
Planning Support for Cooperating Transactions in EPOS

Reidar Conradi,* Marianne Hagaseth
Norwegian Institute of Technology (NTH), Trondheim, Norway

Chunnian Liu
Beijing Polytechnic University, Beijing, P.R. China

Abstract

This paper describes a way to reduce the numberofconflicts that may arise when several users cooperate
to solve a task using a common database. The manual interaction between the users are made easier by
supporting the project managers in planning of activities. Based on some interaction and an initial project
division, we can analyse the connections between the activities, given as the result of impact analysis.
Based on this, the project manager can choose to adjust the initial partitioning to reduce the dependencies
between activities.

The impact analysis can also be used as a help for the project manager to schedule the activities. By
doing this, more of the conflicts can be avoided.

However, conflicts cannot be completely avoided if some degree of concurrency should be achieved.
The cooperation between users must be handled by allowing close interaction during the activities.

1 Introduction

The paper reports work on automatic planning of cooperating transactions in the EPOS Process Support
Environment. Such assistance can be used by project managers to help organise software production
(development, maintenance), according to incoming change-requests and according to the product/version
space 1 of the software and related resources (tools, humans). It is a formidable task to manually "navigate"
in the space of possible actions here.

The goal is to have powerful, low-level database mechanisms, e.g. propagation rules and locking. These can
be driven by more high-level policies, e.g. communication protocols. These again are instrumented and/or
generated from domain knowledge (Section 5). All this wiUbe incorporated by an enlarged EPOS transaction
model. The current paper reports work on a Transaction Planning Assistant to help organizing breakdown,
scheduling and cooperation of subtransactions based on domain-specific information. An analogy to our
transaction planner is AI-based program generators for (concurren 0 programs. More classic project-planning
to manage budgets, timing, and human resources are not considered.

2 Related work

Traditional DBMSes have a strict consistency concept, coupled to serializable (short and system-executed)
transactions. For distributed and network-connected DBMSes, there is a two-phase commit protocol.

Software engineering involves many concurrent actors and long update times. Since updates may involve
h~d-to-predict and partly overlapping versions or subsystems, traditional locking procedures will cause
intolerable delays. Software Engineering (like CAD/CAM and related fields) therefore needs non-serializable
(long and user-executed) transactions (often called design transactions). This may lead to update conflicts,
which later must be reconciled by version merging. But sometimes no merge is needed, because of
independent development paths.

*Dept. of Computer Systems and Telematics, Norwegian Institute of Technology (NTH), N-7034 Trondheim, Norway. Phone: +47
73 593444, Fax: +47 73 594466, Emafl: conradi@idt.unit.no.

1Thn product space of the software is the actual software objects, and the relations between such objects. Version space of the
software is the actual versions selected of the software product.

Many newer transaction models (e.g. in Gandalf, Marvel, COO from Nancy), use nested transactions, and
these must handle both inter- and intra-transaction coordination. Description of other transaction models for
cooperation is found in [1, 2, 3, 4].

Digression: When all transactions in an unversioned DBMS commit, there is one canonical and consistent
version of the d ntabase (DB). In contrast, a versioned database maintains and controls permanently and
mutually inconsistent (sub-)databasesl

Algorithms to ensure consistency in multi-layer storage systems (cache coherence, synchrony between local
and global dmnbases) resemble those used for data exchange between long transactions. Work on crowd
control and groupware (CSCW) is also related, but with focus on team organization and communication, and
often not considering product/version structures (except graphic group-editors). There is often a globally
persistent and shared blackboard, although there may be local and temporary workspaces. We can mention
NSE from Sun [5], SPICE at CMU, and Lotus Notes, all with a centrM server and local database copies, but
where the policies for broadcasting updates are rather strict. Experience from NSE indicates that there are
few Write-Write conflicts (less that 1 per mill).

