
Cryptographic Pseudo-random Numbers in
Simulation

Nick Maclaren

University of Cambridge Computer Laboratory
Pembroke Street, Cambridge CB2 3QG.

A fruitful source of confusion on the Internet is that both cryptologists and
statisticians use pseudo-random numbers, but their objectives and constraints
are subtly different. This paper will describe some of the requirements for a good
generator for statistical simulations, and a t tempt to put them into cryptological
terms.

It is important to note that there is no consensus on when a pseudo-random
number generator can be regarded as adequate, both because the theory is very
incomplete and because so many different fields are involved. Every journal that
includes work on either cryptology or statistical methods is likely to include
important papers, and no worker in the field is familiar with the whole literature.
Broad agreement on criteria is the best that can be expected.

1 O v e r v i e w

The basic random numbers for simulation are almost invariably generated as K-
bit fixed-point fractions between zero and one, where K is usually between 32
and 64. As people would expect, this is based on the operations that computers
provide, and we can expect to see increased use of 96- and 128-bit fractions
over the next five years. A few generators produce bit-streams, but this is rarely
convenient for statistical simulation.

The next stage is to transform these fixed-point fractions into the distribu-
tions that are actually needed. While this is a complex and interesting area, it
is irrelevant to cryptology and will be ignored here.

If we view the problem as a game between the random number generator
and the program that uses it, cryptology implies an intelligent opponent whereas
simulation does not. This means that the critical question is not how easy the
sequence is to predict, but how likely it is be partially predicted by accident. For
example, simple multiplicative congruential transformations (with a known mul-
tiplier and modulus) are still one of the most reliable techniques for simulation
[3], but useful mainly for student exercises in cryptanalysis.

Another key difference from cryptology is that many simulations are sensitive
to extremely subtle variations from true randomness. This is part ly because of
their nature, and part ly because they may use a great many numbers (109 is
usual, and 1012 or more is becoming so). A generator with a theoretical informa-
tion leak of only 0.0001% may be excellent or useless, depending on the nature
of the leak.

186

Many big simulations are trying to explain extremely subtle variations in
otherwise explained phenomena, and it is these ones that are so sensitive to
non-randomness. This problem ties up with the previous one, in that any par-
ticular simulation will be sensitive to only a few forms of non-randomness. Most
simulation work produces reliable results, even though much of it uses generators
of quite appalling quality.

Efficiency is important, but rarely all-important, because of the other calcu-
lations that are needed to make use of each random number. A reasonable rule is
that a random number generator needs to be as fast as a complex transcendental
special function (say the error or power functions). The better DES software im-
plementations achieve this [10], but the cryptoIogically strong methods do not,
as is mentioned later.

2 U n i f o r m i t y

The original criterion used for random number generators was whether they
were adequately uniform, and this is still critical. Some Monte-Carlo work will
give wrong answers with non-uniformities of 0.0001% or less. Note that the
required uniformity is that expected of a true random number from a uniform
distribution; excessive (i.e. deterministic) uniformity can be as harmful as non-
uniformity, because it reduces the variation properties. Generators with excess
uniformity fall into the category called quasi-random, and have their uses [2],
but need great care.

Random uniformity cannot be measured directly, and so certain, more mea-
surable properties are used. At least following aspects of uniformity are known
to be important [9]:

- Gross uniformity (i.e. deviation of the cumulative distribution function from
a straight line), usually tested by Kolmogorov-Smirnov or chi-squared.

- Uniformity of neighbours (i.e. variations of the probability density function
from a constant value), tested by the birthday or variance of spacings tests.

- Multi-dimensional uniformity (of either form), which is particularly impor-
tant for Monte-Carlo integration and allied simulations. Obviously, this is
more measurable for a small number of dimensions.

- Local uniformity (i.e. the uniformity of small samples), as distinct from full-
period uniformity. Real simulations use few numbers compared with the full
period, but most theory applies to the latter.

These criteria can be used to give upper bounds on the sizes of simulation
for which particular generators are adequate. Consider a K-bi t generator with
a period of N. Older generators used to have a single word of state, giving
N = 2 K, but modern practice is to use multiple words of state [6], giving much
longer periods N, typically between 21~176 and 2 l~176176176 This subtlety turns out to
be rather important.

With N = 2 K, the well-known birthday test will start to show problems
with samples of size VrN, because the expected duplications will not occur.

187

This is rarely important for simulation, because the finite precision of floating
point arithmetic means that few programs rely upon the equality of the numbers
returned. Even so, it occasionally causes trouble.

