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A fruitful source of confusion on the Internet is that  both cryptologists and 
statisticians use pseudo-random numbers, but their objectives and constraints 
are subtly different. This paper will describe some of the requirements for a good 
generator for statistical simulations, and a t tempt  to put  them into cryptological 
terms. 

It is important  to note that  there is no consensus on when a pseudo-random 
number generator can be regarded as adequate, both because the theory is very 
incomplete and because so many different fields are involved. Every journal that  
includes work on either cryptology or statistical methods is likely to include 
important  papers, and no worker in the field is familiar with the whole literature. 
Broad agreement on criteria is the best that  can be expected. 

1 O v e r v i e w  

The basic random numbers for simulation are almost invariably generated as K-  
bit fixed-point fractions between zero and one, where K is usually between 32 
and 64. As people would expect, this is based on the operations that  computers 
provide, and we can expect to see increased use of 96- and 128-bit fractions 
over the next  five years. A few generators produce bit-streams, but this is rarely 
convenient for statistical simulation. 

The next stage is to transform these fixed-point fractions into the distribu- 
tions that  are actually needed. While this is a complex and interesting area, it 
is irrelevant to cryptology and will be ignored here. 

If we view the problem as a game between the random number generator 
and the program that  uses it, cryptology implies an intelligent opponent whereas 
simulation does not. This means that  the critical question is not how easy the 
sequence is to predict, but  how likely it is be partially predicted by accident. For 
example, simple multiplicative congruential transformations (with a known mul- 
tiplier and modulus) are still one of the most reliable techniques for simulation 
[3], but  useful mainly for student exercises in cryptanalysis. 

Another key difference from cryptology is that  many simulations are sensitive 
to extremely subtle variations from true randomness. This is part ly because of 
their nature,  and part ly because they may use a great many numbers (109 is 
usual, and 1012 or more is becoming so). A generator with a theoretical informa- 
tion leak of only 0.0001% may be excellent or useless, depending on the nature 
of the leak. 
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Many big simulations are trying to explain extremely subtle variations in 
otherwise explained phenomena, and it is these ones that  are so sensitive to 
non-randomness. This problem ties up with the previous one, in that  any par- 
ticular simulation will be sensitive to only a few forms of non-randomness. Most 
simulation work produces reliable results, even though much of it uses generators 
of quite appalling quality. 

Efficiency is important, but rarely all-important, because of the other calcu- 
lations that  are needed to make use of each random number. A reasonable rule is 
that  a random number generator needs to be as fast as a complex transcendental 
special function (say the error or power functions). The better DES software im- 
plementations achieve this [10], but the cryptoIogically strong methods do not, 
as is mentioned later. 

2 U n i f o r m i t y  

The original criterion used for random number generators was whether they 
were adequately uniform, and this is still critical. Some Monte-Carlo work will 
give wrong answers with non-uniformities of 0.0001% or less. Note that  the 
required uniformity is that  expected of a true random number from a uniform 
distribution; excessive (i.e. deterministic) uniformity can be as harmful as non- 
uniformity, because it reduces the variation properties. Generators with excess 
uniformity fall into the category called quasi-random, and have their uses [2], 
but need great care. 

Random uniformity cannot be measured directly, and so certain, more mea- 
surable properties are used. At least following aspects of uniformity are known 
to be important [9]: 

- Gross uniformity (i.e. deviation of the cumulative distribution function from 
a straight line), usually tested by Kolmogorov-Smirnov or chi-squared. 

- Uniformity of neighbours (i.e. variations of the probability density function 
from a constant value), tested by the birthday or variance of spacings tests. 

- Multi-dimensional uniformity (of either form), which is particularly impor- 
tant  for Monte-Carlo integration and allied simulations. Obviously, this is 
more measurable for a small number of dimensions. 

- Local uniformity (i.e. the uniformity of small samples), as distinct from full- 
period uniformity. Real simulations use few numbers compared with the full 
period, but most theory applies to the latter. 

These criteria can be used to give upper bounds on the sizes of simulation 
for which particular generators are adequate. Consider a K-bi t  generator with 
a period of N. Older generators used to have a single word of state, giving 
N = 2 K, but modern practice is to use multiple words of state [6], giving much 
longer periods N, typically between 21~176 and 2 l~176176176 This subtlety turns out to 
be rather important. 