There has been much interest in database triggers [6]. That is, to have an active DBMS, which automatically
performs consistency checks and side-effect propagation according to explicit event-condition-action rules.
We must also consider "inter-version" propagation included, negotiation about propagation rules, and that
side-effect propagation can be very time-consuming and presume unobtainable access rights. Classic DBMS
triggers inside short transactions are therefore insufficient. A possible but not satisfactory solution is to use
notifiers to handle free-standing or delayed actions.

Simple versioning systems, like SCCS [7] and Make [8], offer no help for cooperating transactions. Adele
[9] has high-level configuration descriptions and some workspace control, but only triggers to start rebuilds.
PCMS [10] has document-flow templates, and Mercury [11] uses attribute grammars to guide simple change
propagation. ISTAR [12] has subcontracts, but little formal cooperation. NSE is strong on workspace
control, and DSEE [13] has some support for handling change requests. Few DBMS systems for software
engineering can adequately treat cooperating transactions, or can handle configurations as conceptual entities
both inside a database and in an external workspace.

Typical domain-independent, non-linear planning algorithms can be found in IPEM [14] and TWEAK [15].
TWEAK gives a formal treatment to the subject of non-linear planning. IPEM tries to integrate planning,
execution and monitoring in fine granularity, mainly for exception handling. Both TWEAK and IPEM
address the non-linear planning problem in a domain-independent way, with examples mainly from the
Block World domain (robot applications).

Most AI planning rules have no formal Input/Output specifications, which are essential for software devel-
opment tasks. Project customisation can be done by simple rule grouping and substitution, even if the rule
space is rather flat. Process evolution can generally be supported by replanning and re-execution.

In the rest of this paper, we will first summarize the EPOS background, and then present the planning
extensions for cooperating transactions.

3 TheEPOS context

EPOS is a Software Process Environment [16]. Internal process models are represented as object-oriented
and typed networks, being automatically (re)built. The task networks and all associated model information
reside in a sub-database under the versioned EPOS-DB [17] [18]. Database accesses executed by above
tasks are regulated by the embedding sub-transactionlsub-project [19]. The process model is expressed by
an object-oriented and reflective process modeling language, called SPELL [20].

3.1 Cons i s t ency Mode l

The underlying consistency model for impact analysis is that consistency must be related to the whole product
structure, not only to single objects. In the EPOS-DB, consistency of single objects is easily achieved since
each EPOS-transaction maintains its own copy of the object. At the commit time, either the whole object

or none of it, is reflected in the database, ensuring that each single object always is consistent as viewed
by the database. However, when the relations between objects are taken into account, the definition and
maintenance of consistency becomes much more complicated. The problem is caused by the following:

Overlaps in the set of objects that are accessed:

There may be overlaps between the set of objects accessed by two different, concurrent 2 EPOS-
transactions. This means that two objects accessed by two concurrent EPOS-transactions may be
consistent when viewed separate, but inconsistent, when the relationship between the objects is taken
into account.

Different semantics on the relations:

Maintenance of consistency in the database is difficult because of the semantics of the relations between
objects. This problem is more difficult than just having referential integrity in a relational database.
By referential integrity, the database can ensure that all tuples referenced in a foreign key field exists
in some other tables. However, relations in an object--oriented model can have different semantics,
thus, such simple rules cannot be used to maintain consistency. The best we can do is to follow the
relations, and notify the users about possible inconsistencies that may have arisen due to changes to
some of the objects. Then, it is up to the application to decide what actions must be taken to maintain
the consistency.

The result of this is the following definition of consistency, viewed from the database:

1. A single, isolated object is always consistent viewed from the database, since every transaction
maintains its own copy of the object.

2. Several, related objects are consistent if the database ensures that every changes are notified to the
affected transactions, and if each owner of a transaction has had the the possibility to compensate for
the updates.

4 Cooperating transactions in EPOS

EPOS-DB offers nested and long (non-serializable) transactions in a client-server architecture. Each internal
database transaction is associated to a P r o j e c t task and to an external file-based workspace. A transaction
operates on a given database version "slice" (the visible sub-database), selected by a version-choice serving
as a read filter. The transaction also specifies the scope of local changes, selected by a version-ambition, i.e.
which other database versions might be impacted. The version-choice and the version-ambition describe a
part of the version space, and are intentionally expressed as sets of "option" bindings. An ambition implies
a write lock on the associated version subspaces (sub-DBs), and with access only to product subspaces
(sub-products) within these versions. However, we are not constraining access to whole instances, only to
versions of these instances.

