
A C o l l a b o r a t i v e P r o c e s s - C e n t e r e d
E n v i r o n m e n t K e r n e l

Jacques Lonchamp

C.R.I.Nancy - Campus scientifique, BP n. 239,
54506 Vandoeuvre les Nancy Cedex, France (jloncham@loria.fr)

Abstract . The Collaborative Process-Centered Environment project
(CPCE) aims at applying process modeling approach and technology to a
given class of collaborative applications. The challenge is to deal with fine
grain entities and interactions, and to provide the high level of adaptability
and controlled flexibility required by real world collaborative situations. The
concept of a collaborative meta process model which drives the evolution of
the executing collaborative process model, and the underlying object-oriented
technology axe two important aspects discussed in the paper.

1 Introduction

Most software systems only support interaction between a single user and a com-
puter. Even so-called 'multi-user' operating systems and applications basically pro-
vide support for isolated work, hiding the activities of other users. In contrast, the
general aim of collaborative computing is to suppress the 'protective walls' between
users [29], to encourage collaboration, and to directly support and assist the work
of groups. Over the past ten years, collaborative computing has established itself as
a research field in its own right. Collaborative computing is a complex area because
many different shared work styles exist. A fist classification is related to the degree of
engagement of participants: for instance, 'division of labour', where several compo-
nent tasks address separately sub-goals of a common goal, or 'focussed collaboration',
where people work closely together. Another taxonomy is the time/location matrix:
applications are either local (same place) or distributed (different places) and their
interactions occur synchronously (same time) or asynchronously (different times).
Other important parameters are the degree of 'repeatability' and 'structuredness'
of the collaboration process: from completely unstructured and unpredictable inter-
actions (e.g. a real-time collaborative free-hand sketching tool [11]) to collaborative
routines which can be 'programmed' [25].

Early collaborative systems, for instance in the office automation field, have failed
because they implicitly assumed a rigid procedural conception of work which is inad-
equate for representing many real world cooperative work arrangements [30]. They
were developed using available computer techniques, especially the dominant pro-
cedural programming style. More flexible and customizable approaches have been
recently proposed, for instance in the field of software process modeling [14, 15]. Ex-
ecutable software process models are interpreted within so-called 'process-centered
environments' (PCEs), to provide control, coordination, assistance, and guidance
to the developers. Automation is no longer the central focus, but just one possible

29

effect of process model interpretation. Flexible programming paradigms (logic, func-
tional, object oriented, rule-based, hybrids) are extensively used [7]. However, most
PCEs are devoted to large grain entities management (e.g. design documents, code
files), finer granularity being managed by classical tools integrated into the envi-
ronments. Therefore, PCEs often restrict cooperation to consistent sharing of large
grain entities between long transactions. Other styles of collaboration are generally
not considered.

The project described in this paper, CPCE (standing for 'Collaborative Process-
Centered Environment'), aims at applying process modeling approach and technology
to a given class of collaborative applications. The challenge is to deal with fine grain
entities and interactions, and to provide the high level of adaptability and flexibil-
ity required by real world collaborative situations. Not all collaborative applications
can take advantage of a process modeling orientation. Asynchronous applications are
more likely to be process model driven. They are long term activities, requiring var-
ious policies enforcement, and sophisticated assistance: for instance, to 'resynchro-
nize' people working intermittently to the current state of the work through process
history and decision rationale. In contrast, synchronous applications are generally
short lived, and rely more on spontaneous reactions of the participants sharing a
common view of the ongoing work, than on predefined policies and processes en-
forcement. CPCE project aims at supporting asynchronous 'focussed' collaborative
applications, having a sufficient amount of structure (see section 2). The environ-
ment kernel prototype can be customized for applications belonging to this class
(sections 3 to 6 discuss the requirements, design, and implementation).

2 A p p l i c a t i o n D o m a i n

In the class of applications currently supported by CPCE, several participants (lo-
cal or remote), bring their ideas and opinions in order to build consensually a given
artifact. They participate to the work when they wish and freely join and quit. The
overall process is long lived, but the elementary activities to obtain consensus or
to evolve a specific aspect of the artifact are short lived. The main emphasis is on
consensus [23]: most of the decisions about the artifact being designed must be con-
sensually taken all along the artifact construction through issue resolution processes.
Issues are solved, either individually by their author or, more often, collectively by
the participants through positions (i.e. statements or assertions which resolve the
issue), arguments (which either support or object a position), and a resolution proto-
col implying the selection of a position (e.g. unanimous choice, choice by a majority
of participants). In general, all kinds of issue cannot be raised from the beginning:
a process including several steps is defined, every step encompassing a subset of the
issue type set. Often, the termination of a step is itself an issue to be collectively
solved. Parallelism between issues of the same step, and between steps is possible.
An issue resolution contributes to (or triggers) a subsequent step which generally
evolve the artifact, raising new issues. Every participant plays a given role: a role
defines which issues he can raise, which deliberations he can participate in (by giving
positions and arguments), which steps he can invokd.

