
Towards Flexible Process Support w i th a CASE Shel l

Pentti Marttiin

e-mail: ptma@jyu.fi

Department of Computer Science and Information Systems

University of Jyv~iskyl~i

Finland

Abstract. CASE technology for improving information systems development
(ISD) is mostly based on the creation and verification of IS models using a
fixed set of techniques. However, ISD is a complex activity, which requires
well selected and suited methodologies and development practices for
different situations. This calls for CASE shells (metaCASE environments) in
which the methodologies can be tailored. Further, the quality of produced
deliverables (e.g. specifications and models) is dependent on the development
process. The focus of this paper is on integrating a flexible process support
into a CASE shell. The ISD process is specified using a graphical process
model, the purposes of which are the guidance and coordination of various
activities, and the management of the IS deliverables produced during the
development. In this paper process modeling requirements are discussed, and
the methodology engineering - - especially the process modeling - - process
using a CASE shell is described.

Keywords:
information systems development, methodology engineering, metaCASE, process
modeling

1. Introduction
Many organizations invest heavily in CASE (Computer Aided Systems

Engineering) technology. One reason for this is continuous problems in the fields of
software engineering (SE) and information systems development (ISD) 1, which has
been called the software crisis [7, 9]. The promises of CASE are often summarized
as improving productivity in development processes and quality in development

1 Software Engineering is systematic approach to design, implement, maintain and, re-
engineering software [18]. It includes engineering a software for IS field. IS development is a
process of systems improvement, where a system is transformed from its current state to new
improved one [25]. It is less systematic because IS projects are often more user driven and the
requirements are less concrete and change during ISD.

15

products as in [9, 31]. However, new technological innovations themselves can not
remove those problems. As pointed out by Jeffery [23] although new technology has
potential for improving productivity, without the correct form of management those
improvements can not be realized. Also, it is noticed in [34, 43] that the success in
the adaptation and use of CASE technology requires different contingencies to be
satisfied. These include management processes, learning courses in tools and
methodologies, and technical staff for maintenance as examples.

Huff [16] has examined the cost of CASE and noted that it is considerable.
Therefore, there should be some return v a l u e - productivity and/or quality - - for
the investments in CASE. Current CASE environments are used mainly for
verification of IS specification and documentation [49]. Other benefits are capability
to integrate various representation techniques, automate routine tasks such as
consistency checking of a diagram and automatically generate new specifications and
code. The productivity problems are mostly considered as time delays and cost
overruns 2. The surveys made some years ago [2, 49] show that there is no clear

-evidence (either theoretical or empirical) that CASE leads to better productivity.
Quality of IS/SW models can be described as a sum of various quality aspects
including correctness, verifiability, validity, understandability, propriety, reusability,
reliability, and robustness. CASE functionality is focused on improving and
satisfying only some of these.

Two aspects having potential impacts on an ISD/SE product's validity are
discussed. First, every methodology and technique takes a different viewpoint on the
problem domain. The selected techniques affect what information is captured during
the ISD process. Current CASE environments provide too fixed a variety of
techniques. This calls for a metaCASE environment (i.e. a CASE shell) in which we
can freely specify techniques and integrate them. CASE shells are described in detail
in [29, 44]. Second, the problems of ISD/SE have been said to be due to
undisciplined development processes and practices [7, 17]. The SE community has a
wide consensus that the quality of products depends on the process through these are
produced [1, 17]. Current CASE environments only provide practices to create IS
models in normative, encouraging, or free ways [47]. Most of the process supporting
tools are integrated to programming environments such as IStar [13] and Marvel
[24]. Only a few tools provide process support for IS analysis and design, such as
HyperCASE [12] and decision oriented ConceptBase [22]. Process supporting tools
are discussed more detail in [1, 11].

The goal of this paper is to find a way to integrate a flexible process management
environment into the flexible CASE environment. Two basic principles need to be
satisfied here. First, the CASE environment should provide a variety of integrated
techniques. In this paper we focus on an existing CASE shell - - MetaEdit [41].
Because it is a graphical tool, the interest is on graphical modeling techniques.
Second, the methodology support in CASE environments needs to expanded to
facilitate different kind of development and management activities. Therefore, the
focus is on flexible modeling of the ISD/SE process.

