boxes Bi,j perform permutations on E 2. 

We can represent the algorithm gk,s by a network. It consists of 8+ 1 layers j = 0 , . . . ,  s. Layer j has 2 k-1 

vertices B i j  for i = 0 , . . . ,  2 k -  1 with ij = 0. The edges of the gk,s-network correspond to the inputs /outputs  

ei, el(j) of Bid. More precisely we let c i j , e i l j ) j  denote the inputs of Bid and eid+l, ei(j)d+l the outputs  

of Bi j .  The bash input is H = [el,o I i0 = 0], the hash output  is gk,s(H, M )  = [el,s+1 I is = 0] and we have 

for j = O , . . . , s :  

(ei,j+l,ei(jld+l) = Bi.j(eld,ei(j),j) for 0 _< i < 2/` with ij = O. 



151 

By iterating the compression function gk,s we can transform arbitrary binary messages into a hash value 

in E 2k-~ that is m2 k-1 bits long. We require that a given message, consisting of t bits, is padded so 

that its bit length becomes a multiple of m2 k-l. We recommend to append to the message a single "1" 

followed by a suitable number of "0" bits followed by the binary representation oft. So the padded message 

M = M1M2"" .M,, consists of n blocks Ma . . . . .  M~ E Z 2k-~, n = [(t + 1 + [log2(t + 1)])/m2k-1]. 

T h e  h a s h  f u n c t i o n  hk, s 

INPUT M = M1 . . .M~ E E ~'2k-: (the padded message) 

Fix an initial value H0 E E 2.-~ 

Hi :=  gk,~(Hi-a,Mi) for i = 1 . . . .  ,n  

OUTPUT hk,~(M) := Ii~ (the hash value of M) 

The goal of the design is to make it infeasible to construct a collision for hk,,, i.e. to produce distinct 

messages with the same hash value. To be infeasible for current technology the production of collisions 

should at least require about 264 steps. We call hk,s collision-resistant if producing a collision is infeasible. 

3 B l a c k  b o x  a t t a c k s  o n  t h e  c o m p r e s s i o n  f u n c t i o n .  

We consider the following problems: 

inverting gk,~ : Given random H, H'  E E 2k-~ find M E E 2k-~ satisfying gk.~(H, M) = H'. 

gk,~ collisions : Given random H, H ~r E E 2k-~ find M, M' E E 2k-~ satisfying gk,s(H, M) = 9k,s(H ~, M t) 

Black box cryptanalysis has been introduced in [SV 93]. It assumes that the Bid are black box multiper- 

mutations given by oracles. For B;,j(a, b) = (u, v) any two words out of a, b, u, v determine the other two. 

The box B;j has degree of freedom 2, i.e. any two input/output edges of Bi,j determine all edges of Bi,j. 

A black box attack is a sequence of two type of steps 

�9 Guess an unknown edge el j ,  i.e. try all possible values in E. 

�9 Evaluate a vertex (box) Bij, i.e. determine all its edges from two known ones. 

The complexity of a step is the number of edge assignments to be tried for this step. Initially the step 

complexity is 1; it increases by a factor 2 TM when guessing a new edge in IF'n; it decreases by a factor 2 'n when 

evaluating a vertex with three known edges. The complexity o.f the attack is the maximal step complexity 

over all steps. This complexity depends in a crucial way on the choice of guessed edges and the order in 

which the boxes are evaluated. The time bound for the attack is the product of the complexity and the time 

for evaluating all vertices of the gk,,-network. We take the second factor to be 1. 

In some attacks we pick random values for certain edges and we hold these values fixed. E.g. when 

H, H I are given the edges corresponding to H, H I are fixed. We assume that all fixed edges are uniformly 

at random. Then the complexity of the attack is the average complexity with respect to the fixed random 

edges. 
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To invert  gk,s we have to evaluate for the given random H, H ~ all boxes of the ga,s-network. To produce 

a collision for gl,,~ we fix some output  words of gk,~ at  random, we evaluate with these random values all  

boxes of the network and we apply the bir thday paradox to the output  words of gk,s tha t  have not been 

fixed. Here are the complexities of the best known black box at tacks according to [SV 93]: 

g3,2 g3,3 g3,4 g4,3 g4,4 g4,5 g4,s g5,4 gs,s gs,6 gs,7 gs,s 

inversion 2 TM 23m 24m 2 'Ira 2 sm 26m 28m 2 sm 29m 2 T M  2 T M  216m 

collision 2 m 2 2'~ 2 2m 2 :m 2 3"). 2 4m 2 4m 2 4m 2 s'~ 2 6m 2 sm 2 sm 

We let I(k,  s) and C(k, s) denote the minimal  complexity for the inversion of gk,, and for producing gk,~- 

collisions where the minimum is taken over all black box at tacks.  The best known black box a t tacks  are 

based on the following inequalities reflecting a simple divide and conquer argument:  

/ - ( 1 , 0 ) = 1 ,  I ( k , k - 1 ) _ < 2  m2k-2 f o r k > 2  

I ( k , k - l + t ) < _ I ( k , k - 1 ) . I ( t + l , t )  f o r O < t < k - l e m d k > 2 .  

