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A b s t r a c t .  In this paper we apply the cryptographic finite state machine 
approach as introduced in [1] to the design of symmetric key block ci- 
phers. Key words in the design approach are simplicity, uniformity, par- 
allelism, distributed nonlinearity and high diffusion. 3-WAY is a block 
cipher with a block and key length of 96 bits. Key components in the 
construction of 3-WAY are a 3-bit nonlinear S-box and a linear mapping 
that can be described by modular polynomial multiplication in 7/I 2 . The 
arrangement of the components allows software implementations in the 
range of 10 Mbit/s on a modern PC and dedicated hardware implemen- 
tations above 1 Gbit/s using standard technology (1.2# CMOS). The 
cipher structure of 3-WAY is shown to be surprisingly strong with re- 
spect to both linear and differential cryptanalysis. 

1 I n t r o d u c t i o n  

Essentially a block cipher is a keyed permutive mapping (encryption) together 
with its inverse (decryption). For a practical block cipher it is important  that  
these two mappings can be efficiently implemented in software on a wide variety 
of processors. For some applications the throughput  of software implementations 
may not be sufficient and dedicated hardware implementations may be necessary. 
In this case it is an economic advantage if the same circuitry can be used for 
both encryption and decryption. 

In DES [2] the desired properties are realized by iterating a round function 
that  has the so-called Feistel structure. The application of this structure guar- 
antees tha t  encryption and decryption are similar processes, independent of the 
exact specification of the so-called F-function. With the adoption of the Feistel 
structure, the design of the F-function can concentrate completely on the desired 
propagation properties without restrictions imposed by invertibility. 

Unfortunately the Feistel structure has important  drawbacks. Because only 
half of the bits of the intermediate result enter the F-function the round function 
exhibits a large amount of linearity. This linearity is heavily exploited both in the 
differential cryptanalysis [3] and the linear cryptanalysis [5] of DES. Therefore 
we propose to use a different, more uniform round structure. 

In the cryptographic finite state machine approach [1] the round function 
is composed of a number of simple invertible steps that  t reat  every bit of the 
intermediate result in qualitatively the same way. The difference with the Feistel 
approach is tha t  these steps have to satisfy some additional requirements such as 
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invertibility. For 3-WAY the feature that  the same hardware can be used for both 
encryption and decryption is realized by imposing certain algebraic conditions 
on the steps. Within these algebraic constraints and the desired propagation 
properties, the steps are chosen as simple as possible. This has the benefit of a 
short and elegant cipher description, with no room for possible trapdoors.  

After introducing the basic building blocks, the structure of the cipher is 
presented. Next, we discuss the cryptographic claims and the behaviour of the 
cipher structure under cryptanalysis. This includes differential cryptanalysis, 
linear cryptanalysis and attacks based on symmetry. The paper concludes with 
our most important  results. The Appendix contains a reference specification of 
3-WAY in the form of a C program. 

2 The Basic Building Blocks of the Cipher 

2.1 P r e l i m i n a r i e s  

In this paper all operations will bc on binary vectors whose components are 
indexed starting from 0, e.g. X = (x0, X l , . . . ,  xn-1) w. The dimension of a vector 
is by default denoted by n. If a mapping of vectors is specified in terms of its 
components, the use of the index i implies the range 0 < i < n. Indices consisting 
of expressions containing i must be reduced modulo n. 

Let it be a bit permutation that  inverts the order of the components of a 
vector. For B = i t(A) we have 

bi = a ~ - l - i  �9 (1) 

Clearly it-1 = it. This bit permutation plays an important  role in the structure 
of the cipher. The basic building blocks of the cipher 7 and 0 have been chosen 
such that  7 - 1  : j[t O"f O it and 0 -1 = it o 0 oit.  

2.2 T h e  N o n l i n e a r  S u b s t i t u t i o n  ~/ 

The mapping V is defined for vectors whose dimension is a multiple of 3. If 
B = v(A) and the dimension n = 3k we have 

bi -~ cti • C t i W k a i + 2 k  �9 (2) 

In fact V is the parallel execution of k substitutions, acting upon 3-bit blocks 
(called triplets) consisting of bits aj, aj+k and aj+2k. The effect of 7 on a single 
triplet can be seen in Table 1. 