Much more seriously, the variance of spacings test will start to show ex-
cess uniformity for simulations of size 2 g -4 o r N 2/3, whichever is the less [5].
Because many simulations rely upon adjacency properties, these figures should
be regarded as hard limits to the maximum size of simulation. For example, a
DES-encrypted counter should not be used for more than 7 x]012 numbers.

The above limits are based upon the difference between sampling with and
without replacement, and will thus apply to any periodic generator, whatever its
underlying principles. However, the precise limits are for generators that cycle
through all (or almost all) possible values in their state arrays, and generators
tha t do not do this may have higher or lower limits. Sometimes it is possible to
calculate these limits precisely, but not always.

These limits are easy to avoid, provided that they are known about and
allowed for, but the other aspects of uniformity are harder. Nevertheless, it is
essential to demonstrate near-perfect random uniformity before a new class of
generator can be considered for simulation work, and this is one reason that
number-theoretic methods remain so popular.

Most good cryptographic generators are obviously uniform in one dimension
(and often more) over their full period, but analysing their multi-dimensional
and small sample properties is harder. On the other hand, any major flaws for
simulation would immediately lead to a cryptographic weakness. The real danger
is that they may have small multi-dimensional information leaks (say < 0.1%),
of a nature tha t some simulations are extremely sensitive to.

3 O t h e r t e s t s

Theoretically, testing for multi-dimensional uniformity is adequate on its own,
but this does not work in practice. The reasons are that the empirical uniformity
tests for more than a couple of dimensions are too weak and the theoretical re-
quirements are too strong. Hence a bat tery of empirical tests has been developed
to check on particular properties that experience shows to be important [3].

One good example is the runs test, which turns out to be unusually powerful,
though it is not quite clear why this should be. There are about a dozen standard
tests, with many variations, and it is a mat ter of judgement which to use. The
only universal rule is that the size of sample used to check a generator should be
at least as large as tha t used for real simulations, but this is not always possible.

Some classes of generator have known weaknesses and, in these cases, the
most reliable tests are often those designed to measure the particular weakness
of the class. The spectral test for multiplicative congruential generators is the
clearest example of this; it is reliable enough to predict how well a particular
generator will perform on the empirical tests. There are few other examples as
definite.

188

Actual experiments with DES- and SHA-based generators indicate tha t these
are of very high quality, and they have passed all of the empirical tests that were
tried with samples of up to 109 . It seems unlikely that they have no weaknesses
for use in simulation, but it can be said that they are definitely adequate for
most simulation work. Only time will tell exactly how important their flaws are.

There is also the point that the standard range of statistical tests has been
developed for generators that use number-theoretic algorithms, rather than the
bit shuffling ones of DES and SHA. It is probable that a new generation of
tests, based on different principles, will be needed to explore the weaknesses of
these new generators. For example, it is likely that a test based on differential
cryptanalytic techniques would be extremely powerful.

There have been several recent papers on universal tests for pseudorandom
number generators, mostly based in information theory [7]. It is important to
note tha t universal tests have been known to statisticians for half a century,
but are little used because they tend to be very weak. This seems to apply
to the, cryptological tests as well, though it is difficult to prove that this must
necessarily be the case. Note that we need to test generators with 1000 bits of
state and a corresponding period.

4 Number-theoret ic methods

One of the reasons that number-theoretic algorithms (like multiplicative con-
gruential) are often used in preference to empirical ones (like DES) is tha t it is
easier to analyse some randomness properties theoretically. This may well lead
to cryptographic weaknesses, but that does not necessarily mat ter for use in
simulation. As mentioned above, the weaknesses of well-understood generators
can be measured and avoided.

An example is that generators based on primitive polynomials have proven
full-period uniformities in dimensions up to the order of the polynomial. Note
that this does n o t apply to linear additive generators. On the other hand, there
is good evidence that this full-period uniformity does not translate into small
sample randomness as well as for simple multiplicative congruential ones (i.e.
polynomials of order 1).

This problem is one of the most important and intractable in pseudorandom
number theory, and has an important parallel in differential cryptanalysis. The
question of how long a subsequence can be and still be acceptably random is of
key importance to the usability of a pseudorandom number generator.

5 ~Perfect' generators

There are some published 'perfect' (i.e. cryptologically strong) generators, but
these are not much used for simulation. The main reason is that they are pub-
lished in journals that are not easily found or understood by statisticians. There
are more fundamental reasons, but these arc a statistician's interpretation of

189

cryptological papers and may not be true for all cryptologically strong genera-
tors.