With N = 2 K, the well-known birthday test will start to show problems 
with samples of size VrN, because the expected duplications will not occur. 
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This is rarely important  for simulation, because the finite precision of floating 
point arithmetic means that  few programs rely upon the equality of the numbers 
returned. Even so, it occasionally causes trouble. 

Much more seriously, the variance of spacings test will start  to show ex- 
cess uniformity for simulations of size 2 g -4  o r  N 2/3, whichever is the less [5]. 
Because many simulations rely upon adjacency properties, these figures should 
be regarded as hard limits to the maximum size of simulation. For example, a 
DES-encrypted counter should not be used for more than 7 x ]012 numbers. 

The above limits are based upon the difference between sampling with and 
without replacement, and will thus apply to any periodic generator, whatever its 
underlying principles. However, the precise limits are for generators that  cycle 
through all (or almost all) possible values in their state arrays, and generators 
tha t  do not do this may have higher or lower limits. Sometimes it is possible to 
calculate these limits precisely, but not always. 

These limits are easy to avoid, provided that  they are known about  and 
allowed for, but  the other aspects of uniformity are harder. Nevertheless, it is 
essential to demonstrate near-perfect random uniformity before a new class of 
generator can be considered for simulation work, and this is one reason that  
number-theoretic methods remain so popular. 

Most good cryptographic generators are obviously uniform in one dimension 
(and often more) over their full period, but  analysing their multi-dimensional 
and small sample properties is harder. On the other hand, any major flaws for 
simulation would immediately lead to a cryptographic weakness. The real danger 
is that  they may have small multi-dimensional information leaks (say < 0.1%), 
of a nature  tha t  some simulations are extremely sensitive to. 

3 O t h e r  t e s t s  

Theoretically, testing for multi-dimensional uniformity is adequate on its own, 
but  this does not work in practice. The reasons are that  the empirical uniformity 
tests for more than a couple of dimensions are too weak and the theoretical re- 
quirements are too strong. Hence a bat tery of empirical tests has been developed 
to check on particular properties that  experience shows to be important  [3]. 

One good example is the runs test, which turns out to be unusually powerful, 
though it is not quite clear why this should be. There are about a dozen standard 
tests, with many variations, and it is a mat ter  of judgement which to use. The 
only universal rule is that  the size of sample used to check a generator should be 
at least as large as tha t  used for real simulations, but this is not always possible. 

Some classes of generator have known weaknesses and, in these cases, the 
most reliable tests are often those designed to measure the particular weakness 
of the class. The spectral test for multiplicative congruential generators is the 
clearest example of this; it is reliable enough to predict how well a particular 
generator will perform on the empirical tests. There are few other examples as 
definite. 
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Actual experiments with DES- and SHA-based generators indicate tha t  these 
are of very high quality, and they have passed all of the empirical tests that  were 
tried with samples of up to 109 . It seems unlikely that  they have no weaknesses 
for use in simulation, but it can be said that  they are definitely adequate for 
most simulation work. Only time will tell exactly how important  their flaws are. 

There is also the point that  the standard range of statistical tests has been 
developed for generators that  use number-theoretic algorithms, rather than the 
bit shuffling ones of DES and SHA. It is probable that  a new generation of 
tests, based on different principles, will be needed to explore the weaknesses of 
these new generators. For example, it is likely that  a test based on differential 
cryptanalytic techniques would be extremely powerful. 

There have been several recent papers on universal tests for pseudorandom 
number generators, mostly based  in information theory [7]. It is important  to 
note tha t  universal tests have been known to statisticians for half a century, 
but are little used because they tend to be very weak. This seems to apply 
to the, cryptological tests as well, though it is difficult to prove that  this must 
necessarily be the case. Note that  we need to test generators with 1000 bits of 
state and a corresponding period. 

4 Number-theoret ic  methods  

One of the reasons that  number-theoretic algorithms (like multiplicative con- 
gruential) are often used in preference to empirical ones (like DES) is tha t  it is 
easier to analyse some randomness properties theoretically. This may well lead 
to cryptographic weaknesses, but that  does not necessarily mat ter  for use in 
simulation. As mentioned above, the weaknesses of well-understood generators 
can be measured and avoided. 