Actually 3 is the minimum size for an invertible nonlinear substitution box. 
The box used in 7 is the one with the best nonlinear properties (see Sect. 5) 
tha t  has rotational symmetry and has the desired intcraction with it. 
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~(x) 000 001 010 100 110 101 011 111 
111 010 100 001 011 110 101 000 

Table 1. The effect of V on a single triplet. 

2.3 T h e  Linear  S u b s t i t u t i o n  0 

A vector A can be interpreted as a binary polynomial a(x )  = ~ a i x  i. The 
mapping  ~ is defined for vectors whose dimension is a multiple of 12. If  B = 0(A) 
and the dimension n = 12h we have 

with 

b(x)  = e ( x h ) a ( x )  mod (1 + x 12h) (3) 

e (x )  = 1 + x + x 2 + x 3 + x 5 + x 6 + x 1~ (4) 

In fact t? is the parallel execution of h substitutions acting upon 12-bit blocks 
consisting of bits aj ,  a j+h,  a j + 2 h , . . ,  a j + ! l h .  

The linear substitution t~ was chosen such tha t  every output  bit depends on 
7 input bits. This is realized in a multiplication by a polynomial with 7 terms 
modulo (1 + x m ) .  Since m has to be a multiple of 3, the smallest value of m equal 
to 3 . 2  k for some k is 12. The dcsired interaction with # is realized by imposing 
the condition e ( x ) e ( x  - 1 )  rood (1 + x 12) = 1. From all the candidate polynomials 
we chose the one with the best propagat ion properties (see Table 4). 

3 The  Structure  of  the  Block Cipher 

Let 7rl and ~r2 be two bit permutat ions such tha t  ~h o # o = 2  = p, hence the choice 
of 7rl fixes 7r2. For 3-WAY these are blockwise rotations of vector subblocks of 
length 32 to facilitate software implementations.  The encryption process consists 
of the iterative application of a number  of rounds  r. One 3-WAY round consists 
of the subsequent application of 0,1rl, V and 7r~ and is denoted by p: 

p = ~'2 o " y  o 71"1 o ~ . 

Before every round the intermediate result is XORed with a vector tha t  depends 
on the secret key and the round number. XORing with Ki  is denoted by 5(Ki).  
The last round is followed by an extra  application of 5 and 0. We have 

EK : t~ o 5(K~) o p o (~(Kr-1) o . . .  o p o (~(K1) o p o 5(K0) 

with EK denoting the encryption operation under secret key K.  The order of the 
components  and their interaction with # causes decryption to be a very similar 
operat ion to encryption. We can prove 

DK = tt o (0 o 5(K~) o p o 5(K;)  o . . -  o p o 5(K~'_l) o p o 5(K'~)) o # 
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with the round keys given by KJ = #(tg(K~_j)). 
For efficiency reasons the key schedule is kept as  simple as possible. The 

key length is the block length and every encryption round key is equal to the 
global key K XORed with a round constant Cj with small Hamming weight. 
The decryption round keys can be computed by XORing round constants with 
the so-called decryption key K '  = #(0(K)). 

3.1 Software and Hardware Implications 

The choice of the cipher structure is hardware oriented. The round function 
(preceded by the round key XOR) can be implemented as the state transition 
function of a finite state machine. Encryption is performed by loading the plain- 
text into the state register and iterating the finite state machine r times. The 
state register now contains the intermediate value that is one application of 
5 and 9 short to be the legitimate ciphertext. The ciphertext is obtained at the 
output of the step 0 in the round function logic. If decryption is performed, the 
bits are loaded into the state register and to the output register in reverse order. 
The decryption key (:an be computed on-chip in a single clock cycle from the 
encryption key thanks to the accessibility of the first stage of the round function 
logic. The total gate delay of the finite state machine can be made as small as 4 
XORs, 1 NAND and 1 multiplexer, allowing clock speeds of over 150 MHz. If the 
number of iterations r is equal to 11, encryption (or decryption) of an n-bit block 
will take 12 clock cycles. The data can be loaded on and off the chip h = n i l 2  
bits per clock cycle. For 3-WAY h = 8, hence a clock speed of 125 MHz implies 
an encryption speed of 1 Gbit/s. 

In software the (time-consuming) execution of # before and after decryption 
can be avoided by writing separate routines for encryption and decryption. The 
steps 7 and 0 can be efficiently programmed using bitwise XOR, OR, complemen- 
tation and shifting. A straightforward C implementation allows an encryption 
speed of over 2 Mbit/s on a 66 MHz 80486 processor. We expect that optimiza- 
tion and the use of coding in assembly language allows a speedup by at least a 
factor of 5. 