One problem is that they are based on unproven polynomial versus exponen-
tial complexity results, rather than the proven number-theoretic results of many
traditional generators. Such complexity results are even less definite than asymp-
totic formulae, and it is unclear how relevant they are to necessarily bounded
computer programs. We need to remember that the uniformity requirements are
extremely strong, and that they are not just asymptotic in nature. This being
said, it is likely that the cryptologically strong generators would prove reliable
in practice.

A more important reason is efficiency. One of the faster perfect generators
with P bits of state [8] can be used to produce a sequence of total size O(P)
bits at an average cost per bit of O(P/logP). This is fine when looking for a
few hundred numbers, but simulations often need 1012 64-bit numbers, which
implies unreasonable storage requirements and quite impossible time ones. By
comparison, a very high-quality simulation generator will produce a sequence of
total size 0(2 p/2) bits at an average cost of O(1).

Because the size limitation is actually O(P ~) for some t, rather than O(P),
it is tempting to set t to (say) 4, which would remove the problem. Similarly,
the number of bits returnable per iteration is bounded by O(logP) and we could
choose the constant to be (say) 109 . But would the complexity results hold for
practical, bounded simulations if we did this? It is very doubtful.

6 P a r a l l e l i s m

Parallel computing is becoming increasingly important, and this is one area in
which the simulation requirements are actually more stringent than the crypto-
graphic ones. If we use M generators in parallel, the need is for all M to appear
independent, irrespective of how the numbers are sampled from each sequence
or whether any weaknesses are predictable. Even restricting ourselves to peri-
odic sampling strategies, there are O(N M) possible combinations; despite this
immense complexity, there are some useful results [1,4].

As mentioned above, the spectral test is a reliable measure of the quality of
multiplicative congruential generators. Ones with coprime moduli are indepen-
dent in the spectral test sense, irrespective of the sampling strategy. The same
is almost certainly true for their multi-dimensional uniformity, because of the
relationship of this to the distribution of prime numbers, but it has not been
proven. This gives a good basis for parallel generators.

Things are less clear for other classes of generator and, with exponential
complexities on all sides, it is very hard to provide even heuristic proofs. The one
thing that is clear is that any major failure of independence of parallel generators
would lead to severe cryptographic weakness. As an aside, it is worth noting that
many of the papers purporting to describe independent parallel pseudo-random
generators are quite simply rubbish; one extreme example defines independence
as disjointness, and proceeds from there.

190

7 Conclusion

It seems unlikely that the two schools of random number work will converge in
the near future, but there is considerable scope for both sides to learn from the
other. It is unfortunate that relevant work is published in so many journals in
so many fields, not least because it enables so many outdated methods (and just
plain nonsense) to get into print.

There are three main areas where theoretical advances would be extremely
useful for simulation:

- Better results on which full-period theoretical properties lead to effective
small sample randomness. This has been an active topic in number theory
for a century or more, and so cannot be easy.

- Complexity results oriented towards more practical requirements; for exam-
ple, not just polynomial versus exponential complexity, but the proportion
of admissible tests that will reject a generator. This would be extremely
interesting to cryptologists as well!

- More results on the independence of parallel generators. This has had the
least attention, and has more scope for lateral thinking than the other areas.
When and if large-scale parallelism becomes the standard technology, this
will become critical.

References

[1] De Matteis, A. and Pagnutti, A., "Parallelization of random number generators
and long-range correlations", in Numerische Mathematik, 53 (1988) pp 595-608.

[2] Hammersley, J.M. and Handscomb, D.C., 'Monte-Carlo Methods', Methuen, 1967.
[3] Knuth, D.E., 'The Art of Computer Programming', Vol. 2 / Seminumerical Algo-

rithms' second edition, Addison-Wesley 1981.
[4] Maclaren, N.M., "The generation of multiple independent sequences of pseudoran-

dom numbers", in Applied Statistics, 38 (1989) pp 351-359.
[5] Maclaren, N.M., "A limit on the usable length of a pseudorandom sequence", in

J. Statist. Comput. Simul., 42, (1992) pp 47-54.
[6] Marsaglia, G., "A current view of random number generators", in Computer Sci-

ence and Statistics, Elsevier (1985).
[7] Maurer, U.M., "A Universal Statistical Test for Random Bit Generators", in Ad-

vances in Cryptology - CRYPTO '90, Springer-Verlag Lecture Notes in Computer
Science 537 pp 409-420

[8] Micali, S. and Schnorr, C.P., "Efficient, Perfect Polynomial Random Number Gen-
erators", in Journal of Cryptology, 3 (1991) pp 157-172.

[9] Stuart, A. and Ord, J,K., 'Kendall's Advanced Theory of Statistics', Vol. 1, Griffin,
5th Edition 1987.

[10] Young, E.A., DES code on Internet, from University of Queensland, Australia.