C ( k , k -  1+ t) <_ 2 ~2~-3 . I ( t  + 1,t)  for 0 < t < k -  2 and k _> 3 .  

We conjecture tha t  these inequalities are actual ly equalities. If this holds true they determine the minimal  

complexities I(k,  s) and C(k, s) for all k >__ 2, s _> k - 1 and the above t~bles give the minimal  complexities 

for a rb i t rary  black box at tacks.  The restriction t _< k - 1 (resp. t _< k - 2) is due to the inequalities 

I (k ,s )  <_ 2 m2k-~ , C(k,s)  _< 2 m2"-2 since the length of the hash i npu t /ou tpu t  is 2 '~2k-~. Under our 

conjecture the inversion aald the collision production have maximal complexity for s = 2 k -  2 and s = 2k - 3: 

i.e. I ( k , 2 k -  2) = 2 'n2k-~ and C ( k , 2 k -  3) = 2 m2k-~ . 

4 Fast parallel FFT-hashing 

In view of the known a t tacks  we are going to improve the hashing hk,,. Here are our  main points:  

�9 Instead of discarding for every i terat ion of gk,s half of the hash words el we combine them with the 

next message words. Only after processing the entire message we apply the compression function gk,s 

discarding half  the hash words. 

* Each message word enters repeatedly in the same round. The same number  of message words enters 

each round. 

Using the circular rotat ion R on { 0 , 1 , . . . ,  2 k - 1} defined as R(io + 2il + . . .  + 2k-xik-a)  = (i~-1 + 2i0 + 

. . .  + 2k-l ik_2)  we can simplify the recursion for gk,~ to 

FOR j = 0 , . . . , s  DO 

F0t~ i = 0 , 1 , . . . , 2  k-1 - 1 Dt? in parallel (ero(2i), epj(~i+i)) := B'[.y(e~(2;I, e~(~i+a)) 

The boxes B~'j, 0 < i < 2 k - l ,  are a corresponding permutat ion of the boxes B i , j ,  0 < i < 2 k wi th  ij = O. 

R) is the circular ro ta t ion by j positionsl We cau further rewrite this  to 
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1. FOR i = 0 , . . . , 2  k - 1 DO in paraJlel en(i) := ei 

2. FOR j = 0 , . . . , s  DO 

FOR i = 0 , . . . , 2  k-1 - 1 DO in parallel 

3. FOR i = 0 , . . . , 2  k - 1  DO in parallel  eR, ( i ) :=ei  

( e2i, e2{+ I) := B~,j( en(2i), en(21+a)) 

We use this  recursion for the fast parallel  F F T  hashing. We again wri te  Bi,j  for Bff, j .  Let  the padded 

message M consist of n words m i E E  for i = 0 , . . . , n - 1  and let m s = O  for i > n .  

F a s t  p a r a l l e l  F F T  h a s h i n g  h k 

INPUT M = morn1 . . . m ~ - i  6 E n (the padded message) 

Fix ini t ia l  values ei E E for i = 0 , . . . ,  2 k - 1 

FOR j = O  . . . . .  [ n / f ] + s - 1  DO 

eR(0 := en(o op~ rnti+l~,,oat) for i = 0 , . . . , 4 s  1 

FOR i = 0 , . . . ,  2 k-1 - 1 DO in parallel (e~i, e2i+l) := Bij(en(21), en(2;+l)) 

OUTPUT h k ( M )  = [e2i l i  = 0 . . . . .  2 k-1 - 1] 

Specific proposals for the binary operations opl : E 2 -* E and the mul t ipe rmuta t ions  Bid : E 2 --* E 2 

are given in section 6. We let  each rounds j = 0 , . . . ,  [n/g] - 1 process s < 2 k-2 consecutive message 

words mtj+i for i = 0 , . . . , s  - 1 . Each message word enters four times. After the las t  message word 

m~-a is entered there follow s + 1 layers of mul t ipermuta t ions  B i j  for j = [n/f] - 1 , . . . ,  In~f] + s - 1 

corresponding to the compression function gk.s. The number  s + 1 of the final layers can well be smaller 

than  2k and even 2k - 2, the number of layers which maximize  the complexities I ( k , s )  and C(k , s ) .  This is 

because the mult iple  duplication of the message words seriously complicates the at tacks.  