4 C r y p t o g r a p h i c  C l a i m s  

The usefulness of a cryptographic function is based on assumptions about its 
security. In our opinion these assumptions have to be made explicit in the form 
of a clear and practical cryptographic claim that accompanics the publication 
of the cipher. This cryptographic claim serves initially as a challenge for the 
cryptologic community. As time passes and no weaknesses have been found that 
refute the cryptographic claim, the cipher can gain credibility. For a system 
engineer or a user who believes in the validity of the cryptographic claim, it 
serves as a specification of the security of the cipher. 

The additional protection obtained by applying encryption is limited by the 
external parameters of the cipher system. ~br instance, an adversary who knows 
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that the plaintext has some type of redundancy can find the key by exhaus- 
tive key search. Expressed in number of encryptions, the work factor of this 
attack depends only on the key length m. An adversary who has temporarily 
access to a block encryptor(decryptor), can encrypt(decrypt) some chosen plain- 
text(ciphertext). This can be considered as a partial table reconstruction for the 
used key. This partial table can be used to gain information about the plaintext 
in future encryptions. The probability of success for this attack depends only on 
the block length n. Both examples are instances from the class of attacks that do 
not exploit the internal structure of the cipher, denoted by black box cryptanal- 
ysis. We consider a cryptographic function BB-secure if under all circumstances 
there are no better attacks than black box cryptanalysis. 

A block cipher has two external parameters: the block length n and the 
key length m. 3-WAY is claimed to be BB-secure with respect to its external 
parameter n (= 96), that is both the block and key length. 

5 Cryptanalysis 

In this section we want to give a motivation for the choice of the structure and 
components of the cipher. First we discuss the behaviour of the cipher structure 
under differential [3] and linear [5] cryptanalysis. Then we treat the measures 
that are taken against attacks that exploit symmetry in the cipher. 

5.1 Differential  Cryptana lys i s  

Differential cryptanalysis exploits the high-probability propagation of certain 
differences of pairs of plaintext blocks into differences in the corresponding pairs 
of intermediate results to obtain information about the key. 

The cipher consists of the alternation of linear steps (~rl o 0 o ~2) and nonlinear 
steps % A difference X' before the linear step gives a difference Y' = MX' after 
the step. Here M is the matrix representation of (7rl o 0 o ~2). 

The analysis of the difference propagation through the nonlinear step can be 
made using the pairs XOR distribution table of 7 confined to a triplet, given in 
Table 2. The entry in this table in row x ~ and column y~ represents the number 
of input pairs of triplets with XOR x' whose corresponding output pairs have 
XOR y'. If nothing is known about the absolute values of the input triplets, it 
can be seen that every nonzero input XOR triplet can propagate to four different 
output XOR triplets, each with probability 1/4. An input XOR and an output 
XOR are called compatible if the input XOR can propagate to the output XOR 
through 3'. From Table 2 it can be seen that an input XOR triplet and an output 
XOR triplet are compatible if they have an odd number of 1-bits in common, 
i.e., if their bitwise AND has odd Hamming weight. 

An input XOR and an output XOR are compatible if all their component 
triplets are compatible. Hence if an input XOR has ~ nonzero triplets it is com- 
patible with 22l different output XORs. The input XOR will propagate to any 
of these compatible output XORs with probability 2 -2~. The number of nonzero 
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010 
100 
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000 001 010 100 011 101 110 111 

2 2 2 2 
- 2 2 2 2 

2 2 2 2 
2 2 2 2 
2 2 2 2 

2 2 2 2 - 
2 2 2 - 2 

Table 2. Pairs XOR distribution table for V confined to a single triplet. 

triplets in an XOR vector will be called the propagation weight or simply weight 
of an XOR and denoted by Wp0. 

