
T W O  S T R E A M  C I P H E R S  

W. G. Chambers 

Department of Electronic and Electrical Engineering, 
King's College London, Strand, London WC2P~ 2LS, UK 

1 I n t r o d u c t i o n  

Two contrasting keystream generators are considered. The first uses a shift reg- 
ister of length n operating with arithmetic carried out modulo 2% The feedback 
has been made non-linear by using the bit-by-bit exclusive-or function as well 
as the linear operation of addition. The second generator is a cascade of clock- 
controlled shift-registers with several bits passed from stage to stage, through 
invertible scramblers or "S-boxes'. The first generator uses a large number of 
multiplications and is intended for use on digital signal processors. 

These generators have some points of resemblance: (a) They can both be 
regarded as cascades of binary shift registers with primitive feedbacks; (b) there 
is some theory available for the periods (and for the linear equivalences); (c) 
they can have multi-bit outputs; (d) the key-space can be very large. 

2 A M o d i f i e d  L i n e a r  C o n g r u e n t i a l  G e n e r a t o r  

2.1 Descr ip t ion  

We start by considering linear recursions of the form 

n- -1  

at+n = ~_~ cjat+j mod 2 ~ for t = 0, 1, 2 , . . .  (1) 
j=o 

with ao, a l , . . . ,  an-1 specifying the initial conditions. At least one of these values 
is odd. Here at and cj are e-bit integers. We may then derive a binary output 
by picking the most significant bit of each at, and an integer output by picking 
the k most significant bits (k _ e). It should bc a particularly convenient way of 
generating pseudo-random sequences technique on some digital signal processors 
which have high-speed facilities for multiply-accumulation. Now as regards the 
cryptologic security: The generator is a linear congruential generator and crypt- 
analytic techniques are available at least when the coefficients are known [1]. To 
increase the security we propose the use of the bit-by-bit exclusive-or function 
as a source of nomlinearity inside the recursion; the exclusive-or function is a 
fast operation on most microprocessors and digital signal processors. To make 
the discussion definite we consider a recursion of the form 

( at = ~ ' ~  ejat+j mod 2 ~ XOR djat+j mod 2 e for t = 0, 1, 2 , . . .  
\ j=o \ j=o 

(2) 
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where XOR denotes a bit-by-bit exclusive-or. The base polynomial h(x) = x ~ + 
n - - 1  

~j=o (cj + dj)x j rood 2 is a primitive binary polynomial. 
The period of the generator (1) has been investigated long ago in [2]; more 

recent work concerns the period and upper and lower bounds on the linear equiv- 
alence of the binary sequences produced by taking the bit of a given order of 
significance from each at. (See [4] for references.) Let at have the binary decom- 

e--1 position at = ~ = o  at,i 2i with at,~ E {0, 1}. Denote the sequence {a0, al,  a2 , . . .}  
by a and the binary sequences {a0,i, al,i, a2#, . . .}  by as. We quote the following 
results: If the base polynomial h(x) is a primitive binary polynomial of degree 
n, the possible periods of a~ are 2k(2 n -- 1) with k = 0, 1 , . . . , i .  Moreover for 
any i satisfying 1 < i < e and with h(x) = x n + f ( x )  mod 2 a specified primi- 
tive polynomial and with s0 not identically zero, all but a fraction 2/2 n of the 
possible connection polynomials f ( x )  ~-1 = ~i=o cix~ give ai the maximal period 
(2 ~' - 1)24. From the practical point of view this means that  provided we keep 
n reasonably large, say > 40, there is not much risk of obtaining a short-period 
sequence. There arc also "fast" tests for checking that  the period is maximal [3]. 

These results were derived using the linearity of (1). What  can be said about 
the periods of sequences generated by (2) depends very much on the dj. If any 
of the dj are odd we can say very little apart from the fact that  the period is 
a factor of (2 n - 1)2 e-1. Much more definite conclusions apply if all the dj are 
even. (There may be a price to pay for this increased understanding in that  the 
generator may not bc quite as strong cryptologically as in the general case.) Then 
the occurrence of short periods depends only on the feedback coefficients taken 
rood 4, and a fast test is given in [4]. With the above provisos the probability 
that  ak has a short period for k _> 3 is 4/2 n - 4/4 ~. 