The relevant part of theproduct space is described through an intentional readset (a set of root components and
a set of directed relation types for transitive closures) and an extensional writeset (enumeration). Components
may have normal read/write locks.

The above version- and product space descriptions are part of the workorder for the associated project
task. In addition comes process-related information (tools, humans, time-constraints) and given cooperation
protocols.

A child transaction overlaps and constrains that of its parent, and possibly overlaps that of its siblings.
Transaction overlap is primarily defined in the version space by overlapping ambitions. In case of version
overlap (no version overlap means classic variants), it is interesting also to consider product overlap.

After child commit, changes are propagated to the parent, which must handle possible update conflicts
between the children, using e.g. policies like Rollback (intolerable), Priority (the last one wins?), Access
locks (classic access locks), Optimistic (soft locks with notifiers), followed by Integration/reconciliation

~Concurr~nt means that the transa~ions are ov~da~ng in time.

(negotiation, merging) etc. Clearly, such update conflicts will disappear, if strict serialization and locking
are globally enforced. However, this will cause excessive waiting among developers. Thus, pre-commit
cooperation is a pragmatic way to prevent, regulate and clarify update conflicts in case of overlaps.

Change propagation occurs in two steps:

1. First, we have to decide mutual version visibility or overlap, and set up (low-level) and pairwise
inter-transaction protocols for pre-commit negotiation and propagation. That is, to whom should
inter-transaction cooperation be established, what components are involved (granularity, type), how
(automatic or manual) and when (eager or lazy) should it be carried out etc.? The presented planning
work aims at giving more high-level support for such coordination.

2. Then, there is conventional intra-transaetion change propagation regulated by normal task networks,
regardless of the source and nature of the change. The existing Planner is used to (re)generate such
networks, using domain knowledge in form of task types, product structures etc. [21].

5 High-level Transaction Planning in EPOS

P r o j e c t is the EPOS term for execution environment, from a full scale project to a simple task performed
by a single user in his own work environment.

Good planning can reduce the need for manual cooperation between the developers. A Project Manager
meta-tool uses its local Transaction Planning Assistant (TRAPLAS) to advice the human project manager
on this. TRAPLAS tries to minimize dependencies between proposed subprojects, or to minimize the cost
of such dependencies, by attempting to:
1) partition an update job into "natural" subprojects,
2) schedule such subprojects, and �9
3) suggest communication patterns, that can be expanded into cooperation protocols.

The planning depends on the readsets and writesets associated with each project. An impactset is computed
for each pair of transactions to describe their inter-connection. That is, if a component is in the writeset
of one transaction and directly or transitively in the readset of another, it belongs to the impactset of the
former. Typical relations used to generate the readset and impactset are Pam'i l y O f (subsystem hierarchy),
ImplementedBy (between interface and body), and DependsOn with subtypes (general dependencies).
Each component and relationship has an associated weight and each relationship also a direction.

The domain knowledge used by TRAPLAS consists of global and local consistency constraints stored in
types and meta-types, intentional project goals (e.g. ambitions, writesets), added semantics specially on
relations, existing product/task structures, product ownerships, and possibly personnel allocation. This
knowledge can be manipulated and versioned on a project basis.

5.1 P r o j e c t P a r t i t i o n i n g

This section describes how impact analysis can be used to support the project manager in the partitioning of
a project into subprojects. This project partitioning is done before the actual work starts.

The Project type in EPOS-PM has two subtypes, CompositeProject and gtomicProject.
CompositeProjects have subpr0jects, while AtomicProjects have not. The projects in EPOS-
PM are organised in a hierarchy which follows the transaction hierarchy in EPOS-DB. This is because one
EPOS-PM-project is connected to one EPOS-DB-transaction. We assume that the project partitioning
continues until the leaf node projects are all atomic. The relation between project and transaction is that each
project has one transaction associated with it. Both projects and transactions are organised in a hierarchy so
that a project can contain several subprojects and a transaction several subtransactions.