An example is that  generators based on primitive polynomials have proven 
full-period uniformities in dimensions up to the order of the polynomial. Note 
that  this does n o t  apply to linear additive generators. On the other hand, there 
is good evidence that  this full-period uniformity does not translate into small 
sample randomness as well as for simple multiplicative congruential ones (i.e. 
polynomials of order 1). 

This problem is one of the most important  and intractable in pseudorandom 
number theory, and has an important  parallel in differential cryptanalysis. The 
question of how long a subsequence can be and still be acceptably random is of 
key importance to the usability of a pseudorandom number generator. 

5 ~Perfect' generators 

There are some published 'perfect' (i.e. cryptologically strong) generators, but  
these are not much used for simulation. The main reason is that  they are pub- 
lished in journals that  are not easily found or understood by statisticians. There 
are more fundamental reasons, but these arc a statistician's interpretation of 
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cryptological papers and may not be true for all cryptologically strong genera- 
tors. 

One problem is that they are based on unproven polynomial versus exponen- 
tial complexity results, rather than the proven number-theoretic results of many 
traditional generators. Such complexity results are even less definite than asymp- 
totic formulae, and it is unclear how relevant they are to necessarily bounded 
computer programs. We need to remember that the uniformity requirements are 
extremely strong, and that they are not just asymptotic in nature. This being 
said, it is likely that the cryptologically strong generators would prove reliable 
in practice. 

A more important reason is efficiency. One of the faster perfect generators 
with P bits of state [8] can be used to produce a sequence of total size O(P) 
bits at an average cost per bit of O(P/logP). This is fine when looking for a 
few hundred numbers, but simulations often need 1012 64-bit numbers, which 
implies unreasonable storage requirements and quite impossible time ones. By 
comparison, a very high-quality simulation generator will produce a sequence of 
total size 0(2 p/2) bits at an average cost of O(1). 

Because the size limitation is actually O(P ~) for some t, rather than O(P), 
it is tempting to set t to (say) 4, which would remove the problem. Similarly, 
the number of bits returnable per iteration is bounded by O(logP) and we could 
choose the constant to be (say) 109 . But would the complexity results hold for 
practical, bounded simulations if we did this? It is very doubtful. 

6 P a r a l l e l i s m  

Parallel computing is becoming increasingly important, and this is one area in 
which the simulation requirements are actually more stringent than the crypto- 
graphic ones. If we use M generators in parallel, the need is for all M to appear 
independent, irrespective of how the numbers are sampled from each sequence 
or whether any weaknesses are predictable. Even restricting ourselves to peri- 
odic sampling strategies, there are O(N M) possible combinations; despite this 
immense complexity, there are some useful results [1,4]. 

As mentioned above, the spectral test is a reliable measure of the quality of 
multiplicative congruential generators. Ones with coprime moduli are indepen- 
dent in the spectral test sense, irrespective of the sampling strategy. The same 
is almost certainly true for their multi-dimensional uniformity, because of the 
relationship of this to the distribution of prime numbers, but it has not been 
proven. This gives a good basis for parallel generators. 

Things are less clear for other classes of generator and, with exponential 
complexities on all sides, it is very hard to provide even heuristic proofs. The one 
thing that is clear is that any major failure of independence of parallel generators 
would lead to severe cryptographic weakness. As an aside, it is worth noting that 
many of the papers purporting to describe independent parallel pseudo-random 
generators are quite simply rubbish; one extreme example defines independence 
as disjointness, and proceeds from there. 
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7 Conclusion 

It seems unlikely that  the two schools of random number work will converge in 
the near future, but  there is considerable scope for both sides to learn from the 
other. It is unfortunate that  relevant work is published in so many journals in 
so many fields, not least because it enables so many outdated methods (and just  
plain nonsense) to get into print. 

There are three main areas where theoretical advances would be extremely 
useful for simulation: 

- Better  results on which full-period theoretical properties lead to effective 
small sample randomness. This has been an active topic in number theory 
for a century or more, and so cannot be easy. 

- Complexity results oriented towards more practical requirements; for exam- 
ple, not just polynomial versus exponential complexity, but  the proportion 
of admissible tests that  will reject a generator. This would be extremely 
interesting to cryptologists as well! 

- More results on the independence of parallel generators. This has had the 
least attention, and has more scope for lateral thinking than the other areas. 
When and if large-scale parallelism becomes the standard technology, this 
will become critical. 
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