2 In [43] the productivity effects are further divided to individual productivity to produce
specifications, life-cycle effects speeding up single activities and reducing error rates, and
down-stream effects that are realized in the long term.

16

The paper is structured as follows. Section 2 introduces the process modeling
requirements. Section 3 describes the MetaEdit+ environment, and its methodology
engineering principles. An example of how flexible process support is designed
within MetaEdit+ is shown in Section 4. Finally, Section 5 summarizes the results
and outlines future directions.

2. Process model ing requirements for flexible CASE
environments

CASE environments provide computer support for ISD/SE. ISD can be seen as a
composition of various engineering, dialogue, and learning aspects [26], whereas SE
is mostly based on engineering. As an engineering process, ISD can be described as
complex and ill-structured problem solving activity [42, 45, 25]. It is complex
because of its abstract nature and large variety of system components and their
relationships [45]. It is ill-structured because design problems contain a great
number - - sometimes an infinite set - - of alternatives and solutions. Further, there
is no definite criteria for testing solutions and mechanize process to apply those
solutions [37]. As a dialogue process, cooperation among humans plays the
fundamental role. Design problems are often called "wicked" problems [35] i.e.
design involves compromises between parties with different views and conflicting
objectives. As a learning process, ISD is based on the incremental outgrowth of
knowledge. Due to new experiences and accumulated knowledge, solutions, views
and objectives may change.

The software process is defined by Humphrey [17, pp. 249] to be "the set of
activities, method(ologie)s, practices, that are used in the production and evaluation
of software". Further, these are fitted to varying organizational and project based
practices. A successful CASE environment needs to be powerful enough to manage
these diversified needs. Several life cycle strategies, process standards and maturity
models, and development methodologies have been introduced to improve ISD/SE.

Life cycle strategies for ISD/SE describe the idealized structure of development
activities. These include the waterfall model [4], prototyping [8], spiral models [5,
19], and object-oriented strategies [14, 20]. Earlier waterfall models focus heavily on
the engineering aspects and describe a process as a set of sequential development
activities such as analysis, design and implementation. The current trend is to
describe a process as a complex aggregate of activities including a set of iterative,
overlapped, and interlinked activities. Also, alternative approaches based on
contracts [13] and decisions [22] instead of activities are introduced.

Software development standards (e.g. IS09001 [21]) and maturity models (e.g.
SEI's CMM [17]) focus on managerial and organizational issues for repeated
production. The goal is improve practices by process measurements, monitoring and
assessments. CMM maturity levels also take into consideration the learning effects
due to the improved SE process. In contrast to the disciplined approaches above,
chaos theories indicate that predictive modeling of the ISD process is impossible [3].

17

There exist a great number of methodologies 3 for improving ISD/SE. The core of
methodologies is in the collection of techniques and guidelines to use these
techniques based on the underlying life cycle strategy. The proposed process is often
illustrated as a list of activities. Although methodologies is said to "standardize
development rituals" c.f. [25], they focus on what techniques are used and how these
are used rather than how to actually carry out work.

Finding a single best methodology suitable for all development situations seems
to be a hopeless task [42]: no one methodology is superior to others if it is compared
without taking into consideration the system to be created or changed. The
alternative approach is situational methodology engineering. This means that every
time the project starts the experience and wisdom about earlier successful and
unsuccessful projects are accumulated [25]. Methodologies are contingent upon
different development situations, tools available, skill levels of developers and users,
complexity of systems to be built, and values of stakeholders.

As noticed above, designing process support for ISD/SE is overall a problematic
issue. It needs a process model, which is an abstract description of an actual or
proposed process. If we want to build computer support for ISD/SE process at least
the following questions arise: what is the purpose of the process model, and what
kind of process model would one like to follow.

The purposes of process models is discussed by Curtis et al. [11]. These include
facilitating human understanding and communication, improving project and
process management, facilitating automatic guidance in performing processes, and
supporting automatic execution. In our approach, which is discussed in Section 3,
the main purposes of process model are understanding by providing the guidance for
the activities, and the management of the evolution and changes of ISD deliverables
produced.

Because we demand flexibility in process models the following requirements for
the ideal process model and the supporting CASE environment can be categorized
based on the earlier discussion.
�9 Support for life cycle strategies. ISD process should not be forced to follow only

one life cycle strategy. The basic elements (e.g. activities, decisions, or
contracts) and the structure (e.g. waterfall or cyclic) of process model needs to be
in some degree tailorable.