5.1.1 Initial Project Partitioning

In the initial project partitioning, a composite project is divided into n subprojects. These subprojects may
be either composite projects or atomic projects.

I. H o w the initial partitioning is determined:

An important question is how the initial partitioning of the composite project is determined. This
question includes:

(a) Which criteria are used to do the initial partitioning?
If impact analysis is used to reduce the interconnections between the subprojects before the result
is presented to the project manager, the initial clustering is not important. However, the project
manager may want to use some special strategies for the initial partitioning, even if this may be
changed later.

i. One possibility is to describe the partition in terms of data that is to be accessed by each
subproject.
If each object already has an ownership associated with it, this can be used to define the
partitioning. This means that every object must have an owner associated with it, and that
each object can have only one owner.
Another way to partition the data between the subprojects is to follow the subsystem struc-
ture. In this case, the ownerships information is not used in the initial project partitioning.
However, it can still be used in the impact analysis, for instance included as weights on
objects or relationships. This can then be used to compute the interconnection between two
projects, and in the next step be used to adjust the initial project division.

ii. The initial project partitioning could be done based on the tasks that the project consists
of. In this case, we would need a way to specify the tasks, and also a way to relate these
definitions to the actual data, since the impact analysis needs predefined access sets as input.

Co) How many subsets are created?

If ownership is used, initial project partitioning leads to the same number of subprojects as the
number of owners. If the ownerships information is not used, but projects are defined based on
substructures, the project manager may define as many subprojects as he wants. If subprojects

Trar

TCi(Transltlve Closure of WS i)

Figure 1: The Result of Impact Analysis.

I
ra,co >om.h]

"impacts" m.c

follows the specified tasks, it is natural to have as many subprojects as tasks, or possibly less if
some tasks are executed in the same project.

2. How the partitioning is described:

The projects are described by its readset (RS) and writeset (WS). This means that the project partitioning
is described by dividing the readset and writeset into n madsets and writesets. Thus, if a composite
project is described by [RS, WS], its subprojects are described by [RSI, WSI], for all n subprojects.
The readsets of the subprojects may possibly be overlapping. The same is true for the writesets of the
subprojects. Also, the writeset of one project may overlap with the readset of another project. Further,
we always have that WSt C_ RSI.
The readset is specified by first listing the objects that the subproject can read. Then, relations from
these objects are followed to include all objects that relates to these objects, This step is repealed until no
more objects can be added to the readset. The dependency relations we are following are DependsOn,
and its subtypes Text Includes and SoureeImports, and the relation ImplementedBy. For
instance, if a module x is in RS and x D e p e n d s O n module y, or y is I m p l e m e n t e d B y X, then y is
added to RS. In addition, relations in the product structure are followed, for instance, Fami l yOf and
ComponentO f.

The writeset is specified by just listing the actual objects that are accessible for writing.

3. How the intereonnection between subprojeets is described:

The following kinds of overlaps can arise due to the partitioning of the readset and writeset of the
composite project:

(a) RSIN RSj # 0:
Overlaps in the two readsets causes no problems as long as none of the common objects are
updated.

Co) RS~n WSj # 0:
The transactions can still execute in isolation, even if their readsets and writesets overlap.
However, certain sequences of reads and writes to the common objects will lead to inconsistencies.
By inconsistency, we mean that the transactions are interleaved in a non-isolated way, and that
a transaction are allowed to read data changed by another transaction before it is committed.
One sequence of accesses that leads to inconsistency is a r e a d by Transactionl, followed by
a w r i t e by Transactionj, followed by a r e a d by Transactionl. Another sequence is a
w r i t e done by Transactionl, followed by a r e a d by Transaetionj, followed by a wr i r e
by Transactioni z. Since we allow these sequences to happen, every overlap of readsets and
writesets are handled as possible conflicts when impact analysis is done in the project partitioning.