A one-round characteristic consists of an input XOR X ~ and an output XOR 
Y~ that is compatible to MX ~ (for ease of notation the round boundaries are 
taken after lh and before V here). The probability of this characteristic is the 
probability that X ~ will propagate to Y~ through p if the absolute values of 
the inputs are unknown and independent. This probability is equal to 2 wp(Y'). 
By iterating one-round characteristics multiple-round characteristics can be con- 
structed. An f-round characteristic ~ consists of a string of XORs X~, X~,... X~ 
such that every Xj is compatible with MXj_ 1. If the absolute values of the input 
and the intermediate results are unknown and independent the probability of this 
characteristic is the product of the probabilities that Xj will propagate to Xj+ 1 

through p for 0 < j < f .  This probability is equal to 2 -2wp(~ where Wp(~) is 
the propagation weight of the characteristic s We have 

. ( 5 )  

0<j</ 

We are interested in the probability that X~ will propagate to X~ irrespective 
of the intermediate XOR values. This probability will be the sum of the proba- 
bilities of all possible f-round characteristics starting with X~ and ending with 
X~. Only the characteristic(s) with the lowest weight will essentially contribute 
to this sum. 

In practice we cannot guarantee the independence of the absolute values of 
input and intermediate results for complex characteristics. Correlations between 
absolute bits can occur. In the following subsection we will discuss how to find 
correlations between different variables consisting of the parity of certain subsets 
of bits. 

5 . 2  L i n e a r  C r y p t a n a l y s i s  

In linear cryptanalysis high correlations between sums modulo 2 (parity) of a 
subset of input bits and the parity of subsets of output bits are exploited to 
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obtain information about  key bits. 
The  par i ty  of a number  of bits of a vector X can be denoted by v T x  where 

V specifies which bits are included in the binary sum. V is called a selection 
vector. 

The correlation between two binary variables is expressed by a correlation 
coefficient between - 1  and 1. If  the correlation coefficient is e, the probabil i ty 
tha t  the variables are equal is (1 + e)/2. Two variables are correlated if the 
correlation coefficient differs from 0. 

For Y = M X  the par i ty  v T y  is equal to v T x  with Vx = MTVy. The two 
parities have a correlation of +1. If we have Y = M X  + K with K a constant 
vector, the correlation can also be - 1  depending on the value of the constant 
K. From the rotat ion invariant properties of 0 and its interaction with It it can 
easily be proven tha t  M T = M -1 hence Vy = MVx. 

The analysis of correlations between inputs and outputs  of the nonlinear step 
can be made using the linear approximation table of 7 confined to a triplet, given 
in Table 3. In this table the entry eli in row v~ and column vj represents the 

000 
001 
010 
100 
011 
101 
110 
111 

000 001 010 100 011 101 110 111 

- 2  - 2 - 2  - - 2  
- - 2  - - 2  2 - 2  

- 2  2 - 2  - 2  
- 2  2 - 2 2 
2 - 2  2 2 

- 2  2 2 2 - 
- 2  - 2  - 2  - 2 

Table  3. Linear approximation distribution table for 7 confined to a single triplet. 

deviation of the number  of occurrences vTx = vWy from 4. The corresponding 
correlation coefficients can easily be found by dividing these entries by 4. I t  
can be seen tha t  every nonzero input pari ty vTx is correlated with four output  
combinations vTy, each with correlation q-l /2.  An input selection and an output  
selection are called compatible if their corresponding parities are correlated. By 
comparing Tables 2 and 3 it can be seen that  the compatibili ty conditions for 
selections are the same as those for XORs. 

An input  selection and an output  selection to q~ are compatible if all their 
component  triplet selections are compatible. Moreover, if an input selection has 
weight ~ it is compatible with 22~ different output  selection vectors with corre- 
lation coefficient 4-2 -~. 

A one-round linear approximation consists of an input selection Vx and an 
output  selection Vy tha t  is compatible with MVx. The correlation coefficient of 
this linear approximation is equal to :k2 Wp(yy). By combining one-round linear 
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approximations with equal intermediate selection vectors multiple-round linear 
approximations can be constructed. An f-round linear approximation A consists 
of a string of selections V0, V1,.. �9 V I such that every Vj is compatible with MVj_I. 
The correlation coefficient of this linear approximation is the product of the 
correlation coefficients of the one-round linear approximations defined by Vj and 
Vj+I for 0 < j < f .  This correlation coefficient is equal to 2 -*p(A) where wp(A) 
is the weight of the linear approximation A. We have 

wp(A)= ~ wp(V~) . (6) 
o<j<_f 

5.3 Analogy between Differential and Linear Cryptanalysis 

From this discussion it can be seen that in the case of 3-WAY there is an strong 
analogy between differential cryptanalysis and linear cryptanalysis. The resis- 
tance against linear and differential cryptanalysis can be investigated by inter- 
preting the same propagation structures, called propagation chains in two differ- 
ent ways. Both in differential and linear cryptanalysis the effort of a successful 
attack is in the order of magnitude of 22wP(~2) encryptions where/2 is an f-round 
propagation chain and f is the number of rounds minus 1 [3, 5]. 