2.2 I m p l e m e n t a t i o n  

Reasonably large values of n (~ 100 say) are needed for long periods, but to 
reduce the number of terms in (2) we need cl and di to be non-zero only for 
i < 1 where 1 is an integer considerably less than n. In particular the base 
polynomial h(x) must be of the form x n +g(x) with deg g(x) <_ l. Random or key- 
dependent choices of h(x) of a special form must then be tested for primitiveness 
as described for instance in [8]. However when n is a Mersenne exponent, making 
N = 2 ~ - 1 a prime, we simply have to check that  x 2~ - x mod (h(x),2); 
this is done by n modular squaring operations (linear in GF(2)). (Examples of 
Mersenne exponents are 31, 61, 89, 107 and 127.) When n is a Mersenne exponent 
the probability that  a randomly chosen polynomial of degree n is primitive is 
approximately 1/n, so the search is not extensive, especially as multiples of x 
and of x + 1 are speedily eliminated. 

2.3  Further  R e m a r k s  

The overall system may be regarded as a cascade of binary linear feedback shift- 
registers, one shift-register for each order of significance, with non-linear feed- 
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forward from shift-registers of a lower order of significance to those of higher. It 
should be noted that  the XOR coupling is strictly feed-forward in this sense. 

The worry about this kind of generator is whether it is a little too amenable 
to mathematical  analysis, so that  cryptologic weaknesses can be found along 
the lines [1] for the generator without the XOR function. The periods are short, 
being of order 2 '~+~, whereas the number of states is of order 2 he, and this may 
be another cause for concern. T h e  resemblance of this generator to the usual 
linear congruential generators used for random-number generation suggests that  
it should not fail the conventional tests for randomness. 

3 A Clock-control led Cascade 

3.1 I n t r o d u c t i o n  

n-lfbsr ~ ]  

clock 

S-box 

Fig. 1. A stage of the clock-controlled cascade 

A clock-controlled cascade [5] is built up with a number of stages each as shown 
in Fig. 1. The input A on the left consists of a sequence of k-bit integers. One 
or more of these bits is used to control the stepping of a linear feedback shift- 
register (lfsbr) of size n (n _> k) with a primitive feedback polynomial and with 
a non-zero initial setting. (The value of n is the same in every stage, although 
the feedback can vary.) The input is then XOR'd with k bits from the lfbsr 
and passed through an invertible S-box which gives a reversible one-to-one onto 
mapping of k-bit patterns to k-bit patterns. The initial stage of the cascade is 
clocked regularly. We shall henceforth choose k = n. The main results for a 
cascade of K stages are that  the period is almost maximal (equal to (2 n - 1) ~)  
and that  the k-bit outputs are distributed as uniformly as possible over a period 
[5]. 

We now discuss three aspects of this system, the lfbsrs, the S-box, and the 
clocking. 
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3.2 The  Shift Regis ters  

The obvious choice for the length n of each lfbsr is 32, the word-length on most 
modern microprocessors. The primitive feedback polynomials should be chosen 
"at random", that  is under the control of the key. Since the feedback polynomials 
are not required to have a special form we can select a fixed primitive element 
a in GF(2n), specified as the root of a primitive polynomial, and then using a 
technique such as that  in [6] we find the minimal polynomial of a s where s is 
relatively prime to N = 2 n - 1 [7]. Such an s is found "at random" as follows: Let 
Pl, P 2 , . . . ,  Pl denote the prime factors of N. We choose "at random" I integers si 
satisfying 1 < Si < Pi and then set s = ~ i ( N / p i ) s i  rood N. In the case n = 32 
there are five prime factors 2 + 1, 22 + 1, 24 + 1, 2 s + 1, and 216 + 1, so that  
the si can be specified by 31 bits in all. (Things are simpler for n = 31, for then 
N = 2 n - 1 is a prime, and the minimal polynomial of any element in GF(23~) 
apart from 0 and 1 is primitive.) 