(c) WSin WS i # 0:
Overlaps between the two writesets may cause inconsistencies for certain sequences of access.
This sequence is basically a w r i t e by Transactions, followed by a w r i t e by Transaetionj,
followed by a w r i t e by Transaetionl 4. When doing the project partitioning, we do not
consider the sequences of operations that can be issued by the transactions. We only consider
the overlaps, that is, if there is an overlap between the writesets, we assume that the projects will
be interconnected in some way.

5.1.2 Impact Analysis to Improve the Project Partitioning

After the initial project partitioning is done, an improvement in the partitioning is presented to the project
manager by doing Impact Analysis. The impact analysis computes the interconnection between every pair
of subprojects, based on the initial partitioning,and based on weights that are put on the relations. The result
of Impact Analysis is shown in Figure 1. It shows how Transationl is interconnected to Transactionj,
that is, how the conflicts between the two transactions impacts Transactionj.

The interconnection between two transactions is a way to describe how severe the conflicts are that may arise
if the two transactions are executed in parallel, that is, if they are overlapping in time. By adding weights

SSeveral reads and writes can be added to these sequences. However, it is still the same two problems.
4Several reads and writes can be added to this sequence.

on objects and relations, the possible conflicts can be described as a number. This means that the conflict
that may arise by executing these transactions in parallel can be compared with other conflicts. Then, we
can present to the project manager which two transactions may lead to most conflicts. Weights on relations
and object types are used to compute the weight of an impactset. We have that WTIj is the weight of the
impactset IM~j.

�9 The big circles represent the readsets (RS) of the two transactions, with the enclosed writesets (WS)
being shaded circles. This is the input to the impact analysis, together with the relations that are to be
traversed.

* TCI is the transitive closure of WSI. It denotes the objects which may be influenced by updates made
to objects in the writeset WSi of Transadionl. We call this the full impact of WSi to the rest of the
database, since it includes every object that is related to some object in the writeset. Both the product
structure and other relations are traversed to obtain every object that in some way relates to objects in
the writeset of Transaetionl.

I11 Figure 1, TCi is the area inside the fat lines, which here extends outside the two transactions
displayed.

�9 1Mq = TCI O RSj is the impact of WSi on RSj. It is indicated in Figure 1 as the area between the
dotted line and the fat line. We take the intersection between the transitive closure and the readset RSj
to be able to d~scdbe the impact of the writeset of Transactionl on the readset of Transadionj.

The weight of IMq is WTij. This can be presented to the project manager as a measurement of the
impact of WSI on RSj. Based on this information, he can choose to move one or more of the objects
in WS~ to another writeset. Then, impact analysis must be performed once more to compute the new
impactsets.

�9 IMi = U~=IlMi/, where i # j is the total impact of the vaiteset of Transadioni on the readset
of all other transactions. The impact of WSi on its own readset is deleted because it is irrelevant for
describing the interconnection between Transaetionl and the other transactions. The weight of 1Mi
is WTI.

The project manager can use the result of Impact Analysis to manually adjust the initial partitioning by
reducing inter-project dependency since one transaction is associated with one project.

The project manager prepares N sub-workorders (sub-WOs) based on the final partitioning of [RS,WS].
A WorkOrder includes a change-request and a configuration description. For each sub-WO, a subtask of
PROJ is automatically generated. As the result, a network of subprojects (plus other subtasks such as
SchemaManager task etc.) of the project is generated.

5.1.3 Example

An example of the usage of impact analysis is shown in Figures 2 and 3. The notation is the same as in
Figure 1. The impactsets are indicated by dotted lines. Figure 2 shows the initial transaction division.
Transaction1 has the writeset WS, containing a .e , a . h and d . h . The readset RS~ contains b . h in
addition to the objects in the wfiteset. Transaction2 has the write.set WS2 containing p . c and b . c, and
the readset RSa containing b . h and p . h in addition to the objects in the writeset. Further, the figure shows
the impactseta I M n and IM~x. The impactsets contain the following objects:

�9 IMlz: p . c , p . h , b . c , a n d b . h .