Once the length has been fixed, the single criterion for the choice of the 
blockwise bit rotations 7h and 7r2 is the elimination of propagation chains with 
low weight. 

5.4 Attacks based on Symmetry  

An important class of attacks is based on the exploitation of symmetry in the 
cryptographic function. A well known example is the method to reduce exhaus- 
tive keysearch of DES by making use of the complementation property. More 
recent examples can be found in [4] where the regularity in the key schedule is 
used to construct chosen key attacks and speed up exhaustive key search. 

The round keys are equal to the global key XORed with the round constants. 
The idea is to choose round constants as simple as possible that eliminate all 
exploitable symmetric properties. This choice is not affected by propagation 
chain considerations. 

Many undesirable symmetric properties are special cases of one of the two 
following properties: 

- There are afEine mappings 7k, ~-p and Tc, such that for some keys TcOErk(K) OTD 
is equal to EK or DK. 

- There are keys such that the last (r - q) rounds of the cipher (encryption or 
decryption) under one key are the same mapping as the first (r - q) rounds 
of (encryption or decryption) under another key with q small. 

The round constants are derived from the state cj of a linear feedback shift 
register with length 8. In polynomial representation we have 

c j ( x ) = ( l + x + x 3 ) x  j m o d ( l + x  4 + x  s) . (7) 
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The order of the feedback polynomial is 12, hence x 12 = 1 mod (1 + x 4 + xS). 
The calculation of the round constants Cj in polynomial representation is 

C (x) = (x + x 3h + x 8h + xgh)cj(x) (8) 

with 12h -= n. For the inverse round constants we have C~. = #(O(Cr-j)) .  It can 
be seen that  

c'j(x)  = (x + + +  gh)c (x) (9) 

with c~ (x) given by 

c ~ . ( x ) = ( l + x  4 + x  5 + x T ) x  j m o d ( l + x  4 + x  8) . (10) 

The encryption and decryption round constants can be generated and applied 
with the same circuitry. The only difference is the initial value of the 8-bit linear 
feedback shift register. Observe that  the difference between the round constants 
of two subsequent encryption or decryption rounds is different for all cases. 

6 Resul t s  

A C program has been written that  determines whether there are propagation 
chains with a weight per round smaller than a given lower bound ~ for the 3-WAY 
structure. Basically this program executes a pruned tree search for low weight 
propagation chains for all initial propagation vectors with weight smaller than 

This program was used to select a permutation lrl for the 96-bit version of 
3-WAY. Excellent results were obtained with a permutation where the 96-bit 
vector is divided into three 32-bit words. Two of the three words are cyclically 
shifted, one by 1 bit position and one by 10 bit positions. If B = ~h (A) we have 

bi = a(i+10)mod32, bi+32 : ai+32, bi+64 =- a(i-1)mod32+64 for 0 ~ i < 32 . (11) 

For this choice of r l ,  all propagation chains of 5 rounds or more have a 
weight not smaller than 6 per round. This implies that  m-round characteristics 
of 5 rounds or more have maximum probability 2 -12m and that  m-round linear 
approximations have maximum correlation 2 -6m. To give an idea of the impact 
of these figures we compare them with the analogous figures for the Data Encryp- 
tion Standard. DES has an iterative characteristic with a probability of 2 -3.6 
per round [3] and a 15-round linear approximation with a correlation coefficient 
of 2 -21"2 or 2 -1'4 per round [5]. 