F i g u r e  o f  t h e  n e t w o r k  for  h4 w i t h  n = 6 ,  t = 3 ,  s = 3 .  The  values k = 4,s = 3 are as in the example 

algori thm in section 6. 

j = 0  

j = l  

j = 2  

j = 3  

j = 4  

message words O �9 �9 O 8 ~ marking  

the edges to which they are mixed via opi 
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P A R A L L E L  C O S T S  ( d e p t h )  of  hk:  Processing s message words with m �9 g bits requires, a single 

operation opi and a single box Bi.j plus s boxes on termination.  

5 E x a m p l e s  o f  m u l t i p e r m u t a t i o n s  

We introduce mul t ipermutat ions  on E 2 tha t  are based on the operations (9 (bitwise XOR), A (bitwise 

AND), + (addit ion modulo 2~), �9 (mult ipl icat ion modulo 2"~), * (mult ipl icat ion in ~ + 1 )  and R the 

circular rotat ion to the right on E.  

N o t a t i o n  Let (9 denote the hitwise XOR on E = iF m, i.e. (9 is the vector addit ion on the l inear space 

E over the field iF. For b, c E E let b ^ c denote the bitwise AND . Let R t : E --+ E denote the circular 

rotat ion by g positions to the right. 

T h e o r e m  1 [SV 93] For c E E,  ~ E ~ the mapping Lc : E 2 ~ E 2 , Lc(a,b) = (a(gb, a(9(bAc)(gRt(b)) ,  

is a multipermutation if  and only if the iterates of  R ~ on e take for  each bit position both values O, 1. 

R e m a r k s .  1. We see tha t  if Lc is a mul t ipermuta t ion  then e ~ {0 '~, 1 ~}  since otherwise the bits  of c are 

constant  and so are the bits  of ~ l ' n (c )  for all  n. 

2. If ged( t ,m)  = 1 ,  i.e. i f s  is odd, then Le is a mul t ipermuta t ion  if  and only if  e r {0m, lm}. This is 

because, for odd l ,  the i terates  of R t carry every bit  of c to all positions. 

P roo f .  Lc is a mul t ipermuta t ion  if  and only if  both mappings 

b ~ (b ^ e) (9 Rffb),  b ~ b (9 (b ^ e) (9 Rffb) 

are permutat ions  of E .  Now the claim follows from Lemma 2 with d = c and d = ~ ,  the bitwise negation 

of c. For the second mapping we use tha t  b (9 (b A c) = b A E" . [] 

L e m m a  2 [SV 93] For d E E the linear mapping fd : E ~ E ,  fd(b) = (bAd)@Rt(b )  , is a permutation 

of E if  and only if  the iterates Rl 'n(d)  take for each bit position the O-bit for  some n. 

Let d = ( d 0  . . . . .  dm-1) e E = { 0 , 1 }  m and for i r  . . . . .  m - l }  let  di=d;(modm).  The claim means 

tha t  fd is a permuta t ion  if and only if for every i there is some n with di+tn = O. 

Further mul t ipermuta t ions  can be constructed by composition. The composit ion of a mul t ipermuta t ion  

P : E 2 ~ E ~ with arbi t rary permutat ions  a l ,  a2 : E --* E yields new mul t ipermuta t ions  

P(aa(a),  a2(b)), (al P1 (a, b), a2P2(a, b)) .  

Also the inverse of a mul t ipermuta t ion  is again a mul t ipermntat ion.  

We finally point to several useful permuta t ions  on E .  We identify an integer b E {0~ . . . , 2  m - 1}~ 

b = ~ibi2 i with its binary representation (b0, b l , . . . ,  bin-l) C E.  
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L e m m a  3 Let c E { 0 , . . . , 2  '~ - 1} be odd. Then at(a) = a .  c rood 2 ~ defines a permutation ae on E.  