�9 Support for varied methodology processes. The need of computer support for
situation specific methodologies includes techniques as well as processes. One
possible strategy for a CASE environment is to provide process models described
in methodology handbooks as templates. Projects can then modify them to suit
their needs.

�9 Management of products evolution. We can assume that due to the complexity
of ISD, user requirements, solution candidates and chosen models may change
all the time. According to Baker [3, p. 260] "the CASE environment must be
able to store all the alternative branches, [and] provide intuitive navigation
mechanisms through alternatives". Tools for handling versions and variants of
products, and for navigating between them, are needed in CASE environments.

3 We use the term methodology as in CRIS literature [32] to denote e.g. Yourdon's SA
[511.

18

Technically the problem of product management is closely related to problem of
version control in the repository.

�9 Support for managerial activities. Methodologies and standards provides variety
of managerial metrics. Information about design rationale [10] for clarifying the
changes in product evolution sounds tempting. Also, information about project
failures and successes is important for laying the foundation for further
methodology engineering [25]. We are not always aware of what information we
need to gather during the development process.

�9 Process unpredictability. We can not predict all future activities. Further, we do
not know the precise order of activities (if there is such a feature). The process
model structure and activities should be modifiable during the actual process.

3. O v e r v i e w of the research e n v i r o n m e n t

During the years 1989-93 the SYTI project (and further the MCC company)
developed a CASE shell called MetaEdit T M . The principles of the tool are reported

in [41]. Methodology support in MetaEdit TM means using only one technique at a
time. These were specified using the OPRR data model (acronym of object, property,
relationship and role) [39, 48]. As a further development for supporting
methodologies, we are adding the ability to integrate several techniques [40] and
support for ISD process [27]. We call the new design prototype MetaEdit+.

The three following features outline MetaEdit+.
�9 MetaEdit+ (and also MetaEdit TM) is based on three levels of abstraction: the 1SD

level is the level where ISD takes place i.e. IS descriptions are developed by a
development group; the ME level (methodology engineering level) is the level
where a ME group specifies methodologies using a MetaEdit+; and the ISD
meta-metalevel, which contains a set of primitive types (GOPRR, activity types

�9 and agent types) which are needed as a language to specify methodologies. The
levels are shown in Figure 1.

�9 The division between products, activities, and agents are discussed in [11, 27].
The specifiable aspects of a methodology are shown in the model level
containing the IS models, the ISD process, and the development group. These
can be specified using three integrated models: the meta-datamodel, the activity
model and the agent model. These models are further based on GOPRR, the
meta-activity model and the meta-agent model. All models are shown in Figure
1.

�9 For all parts of the meta-metamodel and methodology specification we have
separated a conceptual and a representational part. The details of this division
are described in [41]. The benefit is that mere representational modifications can
be done without touching any concepts. Also, one concept can appear in
different representations for different techniques of the methodology. An
example is a data flow concept represented as a line in DFD-model and as a
cross in certain matrices.

19

I Meta-meta
level

etamodel

specifies
r MElevel ~r

Fig. 1. Three levels of MetaEdit+.

Methodology engineering in MetaEdit+ means creation of a methodology
specification, which MetaEdit+ uses for specifying ISD techniques, process and
group/tool environment. A methodology specification consists of a meta-datamodel,
an activity model, and an agent model.

The meta-datamodel specifies techniques and integration of these. It is modelled
using the GOPRR types: graph, object, relationship, role and property types. The
issues of the meta-datamodel are described in more detail in [40].

An activity model specifies the ISD process. The basic elements of the activity
model are activity and deliverable types (Figure 2). The two main purposes of the
activity model are:
�9 to manage different kinds of deliverables (e.g. IS models, specifications,

documents), and tools to produce them (e.g. checking tools)
�9 to provide guidance for the ISD process using on-line helps and pre-defined

descriptions.
Agent models define various human agents (e.g. user, project) and user roles (e.g.

designer, programmer). These act as electronic notebooks where the information of
agent profiles, policies, and strategies is collected. Users get their rights to use the
CASE environment through the user roles. Also, technical agents (e.g. checking
tool) are defined and linked to techniques through activity types.