These strong results with respect to differential and linear cryptanalysis are 
the consequence of the propagation properties of the linear step 8. In Table 4 
the interaction between the Hamming weight (not  the propagation weight) of 
a(x) and b(x) = e(x)a(x) mod (1 + x 12) can be observed. For nonzero vectors, 
the sum of the Hamming weight of a(x) and b(x) is at least 8. By a good choice 
of 7rl the linear mapping M inherits these good properties with respect to propa- 
gation chains. Table 5 gives the number of pairs (X, MX) for given propagation 
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3 4 5 6 7 8 9 10 11 12 

12 - - 
6O 6 

180 40 
255 240 - 

180 600 - 12 
804 - - 60 

600 - 180 
240 - 255 

40 180 - 
60 - - 

12 - - 

Tab le  4. Number of pairs (a(x),b(x)) with b(x) = e(x)a(x) mod (1 + X 12) with the 
H a m m i n g  weight of a(x) given at the left and the Hamming weight of b(x) at the top 

weight of X and M X  for the ment ioned choice of ~h. I t  can be seen t h a t  in a 
p ropaga t ion  chain every vector  with a p ropaga t ion  weight w not  larger t h a n  4 
mus t  be followed by a vector  with weight not  smaller t han  8 - w. Hence, it can 
be deduced f rom Table 5 tha t  there  are no p ropaga t ion  chains of even length 
with weight smaller t h a n  4 per round.  

7 Conclusions  

3-WAY is a block cipher t ha t  is the  p roduc t  of a new design approach.  The  cipher 
is suitable for bo th  software and hardware  implementat ions.  I t  is shown t h a t  for 
3-WAY the  resistance against  bo th  differential and linear cryptanalys is  can be 
s tudied using the same propaga t ion  structures.  The  high resistance against  these 
types  of cryptanalys is  is realized by the combinat ion of high diffusion (0, lh ,  1r2) 
and dis t r ibuted nonlineari ty (7). 
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Appendix 

File t h reewayre i c  

*********************************************************************\ 

* C specification of the threeway block cipher * 

\********************************************************************/ 

#define STKT_E 

#define STRT_D 
#define NMBK 

OxObOb /* round constant of first encryption round */ 

0xblbl /* round constant of first decryption round */ 

II /* number of rounds is Ii */ 

typedef unsigned long int word32 ; 

/* the program only works correctly if long = 32bits */ 

void mu(word32 *a) 
{ 

int i ; 

wordS2 bE3] ; 

/* inverts the order of the bits of a */ 

b[O]  = b [ l ]  = h i 2 ]  : 0 ; 

for( i=0 ; i<32 ; i++ ) 
{ 

b[O] <<= 1 ; b[1] <<= i ; b[2] <<= 1 ; 
i f ( a [ O ] ~ l )  5 [ 2 ]  I= I ; 

i f ( a [ l ] ~ l )  b [ l ]  I = I ; 

if(a[2]~l) b[0] I: i ; 

a[0] >>= i ; a[l] >>= 1 ; a[2] >>= 1 ; 
} 

a [ o ]  : b [ O ]  ; a l l ]  = b [ l ]  ; 
} 

a [ 2 ]  : hi2] 

void gamma(word32 *a) 
{ 

word32 b[3] ; 

/* the nonlinear step */ 

b [ O ]  = a [ O ]  " ( a [ 1 ] l ( ' a [ 2 ] ) )  ; 

b [ 1 ]  = a [ 1 ]  " ( a [ 2 ] l ( ' a [ O ] ) )  ; 

bC2]  = aC2]  " ( a C O ] l ( - a C l ] ) )  ; 

a [ O ]  = b [ O ]  ; a [ 1 ]  = b [ 1 ]  ; a [ 2 ]  = b [ 2 ]  ; 
) 
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void theta(word32 *a) 

{ 

word32 b[3]; 

/ *  the linear step * /  

b[O] = a[O] ^ (a[O]>>16) " (a[l]<<16) ^ 

(all] >>24) " (a[2] <<8) " 

(a[2]>>16) " (a[O]<<I6) " 

b [ l ]  = a [ l ]  " ( a [ l ] > > 1 6 )  " ( a [2 ]<<16 )  " 

(a[2]>>24) ^ (a[O]<<8) " 

(a[O]>>16) " (a[l]<<16) " 

hi2] = a[2] ^ (a[2]>>16) " (a[O]<<16) " 

(a[0]>>24) " (a[l]<<8) ^ 

( a [ l ] > > 1 6 )  " ( a [2 ]<<16 )  " 

(a[l]>>i6) - (a[2]<<16) " 

(a[2] >>8) " (a[O] <<24) 

(a[2]>>24) " (a[O]<<8) ; 

(a[2]>>16) ^ (a[0]<<16) " 

(a[O]>>8) ^ (a[I]<<24) ^ 

(a[0]>>24) ^ (all]<<8) ; 