�9 I M 2 , : a . c .

The impactset I M n is found by taking the intersection between TC, and RSa. When the transitive closure
TC, is computed, the edges are follwed in the reverse direction.

The project manager can choose to change the writesets to try to reduce the impact between the transactions.
In Figure 3, the object d . h has been moved from WS, to WS2. The new impactsets contain the following
objectS:

Transaction 1 Transaction 2

/

Transactlon2

RS 2

Transactionl

Figure 2: Example: Initial Transaction Division.

Figure 3: Example: Refined Transaction Division.

* I M , 2 : 0

�9 I M 2 , : a . c , a . h a n d b . h .

This means that the reorganizing of the writesets has reduced the dependencies between the two u'ansactions.
What the impact analysis does, is to compute the actual impactsets, which are then used by the project
manager to find a better transaction division.

The effect of changing the writesets of the transactions is that the definition of the associated projects is
changed. This changing is done to find the projects that leads to as few conflicts between the projects as

10

possible. In this way, we can use the product structure to construct a project structure with fewer inter-project
conflicts.

5.2 S c h e d u l i n g

The P R O d E O T o w n e r does further scheduling of the subprojects, using advice from Impact Analysis. Note
that optimal scheduling of serial or cooperative transactions, based on more detailed read/write patterns, is a
NP-complete problem [22]. Also note that the partitioning decided above, is not independent of scheduling,
if optimal solutions are sought, see below examples. For instance, we can commit small and more important
changes first (serialization!). We can also run "well-balanced" and mutually dependent transactions in
parallel with proper coordination. Alternatively, we can run "tricky" updates in a strict sequence (if both
W ~ j and WT~i are big), or apply temporary separation (as variants) followed by later merge jobs.

For instance, consider subtransactions T1 and T2, scheduled as:

T1; T2; (serial: T2 is based on Tl ' s work)
T2; T1; (serial: T1 is based on T2's work)
T1 II 1"2, (later merge: merge(T1,T2))
T1 ~=~ T2; (cooperative, thus no later merge)

The previous impact analysis is used for such planning, although we foresee a strong interaction with the
human project manager.

5.3 C o o p e r a t i o n P r o t o c o l

Here we have to negotiate, maintain and latex interpret rather low-level protocols, P+j, among each pair
of cooperating (overlapping) transactions (subprojects). Only atomic transactions need to have exchange
protocols.

The protocol contains information on the following items:

�9 Granularity: e.g. simple instances of selected types vs. entire subproducts.

�9 Coupling 5, or when to receive. This may be: E a g o r where all changes are propagated immediately;
Lazy (recommended) to propagate or promote changes after manual confirmation from the causing
transaction; or 13e l a y - o t h e r to delay propagation till after other's check-in/commit, or delay them
to just before own commit (Delay-own).

It is important to be able tO delay the effect of other's (pre-committed) updates to a later time, cf.
"copy-on-read", although we eventually have to incorporate such changes.

+ Acceptance Rule, being either AUTO-ACK or MANUAL-ACK. AlYl'O-ACK requires that a no-
tification always is sent, but no answer expected. This is followed by AU'I~-COPY, if there are
no conflicting textual updates (otherwise a merging must be performed). MANUAL-ACK requires
explicit acknowledge after notification, followed either by:

1. REJECT:. either DELAY as we are not-yet-ready, VETO with proposed changes returned, or
CONSTRAIN to limit mutual version visibility.

2. ACCEPT, with request to AUTO- or MANUAL-COPY, see below.

+ How To Receive, or workspace connectivity: AU'I~-COPY implies a shared file, an indirect file link,
or a manipulated search path. MANUAL-COPY means explicit copying and possibly merging.

The protocol may have to be adjusted when new sibling transactions start and commit. Changes in version-
or product-overlap may change the network of cooperating transactions, but we will initially assume stability
here. The protocol can also be dynamically supplemented, and even re-negotiated in simple cases. Some
policies are not independent, e.g. MANUAL-ACK excludes AU'I~-COPY.

5Adapted after Adele's proposed design for wonkspaee coordination [23].