20

Methodology specifications are available as "templates", which are constructed
from the information taken from the methodology handbooks. A ME group (Figure
1) selects the techniques, transformations and checkings and links them to the ISD
process (activity model template). A similar approach is described in [38] where
suitable fragments and route maps based on project characteristics are selected and
integrated. Afterwards, an ISD project may want to change or modify the IS
techniques and ISD process to better fit its needs 4. The ME group can make
modifications based on the incremental learning and situational changes of the ISD
project cf. [25, 38] as follows. When an ISD project has learned to use a
methodology it may want to change some parts of it. For example, an ISD project
may want to change the life cycle structure of an activity model or improve the
techniques. Also, during the life-cycle they may learn how to improve the process by
collecting measurement information for specific assessments. Situational changes
may happen when the project changes and new user roles are created.

4. Flexible process support in MetaEdit+

Here we focus on one aspect of methodology engineering: process modeling.
First, in Section 4.1., we look at the language for creating activity models - - the
meta-activity model. After that, in Section 4.2., the process of Yourdon Structured
Analysis (SA) is used as an example of an activity model and potential modifications
to it are introduced.

4.1. Meta-activity model

The most covered discussions of process languages and formalisms for SE are
represented in [1, 11]. These include systems analysis and design techniques (such
as DFD, SADT); data and object modeling (e.g. ER-diagrams, class structures),
automata approaches including Petri-nets, AI techniques (rules, pre/post conditions),
programming languages, and grammars. We base our work on the object modeling
using the concept activity, which is the basic concept in most of the life cycle models
[1, 4, 14], process modeling approaches [11, 17], and methodology processes [51].
Various types of activities creates a class structure (Figure 2). An activity is any ISD
development or managerial task: it uses or produces a deliverable (including
checkings and measurements), or acts as a composition of other ISD tasks (e.g. life
cycle phases), or a managerial event (e.g. decision or milestone tasks, starting and
finishing of phases).

Activities hold a set of user roles for defining the reading and editing rights for
the deliverables the activity produces or the rules the activity holds. Activities are
managed by starting date. We pay attention only to the starting point so that
preceding activities need not be finished before their successors start. In some cases
an activity may require a deliverable (i.e. a deliverable is used by an activity) before
it can be started.

Basic activity types are a compositional activity Phase (Stage), and Task (Step)
referring to a single task. A Phase can contain any number of sub-activities. In

4 MetaEdit 1.0 TM contains a method upgrade, which means that techniques can be
extended conceptually or changed representationally during the CASE work.

2~

Figure 2 Tasks are further specified into Transformation, Checking, Review,
Decision, Milestone, and other "managerial tasks" Start and Finish. Most of these
types are found in the reference model for ISD [15]. Here the following meanings
and extra properties are given. Transformation means producing a report, or another
deliverable from a deliverable. It includes a transformation model, which contains a
set of transformation rules. Transformation calls a transformation tool to create and
maintain these rules. Checking provides correctness and consistency checking for IS
specifications by calling the rules attached to GOPRR primitives (e.g. constraint and
verification rules in [33]), and/or offers product metrics (e.g. size metrics of the
deliverables [36]). Further, it calls a checking tool. Review is an adjustment activity
directed at deliverables and performed by human agents. Decision is used when we
have to decide between alternatives and want a solution to be produced. Milestone is
used when we want to coordinate or (using a technical word) synchronize work, and
finish earlier tasks. It can contain a decision to release the "completed" deliverables.
Further, every phase can contain informative, managerial Start, and Finish activities,
which act as triggers, and record the starting and finishing of the phase.

. . . . ~ fo l lows
,0 ,M , i terates

Fig. 2. Basic activity and deliverable types.

The argumentation during the Review, Decision and Milestone can be
maintained using the Design rationale tool (DR tool) 5, Transformation rules,
checking rules and metrics are attached to menus of the development tools

5 The information is structured as questions and responding personal answers with pro
and con arguments. The finished discussion results can be taken up to a property of an activity
such as result, and goal.

22

(Graphical Editor, Matrix Editor). How are these automatically attached to menus?
The sphere of influence according to rules and metrics can be set to a phase like
Analysis and Design, which is added as a property to the transformation or the
checking tasks. The necessary rules and metrics are available when opening a tool
from a deliverable node in the activity model. In the other case, a phase need be
selected when opening a development tool. The user roles can affect the use of the
rules and metrics.