(a[O]>>16) " (a[l]<<16) ^ 

(all] >>8) (a[2] <<24) " 

(a[i]>>24) " (a[2]<<8) ; 

a[O] = b[O] ; a [ l ]  = b[l] ; 
} 

a [ 2 ]  = b [ 2 ]  ; 

void pi_l(word32 *a) 

{ 

a[O] = (a [O ]>> lO)  " ( a [ 0 ] < < 2 2 ) ;  

a [ 2 ]  = ( a [ 2 ] < < l )  " ( a [ 2 ] > > 3 1 ) ;  
} 

void pi_2(word32 *a) 

{ 

a[O] = ( a [ O ] < < l )  ^ ( a [ 0 ] > > 3 1 ) ;  

a[2] = (a[2]>>10) " (a[2]<<22); 

} 

void rho(word32 *a) 

{ 

theta (a) ; 

pi_l (a) ; 

gamma(a) ; 
pi_2 (a) ; 
} 

/* the round function */ 

void rndcon_gen(word32 strt,word32 *rtab) 

{ /* generates the round constants */ 

int i ; 

for(i=O ; i<=NMBR ; i++ ) 
{ 

rtab[i] = strt ; 

strt <<= 1 ; 

if( strt~OxlO000 )strt ^= 0x11011 ; 
} 



void encrypt(word32 *a, word32 *k) 
{ 

char i ; 

word32 rcon[NMBR+l] ; 

rndcon_gen (STRT_E ,rcon) ; 

for( i=0 ; i<NMBR ; i++ ) 
{ 

a[0] ~= k[0] ^ (rcon [i] <<16) ; 

a[1] "= k[1] ; 

a[2] ^= k[2] " rcon[i] ; 

rho (a) ; 
} 

a[0] "= k[0] " (rcon[NMBR]<<16) ; 

a[l] ^= k[l] ; 

a[2] "= k[2] " ~con[NMBR] ; 

theta (a) ; 
} 

31 

void decrypt(word32 *a, word32 *k) 
{ 

char i ; 

word32 ki[3] ; /* the Cinverse' key */ 

word32 rcon[NMBR+l] ; /* the 'inverse' round constants */ 

ki[0] = k[O] ; ki[l] = k[l] ; ki[2] = k[2] ; 

theta(ki) ; 

mu(ki) ; 

r n d c o n _ g e n ( S T R T _ D , r c o n )  ; 

mu(a) ; 

for( i=0 ; i<NMBR ; i++ ) 
{ 

a[0] "= ki[0] ~ (rcon[i]<<16) ; 

a[l] "= kill] ; 

a[2] "= ki[2] ~ rcon[i] ; 

rho (a) ; 
} 

a[0] ^= ki[0] " (rcon[NMBK]<<16) ; 

a[l] "= kill] ; 

a[2] "= ki[2] " rcon[NMBR] ; 
theta (a) ; 

mu(a) ; 
} 
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Testprogram 

#include <stdio.h> 
#include <stdlib.h> 
#include "threewayref.c" 

void printvec(word32 *a) 
{ 
printf ("~08x Z08x Z08x\n", a [2], a [1] , a [0] ) 
} 

main() 
{ 
word32 a [ 3 ] ,  k[3] ; 

scanf("Y,x Y,x Y,x Y,x Y,x Y,x",a+2,a+l,a,k+2,k+l,k) ; 

printf("key : ") ; printvec(k) ; 
printf("plaintexZ : ") ; printvec(a) ; encrypt(a,k) 
printf("ciphertext : ") ; printvec(a) ; decrypt(a,k) 

/* printf("checking : ") ; printvec(a) ; */ 
} 

Testvalues  

key : 00000000 00000000 00000000 

plaintext : 00000001 00000001 00000001 
ciphertext : ad21ecf7 83aegdc4 4059c76e 

key : 0000000400000005 00000006 
plaintext : 00000001 00000002 00000003 

ciphertext : cab920cd d6144138 d2fO5b5e 

key : bcdef012 456789ab def01234 

plaintext : 01234567 9abcdef0 23456789 
ciphertext : 7cdb76b2 9cdddb6d 0aa55dbb 

key : cab920cd d6144138 d2f05b5e 

plaintext : ad21ecf7 83ae9dc4 4059c76e 

ciphertext : 15b155ed 6b13f17c 478ea871 