11

For inter-transaction transfer we partly use an internal database "tunnel" mechanism to do pre-commit
propagation of general instances, partly an external mailbox mechanism for simple notifications. Neither
of these are described here. In addition comes implicit communication between external workspaces with
partly shared files (e.g. through symlinks), also not dealt with here. Reconciliation with merging is not dealt
with either.

The idea is to have TRAPLAS in cooperation with the human manager/developer to set up general commu-
nication patterns, that can be translated into the above low-level protocols.

To recapitulate: When Transac~ionl makes a change, it should eventually propagate or notify the update to
all overlapping transactions Transactionj (i.e. lMq indicates connections). The idea is to have TRAPLAS,
in cooperation with the human manager/developer, to set up general communication patterns, mainly based
on the previous impact analysis. These patterns can later be translated into the above, low-level protocols.

Thus, we will apply some heuristics on what seems like reasonable communication patterns. For instance,
changes to shared libraries may be propagated rather unconditionally (Eage r , AUTO-COPY), changes to
project libraries may be propagated when the receiver is ready (Delay-own, MANUAL-COPY), while
changes to mutually dependent modules may require much negotiation as indicated above (Lazy, MANUAL-
ACK).

5.4 Further decomposition

The previous partition-scheduling-cooperation protocol steps can be repeated during execution of composite
projects, until we reach atomic ones doing the real update work,

We have chosen to gradually decompose, not make the full decomposition in one step, even if the latter may
give a more optimal plan.

As mentioned in the introduction, we should also consider possible time constraints and available resources,
e.g. tools, persons and their availability.

6 Conclusion and Future Work

TRAPLAS serves as a translator between more goal-oriented domain knowledge and the underlying database
support. Without such a link, either more rigid update policies have to be enforced, or more flexible
cooperation patterns may become unwieldy. Some issues to pursue are the following:

�9 Formal transaction modeling: a more unifying transaction model to formally express domain-
knowledge, and considering consistency and user roles. We also need to formalize workspace envi-
ronments and manage incremental evaluation of configurations.

�9 A Transaction Deserlptinn Language, integrated or harmonized with SPELL.

�9 Version space planning to manage version-ambitions.

�9 Dynamic writesets, ambitions, protocols etc.

�9 Validation by realistic industrial scenarios.

Acknowledgments

Thanks to the entire E t~S team.

References

[1] Gaii E. Kaiser and Calton Pu. Dynamic Restructuring of Transactions. In [24], pages 265-295. Morgan
Kaufmann, 1991.

12

[2] H. Korth, W. Kim, and F. Bancilhon. A Model of CAD Transactions. In Proceedings of the l l th
International Conference on Very Large Databases, pages 25-33, 1985.

[3] Mary F. Fernandez and Stanley B. Zdonik. Transaction groups: A Model for Controlling Cooperative
Work. In 3rd International Workshop on Persistent Object Systems, Their Design, Implementation and
Use., pages 341-350,january 1989.

[4] Andrea Skarra. Concurrency control for cooperating transactions in an object-oriented database.
S1GPLAN Notices, 24(4):466--473, february 1989.

[5] Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, CA 94043, USA. Network Software
Environment: Reference Manual, part no: 800-2095 (draft) edition, March 1988.

[6] Michael Stonebraker. Triggers and inference in database systems. In Michael Brodie and John
Mylopoulus, editors, On Knowledge Base Management Systems: Integrating Artifical intelligence and
Database Technologies, pages 297-314. Springer Verlag, 1986.

[7] Mark J. Rochkind. The Source Code Control System. IEEE Trans. on Software Engineering, SE-
1(4):364-370, 1975.

[8] Stuart I. Feldman. Make - - a Program for Maintaining Computer Programs. Software-- Practice and
Experience, 9(3):255-265, March 1979.

[9] Noureddine Belkhatir and Jacky Estublier. Software management constraints and action triggering in
the ADELE program database. In [25], pages 44-54, 1987.