How are the activities linked together? We place demands on simplicity in the
structure of the activity model. Our approach is motivated by the simplicity of Task
structures [6, 50], which focus on ordering the activities and decisions. Various
activities are connected together using the follows relationship, which in pre-defined
templates can contain conditions and alternative paths to be followed. Activities may
also be connected using the iteration relationship. This shows the critical path of the
changes: if we want to change an deliverable released earlier we must also adjust
other related deliverables.

Because our approach is product centered, various deliverables are attached to
activities with uses and produces relationships. Deliverables collect information for
initializing the development tools, which can be opened straight from the deliverable
node. An initial division is made between graph types and document types. In the
activity model, graph type handles version names (e.g. initial DFD or checked DFD)
and the following states: transient (private and locked for owner), working (public,
which can be modified by the owner and copied by someone else), or released (the
final "frozen" form). A document is a link to any other document, made using e.g. a
text editor, in a form like Checking report or Data dictionary format.

Changes in the meta-activity model can be made by generalizing/specializing
activity and deliverable types. These allows the possibility of using different
graphical symbols, or collect specific information by attaching properties to various
activity types. Examples of the properties might be actual or planned start/finish
time, duration, entry/exit criteria, participants, goals, or arguments.

4.2. Activity models

We selected Yourdon's Structured Analysis (SA) [51] as an example
methodology. The process of SA is modeled using the meta-activity model more
detail in [27]. The main difference to the Task structure approach by Verhoef [46] is
explicit deliverables in activity models. All the high level activities such as Analysis
and Design are modelled as phases. These act as compositions of other activities, and
are used to store the guidance information, i.e. descriptions of the phases (similarly
to HyperSRM tool [30]), and history of argumentation related to phases.

Figure 3 shows the more detailed description of the task of Constructing the
environmental model. It contains activities of types task, review, milestone, and
transformation. During the task Construct the event list one produces a document
Event list, and in the task Construct the context diagram a DFD specification Initial
context diagram, which is in a working state. The project can select whether it will
start with the event list or context diagram. The initial deliverables above (Event list
and Initial context diagram) are used in the reviewing activity Interrelate event list
and context diagram, which reviews both deliverables and produces the checked

23

ones. Release context diagram is a managerial activity added to Yourdon's example.
In this milestone decisions can be made to release the final deliverables. It describes
an iteration using two iteration lines to get deliverables completed. As a result, the
released Context diagrams are collected behind their own specification node.
Produce an initial data dictionary is a transformation. It implies the use o f a
transformation model to produce the data dictionary syntax (DD form) described in
Yourdon's book. Finally, one can produce an ER model of external stores.

Fr, Start ~ e a t i o n

I Task I
stoto se " estotemont o t ~

o r e t f " " pr r d,a0,o

~~ I I . , . - " " i A ' " " - - . . ~ T ask /
Cc~struct the e v e ~ c t the context ragram

�9 / incomg ted om~:JReview /-, ieted \
Li~ "" Interrelafe~/ent list and co~ext diagr

"~" ~ / Working
II/ J

' " bl Milestone r
- - i~iTse context dic~:u,l,

"-. DFD
+ ~

ITransf~176
Produ[e initial data drtorler4f

D I ~ " ' "
�9 / J Released

C ~ r y |Task ~ ll~
P,oduoe E]mode, trom eT~na, ~tores ER

F~~el

Fig. 3. 'Constructing the environmental model' in Yourdon's SA.

We could continue further to detailed activity diagrams to show how to construct
the event list or context diagram. On this level graphical diagrams are powerful tools
for guidance. Verhoef [46] describe tasks on the level of Add Object Type and Add
Relationship, and attach operations create_concept(Object) and create_concept
(Relationship) to tasks. In MetaEdit GOPRR already handles the semantics of
creations, updates and removals. Our aim is to provide better notes and guidelines on
how to use the technique: in what order different elements (e.g. object types) can be
created, and what information stores (e.g. manuals, reports) can be used to aid
methods' use.