3.3 A n  Invertible S-box 

A 32-bit invertible S-box can be set up using a technique suggested by David 
Wheeler at this workshop. Let t be a 256-element table of 32-bit words with 
the least significant 24 bits in each word chosen "at random", and the most 
significant 8-bit bytes forming a "random" permutation of 0 to 255. Then we 
may set 

Sbox(x) = (x > >  8) XOR t[x AND 255] 

Here > >  denotes a logical right-shift, with zero-fill on the left. This not only 
gives a Feistel-like invertible mapping, but also in effect provides an 8-bit right- 
circular shift. 

3.4 The  Clocking 

The simplest clocking technique is to use a single bit from the input A to 
control whether the step should be 1 or 2 [5]. However with a little care a 
more elaborate arrangement tan  be used, giving greater diffusion. To main- 
tain the periodicity of the cascade it is necessary to ensure that  the number 
of steps S taken by the clocked lfbsr over an input cycle of period N r (after 
r stages) is relatively prime to N [5]. (Here N = 2 ~ - [ . )  Suppose we use 2 
bits from A to determine whether the number of steps should be a, b, c or 
d. The 4 possible values of the bit-pair will have frequencies ( N  r - ( -1 )~) /4 ,  
(N ~ - ( -1)~) /4 ,  ( N  r - ( - 1 ) r ) / 4 ,  and (N r + 3 ( -1 )~) /4  in some order [5]. (Note 
that  N ~ -- ( _ ] ) r  mod 4, and that  the distribution is tim most uniform pos- 
sible.) Let the corresponding numbers of steps be x, y, z, t, a permutat ion of 
a , b , c , d .  Then we find 4S rood N = ( - 1 ) ~ ( 3 t -  x - y -  z). In the case when 
(a, b, c, d) = (1, 2, 3, 4) we find that  this has four possibilities •  •  and so 
cannot be used for n = 32 since N = 232 - 1 is divisible by 3, and may not 
be relatively prime to S. However the choice (a, b, c, d) = (1, 2, 4, 5) solves this 
problem, the possible values for 4S rood N then being =t=8, •  
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The  stepping can be speeded up by using a table giving the overall feedback 
after a multiple step. Thus for a 5-fold step we use a table with 32 entries. The 
least significant 5 bits in the lfbsr are used to select an entry from the table 
which is X O R ' d  with the lfbsr after the lfbsr has been logically right-shifted by 
5 places. 

3.5 U s e  o f  a C y c l i n g  C o u n t e r  

The n-lfbsr can be replaced by a counter cycling through the values 1 , . . . ,  2 n - 1. 
The clock-control is driven by q bits (q <__ k) selecting a value J[a] at the address 
a (0 < a < Q) in a table of unsigned n-bit  integers. Here Q equals 29 - 1. The 
counter is then stepped from its old value u to a value v obtained as follows: 
First  set v = u + J[a] mod 2 n, and if v < u increment v by 1. Over an input 
cycle of period N * we find tha t  all but  one of the 29 possibilities for a occur 
with frequency (N r - ( -1 ) r ) /2q ;  the exceptional value a occurs ( - 1 )  r + (N r - 
( - 1 ) ~ ) / 2  q times. Thus the number  of steps S taken by the counter over an input 

cycle is ( (N ~ -  ( -1 )~) /2q) (~Q_o  J [a ] )+  ( -1 ) rg [a ] .  This must be relatively prime 

to N,  so tha t  2qs mod N = ( - 1 ) r ( ( ~ = 0  J[a]) - 2 q J [ a ] )  must be relatively 
pr ime to N .  We do not know which is the special value a ,  so we choose all 

O 
the J[a] relatively prime to N,  and also arrange tha t  ~ = o  J[a] ==- 0 mod N.  
This is done in the same way as the exponent s was found in Sec. 3.2. For 
a = 0 to Q - 1 we choose "random" integers sia with 1 <_ sia < Pi and set 

Q--1 J[a] = ~ i ( N / p i ) s i a  mod N.  Then we have ~a=O g[a] -- ~ ( g / p ~ ) x i  mod Y 

with x~ = ( ~ - - ~  S~a) mod p~. If any of the xi vanish we choose another non- 
zero value of si ,Q-],  less than  p~; finally wc set siQ = Pi - x~ to find J[Q]. 
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