Further  permutat ions  on E can be derived from the binary operation * on E = { 0 , . . . , 2  m - 1}: 

a*b  = (a'b' mod2  " ~ + l )  n m d 2  m ,  

where a ~ = 2 m if a = 0 and a t = a otherwise. LAI and MASSEY (1990) use the operation * in the case 

m = 16. If  2 '~ + 1 is prime e.g. for m = 8~ 16 the operat ion * is invertible.  Then (E,  *) is a cyclic group 

of order 2 m with neutral  element 1. The group (E,  *) is isomorphic to ~ §  the mult ipl icat ive group of 

residues modulo 2 "  + 1. We have an isomorphism ~ : ( E,  *) ---* ~ + 1  , tp(a) = a'. 

L e m m a  4 l f  2 TM + 1 is prime then every c E E defines a permutation a ~ a * c on E.  

6 A n  e x a m p l e  h a s h  a l g o r i t h m  h 4  

We propose par t icular  boxes B i j  and operations opl for the hash function h4 of section 4. These propositions 

are prel iminary and subject  to further studies. Let E = IF is ,  m = 16, k = 4, l = 3, s = 5. The choice 

s = 5 maximizes  the collision complexity C(4 ,s ) .  This may be an overkill due to the mult iple  duplicat ion 

of message words. One of the final 6 FFT-layers  comes with the output .  

INPUT M = morn1 . . .m,~- i  6 E r' ( the padded message) 

FOR i = 0 , . . . ,  15 DO e; := cl (cl is defined below) 

FOR j = 0 . . . . .  rn/31 + 3 Do 

FOR i =  0 , . . . , 11  DO 

I eR(i) di" Ti23J+(t'm~ for even i 
eR(i) 

t eR(1) * m3j+(imod3) for odd i 

FOR i = 0 , . . . , 7  DO in parallel 

e2i := eR(2i) ~ eR(2i+l) , e2i+l := es(2i) ~(eR(2i+l) A c) ~ R2i+l(eR(21+l)) 

FOR i = 0 , . . . , 1 5  DO e i : = e i * c i  

OUTPUT h4(M) := [en{20 * eR(21+,) I i = 0 . . . . .  7] 

Here + is the addi t ion modulo 2 is on E ~ { 0 , . . . ,  :2 TM- 1}, * is the mult ipl icat ion in E =~ ~10+1  defined 

in section 5, (9 is the bi twise XOR, ^ is the bitwise logical AND, R is the circular r ight  shift on E ,  R is the 

circular shift on { 0 , 1 , . . . , ~ 5 } ~ ' { 0 , 1 )  4 so tha t  R ( i ) = 2 i  for i _<7  and R ( i ) =  1 + 2 ( i - 8 )  for i > 7 .  

T h e  c o n s t a n t s .  Let c = 0 O 0 O 0 0 O 0 1 1 1 1 1 1 1 1 . W e d e f i n e  co , . . . , c l s  in hexadecimal nota t ion 

(co, cl,c2, cs) := (efO1,2345,6789, abcd) , (c4,cs,c~,cz) := (dcba, 9876, 5432, 1 0 f e ) ,  

cs+i := ~'i for i = 0 , . . . ,  7 where ~i is the bitwise logical negation of ei. 
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The example algorithm uses multipermutations Bi,j that are non-linear both in E = IF TM , in E -~ 

~ / 2 1 6 ~  and in E -~ 2Z;:~+1. We have Bi,j(a,b) = ( (a @ b) * c2~, (a @ (b A c) $ R2i+l(b))* c2;+1 ) for 

j < rn/3] + 3. The final round j = In/3] + 4 is special Bi,j(a,b) = (a * b, undef). 

T h e  s e q u e n t i a l  cos ts  The algorithm processes 48 message bits (three words) per round performing the 

following operations 22 *, 24 $,  8 A, 6 +, 8 1~ ~i+1 . In total there are 68 operations on E per 

round. There are 4 additional rounds per message and 8 additional * operations in the output. The number 

of operations on E per message bit 68/48 is smaller than for FFT-Hash II which requires 192 operations 

per 128 message bits. 

Pa ra l l e l i za t lon  The degree of parallelization is 16, i.e. 16 parallel processors yield a speed up factor 16. 

The potential of possible speed-up's in this design is twofold: 

�9 If we operate on 32 words, i.e. k = 5, instead on 16 words the degree of parallelization is 32. 

�9 If we choose for E the set of bit strings of length 32 with a suitable opera t ion ,  we obtain a speed-up 

factor 2. 

It is important to analyse carefully the number of message words that can safely enter per round as we 

increase k .  It is open whether the processing rate of three message words per round is the maximal rate for 

which the example algorithm is secure. 

A c k n o w l e d g e m e n t  We thank H. H6RN~}{ for producing the figure for the hk-network. J.  MAssEY 

proposed the term bipermutation. 
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