24

SA process is described first as a template, which is the level a metaCASE tool
vendor can offer for organizations. The ME group needs to analyze the suitability of
templates for the ISD group and change them. The possible changes to the template
on the level of Construction of the Environmental model can be the following ones.
The ME group can first change in the ME level the graphical representations e.g.
change the milestone representation to a circle. Also, it can replace the review
activity with the checking activity, giving a second change where the checking
contains an automatic checking tool and operations to produce a checking report.
Other changes are done in ISD level by the ISD group. First, the ISD group can
modify names of the activities. Second, planned starting dates are attached to all
activities. Third, the activity Produce ER-model for external stores, along with the
related ER-diagram, can be moved to later phases. Fourth, the group can replace the
iteration relationships by a new milestone Assess context diagram and a new task
Change event list and context diagram. So, this project trusts its capability to
complete a Context diagram using one assessment.

5. Concluding Remarks and Future Directions

This paper describes process modeling support for a product based CASE shell.
ISD needs flexibility and extendibility in activities throughout. For the use of various
ISD projects the process models should be easy to understand. The graphical
metamodeling approach has proved to be suitable for describing ISD techniques.
Here we have tested how it can be used in modeling the ISD process.

What are the benefits of an activity model in CASE shell? First, a graphical
activity model provides a very expressive tool for process management and
improvement. Process management is supported by creating the project-tailored
activity model, providing measurement points, and incorporation of tools to a
process. As a graphical browsing tool it reduces the maintenance difficulties of
various deliverables. Process improvement is facilitated by the reusable templates,
and the continuous evolution of a process. Second, the graphical activity model is
easy to understand and provides a basis for handling the communication and co-
operation aspects of the ISD group. A design rationale tool attached to activities
maintains the discussions. Further, the similarity of modeling IS models and ISD
processes, as well as modeling techniques and activity types, facilitates the
understanding of the tool and its operation on the ME and ISD levels.

The following aspects will be studied in the future. First, the definition of meta-
activity models, and the use of activity models have been tested using MetaEdit's
c~pabilities to model techniques. We will implement the designed process support
into MetaEdit+. According to this, a version control system to support the versions
and states of deliverables will be build into the repository. Second, structuring the
design rationale during ISD is one of the ongoing studies. Third, this paper does not
address the rule language and mechanism by which the rules are attached to IS
models through the activity model. Fourth, possible viewing mechanisms of the
activity model filtered by human agents and user roles are not introduced here. These
allow developers to use their own subset of the activity model. Fifth, hypertext links
empowering the navigation capabilities between deliverables need to be studied.

25

Acknowledgements
I would like to thank the other members of the MetaPHOR project for fruitful dis-

cussions. Special thanks are given to Kalle Lyytinen, Sjaak Brinkkemper, Mauri
Lepp~inen, and Steven Kelly for the improvements of this paper.

References:

4.

5.

6.

7.
8.

9.

1. Armenise, P., Bandinelli, S., Ghezzi, C., Morzenti, A., "A survey and assessment of
software process representation formalisms", International Journal of Software
Engineering And Knowledge Engineering, 3, 3, 1993, pp. 410-426.

2. Aaen, I., Siltanen, A., Scrensen, C., Tahvanainen, V.-P., "A Tale of Two Countries -
CASE Experiences and Expectations", The Impact of Computer Supported Technologies
on Information Systems Development (Eds. K.E. Kendall, K. Lyytinen and J.I. DeGross),
Amsterdam, North-Holland, 1992, pp. 61-93.

3. Baker, J.M., "Project Management Utilizing an Advanced CASE Environment", Interna-
tional Journal of Software Engineering and Knowledge Engineering, 2, 2, 1992, pp. 251-
261.
Boehm, B.W., "Software Engineering", IEEE Transactions on Computers, 25, 12, 1976,
pp. 1226-1241.
Boehm, B.W., "A spiral model of software development and enhancement", IEEE Com-
puter, 21, 5, 1988, pp. 61-72.
Bots, P.W.G., An environment to Support Problem Solving, PhD thesis, Delft University
of Technology, Delft, The Netherlands, 1989.
Brooks, F.P. Jr., The Mythical Man-Month. Addison-Wesley, Reading, Mass., 1975.
Budde R., Kautz, K., Kuhlenkamp, K., Z011ighoven, H., Prototyping - An approach to
Evolutionary Systems Development, Springer-Verlag, Berlin, 1992.
Charette, R.N., Software Engineering Environments." Concepts and Technology,
McGraw-Hill, New York, 1986.

10. Conclin, J., Begeman, M. L., "glBIS: A Hypertext Tool for Explanatory Policy Discus-
sion", ACM Transactions on Office Information Systems, 6, 4, 1988, pp. 303-331.