[10] Tani Haque and Juan Monies. A Configuration Management System and More (on Alcatel's PCMS).
In [26], pages 217-227, January 1988.

[11] Josephine Micallef and Gall E. Kaiser. Version and configuration control in distributed language-based
environments. In [261, pages 119-143, 1988.

[12] Mark Dowson. ISTAR - - an integrated project support environment. In [27], pages 27-33, 1986.

[13] David B. Leblang and G. McLean. DSEE: Overview and Configuration Management. In J. McDermid,
editor, Integrated Project Support Environments, pages 10-31. Peter Peregrinus Ltd., London, 1985.

[14] Jos6 A. Ambros-Ingerson and Sam Steel. Integrating planning, execution and monitoring. In Proc. of
AAAI'88, pages 83-88, 1988.

[15] David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333-377, 1987.

[16] ReidarConradi, EspenOsjord, Per H.Westby, andChunnianLiu, lnitialSoftwareProcess Management
in EPOS. Software Engineering Journal (Special Issue on Software process and its support), 6(5):275-
284, September 1991.

[17] Anund Lie et al. Change Oriented Versioning in a Software Engineering Database. In Walter E
Tichy (Ed.): Proc. 2nd International Workshop on Software Configuration Management, Princeton,
USA, 25-27 Oct. 1989, 178 p. In ACM SIGSOFT Software Engineering Notes, 14 (7), pages 56--65,
November 1989.

[18] Bj~rn P. Munch, Jens-Otto Larsen, Bjclrn Gulla, Reidar Conradi, and Even-Andr6 Karlsson. Uniform
versioning: The change-oriented model. In [28], pages 188-196, 1993.

[19] Reidar Conradi and Carl Chr. Maim. Cooperating Transactions against the EPOS Database. In Peter H.
Feiler (Ed.): "Proceedings of the 3rd lnternationaIWorkshop on Software ConfigurationManagement"
(SCM3), Trondheim, 12-14June 1991,166p. ACM Press Order no.594910., pages 98-101, June 1991.

[20] Reidar Conradi et al. Design, use, and implementation of SPELL, a language for software process
modeling and evolution. In [29], pages 167-177, 1992.

[21] Chunnian Liu and Reidar Conradi. Automatic Replanning of Task Networks for Process Model
Evolution in EPOS. In [30], pages 434-450, 1993.

13

[22] Claude Godart. COO: A transaction model to support COOperating software developers COOrdination.
In [301, pages 361-379, 1993.

[23] N. Belkhatir, J. Estublier, and W. L. Melo. Adele2: A Support to Large Software Development Process.
In Proc. 1st Conference on Software Process (ICSP1), Redondo Beach, CA, pages 159-170, October
1991.

[24] Ahmed K. Elmagarmid, editor. Database Transaction Models For Advanced Applications. Morgan
Kaufmann, 611 p., 1991.

[25] Howard K. Nichols and Dan Simpson, editors. Proc. 1st European Software Engineering Conference
(Strasbourg, Sept. 1987), Springer Verlag LNCS 289, 404 p., 1987.

[26] Jiirgen F. H. Winkler, editor. Proc. ACM Workshop on Software Version and Configuration Control,
Grassau, FRG, Berichte des German Chapter of the ACM, Band 30, 466 p., Stuttgart, January 1988.
B. G. Teubner Verlag.

[27] Peter B. Henderson, editor. Proc. 2nd ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments (PaloAlto), 227p., December 1986. In ACM SIGPLAN
Notices 22(1), Jan 1987.

[28] Smart Feldman, editor. Proceedings of the Fourth International Workshop on Software Con.figuration
Management (SCM.-4), Baltimore, Maryland, May 21-22, 1993.

[29] Jean-Claude Derniame, editor. Proc. Second European Workshop on Software Process Technology
(EWSFF92), Trondheim, Norway. 253 p. Springer Verlag LNCS 635, September 1992.

[30] Ian Sommerville and Manfi'ed Paul, editors. Proc. 4th European Software Engineering Conference
(Garmisch-Partenkirchen, FRG), Springer Verlag LNCS 717., September 1993.