11. Curtis, B., Kellner, M.I., Over, J., "Process modeling", Communications of the ACM, 35,
9, September 1992, pp. 75-90.

12. Cybulski, LL., Reed, K., "A Hypertext Based Software Engineering Environment", IEEE
Software, March 1992, pp 62-68.

13. Dowson, M., "Integrated Project Support with IStar", IEEE Software, November 1987,
pp. 6-15.

14. Henderson-Sellers, B., Edwards, J.M., "The Object-oriented Systems Life Cycle", Com-
munications of the ACM, 33, 9, 1990.

15. Heym, M., 13sterle, H., "A reference model of information systems development", The
Impact of Computer Supported Technologies on Information Systems Development (Eds.
K,E. Kendall, K. Lyytinen and J.I. DeGross), Amsterdam, North-Holland, 1992, pp. 215-
240.

16. Huff, C.C., "Elements of a Realistic CASE Tool Adoption Budget", Communications of
the ACM, 35, 4, 1992, pp. 45-53.

17. Humphrey, W.S., Managing the Software Process, Addison-Wesley, Reading, MA, 1989.

26

18. IEEE Glossary of Software Engineering Terminology. IEEE Std. 720, IEEE, New York,
1983.

19. Iivari, J., "Hierarchical Spiral Model for Information System and Software Develop-
ment", Information and Software Technology, 32, 6, 1990, pp.386-399.

20. Iivari, J., "Object-oriented Design of Information Systems: The design process", Object
Oriented Approach in Information Systems, (Eds. F. Van Assche, B. Moulin and C. Rol-
land), Elsevier Science Publishers, North-Holland, IFIP, 199 l, pp. 61-87.

21. Hall, T.J., "The quality manual-- The applications of BS5750 ISO9001 EN29001". John
Wiley and Sons, Chichester, 1992.

22. Jarke, M., "Strategies for Integrating CASE Environments", IEEE Software, March 1992,
pp. 54-61.

23. Ross Jeffery, D., "Software Engineering Productivity Models for Management Informa-
tion Systems Development", Critical Issues in Information Systems Research (Eds.
Boland R.J. jr. and Hirschheim R. A.), John Wiley and Sons Ltd. 1987, pp. 113-134.

24. Kaiser, G.E., Feiler, P.H., Popovich, S.S., "Intelligence Assistant for Software Develop-
ment and Maintenance", IEEE Software, May 1988, pp.40-49.

25. Kumar, K., Welke, R.J., "Methodology EngineeringR: A proposal for Situation-specific
Methodology Engineering", Challenges and Strategies for Research in Systems Devel-
opment, (Eds. W.W Cotterman. and J.A. Senn), John Wiley and Sons Ltd., 1992, pp.
257- 269.

26. Lyytinen, K., "Different Perspectives on Information Systems: Problems and Solutions",
ACM Computing Surveys, 19, 1, March 1987, pp. 5-46.

27. Marttiin, P., "Methodology Engineering in CASE Shells: Design Issues and Current
Practice", Licentiate Thesis, Computer Science and Information Systems Reports,
Technical Reports TR-4, University of Jyv~iskyl~i, 1994.

28. Marttiin, P., Lyytinen, K., Rossi, M., Smolander, K, Tahvanainen, V.-P., Tolvanew J.-P,
"Modeling requirements for future CASE: issues and implementation considerations",
Proceedings of the 13th ICIS, (Eds. J.I. DeGross, J.D. Becker and J.J. Elam), Dallas,
USA, 1992, pp. 9-20.

29. Marttiin, P., Rossi, M., Tahvanainen, V.-P., Lyytinen, K., "A comparative review of
CASE Shells: a preliminary framework and research outcomes", Information and Man-
agement, 25, 1993, pp. 11-31.

30. Oinas-Kukkonen, H., "Intermediary hypertext systems in CASE environments", Licenti-
ate thesis, Research papers SERIES A 16, Department of Information Processing Science,
University of Oulu, 1993.

31. Osterweil, L.J., "Software processes are software too", Procs. of the 9th International
Conference on Software Engineering, Monterey, California, 1987, pp. 2-13.

32. Olle, T.W., Sol, H.G., Verrijn-Stuart, A.A. (Eds.), Information Systems Design Method-
ologies: A comparative review, North-Holland, 1982.

33. Persson, U., and Wangler, B., "A Specification of Requirements for an Advanced Infor-
mation Systems Development Tool.", Procs. of the workshop on the Next Generation of
CASE Tools, (Eds. S. Brinkkemper and G. Wijers), SERC, Netherlands, 1990.

34. Rai, A., Howard, G.S., "An Organizational Context for CASE Innovation", Information
Resources Management Journal, 6, 3, 1993, pp. 21-35.

35. Rittel, H.W.J., Webber, M.M., "Planning Problems are Wicked Problems", Policy Sci-
ences, 4, 1973, 155-169.

27

36. Rask, R., Laamanen, P., Lyytinen, K., "A comparison of Abrecht's Function Points and
Symons' Mark II Metrics", Proceedings of the 13th ICIS, (Eds. DeGross J.l., Becker J.D.
and Elam J.J.), Dallas, USA, 1992, pp. 207-221.

37. Simon, H., "The Structure of Ill-structured Problems", Artificial Intelligence, 4, 1973, pp.
181-200.

38. van Slooten, K., Brinkkemper, B., "A Method Engineering Approach to Information
Systems Development", Information Systems Development Process, (Eds. N. Prakash,
C.Rolland, B. Pernici), Elsevier Science Publishers, North-Holland, 1993, pp. 167-186.

39. Smolander, K., "OPRR - A Model for Methodology Modeling", Next Generation of
CASE Tools, (Eds. K. Lyytinen and V.-P. Tahvanainen), Studies in Computer and Com-
munication Systems, lOS press, 1992, pp. 224-239.

40. Smolander, K., "GOPRR - a proposal for a meta level model", MetaPHOR internal tech-
nical document, Dept. of Computer Science and Information Systems, University of Jy-
v~iskyl~i, 1993.

41. Smolander, K., Lyytinen, K., Tahvanainen, V.-P., Marttiin P., "MetaEdit - A flexible
graphical environment for methodology modelling", Advanced Information Systems En-
gineering, (Eds. R. Andersen, J. Bubenko and A. Sr LNCS #498, Springer-Ver-
lag, 1991, pp. 168-193.

42. Sol, H.G., "A Feature Analysis of Information Systems Design Methodologies: Methodo-
logical Considerations", Information Systems Design Methodologies: A Feature Analysis,
(Eds. T. W. Olle, H. G. Sol and C. J. Tully), Elsevier Science Publishers, North-Holland,
Amsterdam, 1983.

43. SCrensen, C., Introducing CASE Tools into Software Organizations, Ph.D. Thesis, Dept.
of Mathematics and Computer Science, Institute of Electronic Systems, Aalborg Uni-
versity, Denmark, 1993.

44. Sorenson, P. G., Tremblay, J-P., McAllister, A. J., "The Metaview system for many
specification environments." IEEE Software, 30, 3, 1988, pp. 30-38.

45. Turner, J.A., "Understanding the Elements of System Design", Critical Issues in Infor-
mation Systems Research (Eds. R.J. Boland jr. and R. A. Hirschheim), John Wiley and
Sons Ltd. 1987, pp. 97-112.

46. Verhoef, T.F., "Structuring Yourdon's Modem Structured Analysis", Proceedings of the
Second Workshop on The Next Generations of CASE Tools, (Eds. V.-P. Tahvanainen and
K. Lyytinen), Technical Reports TR- 1, Jyv~iskyl~i, 1991.

47. Vessey, I., Jarvenpaa, S., Tractinsky, N., "Evaluation of Vendor Products: CASE Tools
as Methodology Companions", Communications of the ACM, 35, 4, 1992, pp. 90-105.

48. Welke, R.J., "The CASE Repository: More Than Another Database Application", Meta
Systems Ltd., Ann Arbor, Michigan, 1988.

49. Wijers, G., van Dort, H., "Experiences with the use of CASE tools in the Netherlands",
Advanced Information Systems Engineering, (Eds. Steinholz, Sr Bergman),
LNCS#436, Springer-Verlag, 1990, pp. 5-20.

50. Wijers, G., Modeling Support in Information Systems Development, Ph.D. Thesis, Thesis
publishers, Amsterdam, 1991.

51. Yourdon, E., Modern Structured Analysis, Yourdon Press, 1989.