In this paper, the customized environment which exemplifies the approach, sup-
ports the collaborative design of a document. Main ideas about the process are taken

30

from Cognoter [31]. The document design process encompasses several phases.
A b r a i n - s t o r m i n g phase . Participants propose ideas. These ideas are made visible
to all participants as soon as they are proposed. As usually during brain-storming,
discussion and deletion of ideas by other participants are forbidden during this ini-
tial phase "to not interfere with or inhibit the flow of ideas" [31]. Adding a new idea
is an issue solved individuMly by its author, who must provide an argument as the
rationale for his proposal.
A s t r u c t u r i n g phase . Participants propose directed links asserting that an idea
should come before another in the document. New ideas can also be proposed dur-
ing this second phase. The process for proposing links is similar to the process for
proposing ideas.
A n eva lua t i on phase . Participants evaluate collectively the network of ideas re-
sulting from the two first phases. They eliminate peripheral and irrelevant elements,
and fill in missing elements. All issues are solved consensually (e.g. with a majority
protocol).
A c l u s t e r i n g p r o p o s a l phase. One participant proposes a set of clusters, and for
every cluster, the set of ideas it encompasses. The system computes intra and inter
cluster links, on the basis of existing links between ideas.
A c lu s t e r i ng eva lua t ion phase. Participants evaluate collectively the proposed
clustering. They can evolve it through consensual issue resolutions (e.g. with a ma-
jority protocol).
Starting the 'Cognoter-like' design process for a given topic, and finishing every
process phase are other collectively solved issues (e.g. with an unanimity protocol).

CPCE team is currently studying a second application in the field of technical
review/inspection of software development products [34]. This second application
is more complex because it requires various shared work styles: parallel isolated
work, for the individual preparation phase, followed by the merging of all individual
findings into a common workspace, for the collaborative phase of the inspection.
The customized environment will be functionally similar to some recent dedicated
environments [12, 18, 22], with a review process not hard coded in the tool but
explicitly modeled and tailorable to specific needs and contexts.

3 M a i n R e q u i r e m e n t s a n d D e s i g n D e c i s i o n s

The basic 'process model orientation' of the project means that a set of classical re-
quirements has to be satisfied by the supporting environment, such as: model-based
control of user initiatives, model-based automation of some parts of the process,
model-based assistance and guidance for users. These aspects have been often dis-
cussed for process-centered software engineering environments. For instance, within
the ALF project, initiated by the same research team as CPCE [9]. More specific
requirements under consideration here are fine grain interaction modeling, adapt-
ability, and flexibility.

Fine grain interactions shall be explicitly modeled besides classical process en-
tities such as tasks, artifacts, roles, actors, and their relationships. In the target
application domain, it means entities for the description of r decisions. Is-
sues, positions, and arguments are frequently used for modeling such deliberations

3]

[16]. More generally, a 'decision-oriented' process modeling is appropriate [13, 17]. A
detailed description of the internal structure and semantics of the artifact, which is
the topic of most of the deliberations, is also required. CPCE generic model, which is
an extension of Potts' model for representing design methods [26], will be described
in the next section. Process models and process histories include many objects of
various granularities. As persistency of models, histories and rationale is mandatory
to ensure model interpretation and retrospective assistance, object oriented reposi-
tories are good candidates for founding the supporting environment.

Adaptability has been extensively studied for process-centered software engineer-
ing environments. A software process model is built by customizing a generic model,
and instantiating it before its execution [6]. The large variety of asynchronous col-
laborative tasks, sharing an important set of common features, requires a similar
approach: the supporting environment shall be a kernel which can interpret every
process model customizing a given generic model. The specialization concept, with
inheritance for both statical and dynamical aspects, reinforce the interest for an ob-
ject orientation: generic entity types can capture the common structure and behavior
associated to all their instances. For example, what happens when a user gives an
argument, whatever its type is. The specific behavior of every customized type is
specified at the sub-type level.

Statical customization is not sufficient. Dynamical change to the running process
model has been recognized as a major issue by the process modeling community
[10]. For collaborative environments two main reasons can be stated: first, groups
often evolve and adapt their way of working to their evolutive contexts. Secondly,
describing in advance all aspects of a given model is difficult, especially for argumen-
tative entity types such as issues, positions, and arguments. CPCE distinguishes two
aspects: (1) the technical aspect of implementing dynamic evolution of the running
model, (2) the organizational and decisional aspects of managing evolutive environ-
ments. Aspect (2) is one of the main originality of CPCE. The requirement is that
the dynamic evolution of a collaborative environment shall be controlled, assisted,
and consensual. CPCE solution is to drive process model evolution thanks to an-
other dedicated collaborative process model, called the 'meta-process model'. To
avoid meta circularity, changing the meta process model is not required to be itse.lf
model driven: the meta process model is statically customized for every application
and cannot evolve on the fly. The meta process model is obtained by customizing
the same generic model which is used to produce the process model. Both processes
are very similar, and participants work in a similar consensual way either to evolve
the artifact or to evolve the model which defines how they work. This mirrors usual
meetings, where people discuss in the same way of the job and of its organization
(see Fig.l). It is worth noting that effective meta process modeling implies fine grain
modeling to be able to describe and control the evolution of every fine grained pro-
cess model component. For aspect (1), the 'full object' orientation of languages such
as SmalltMk [4], where all entities, including classes and methods, are dynamically
modifiable objects, in conjunction with the interpretative, reflective, and dynamic
nature of these languages, make more easy the implementation of the meta level.

Therefore, a persistent object repository extending such a 'full object' language-
based environment, and supporting multi-user concurrent access (local or remote),
constitutes the core of the CPCE prototype. The object base is used to store the

32

Fig. 1. CPCE logical architecture

artifact, the customized process model, the customized meta process model, the pro-
cess history and rationale, and the meta process history and rationale. Models are
expressed at the schema level, histories and rationales are expressed at the instance
level. Users invoke class methods (i.e. methods of metaclasses), either to work (mod-
ify the artifact and create new process history instances), or to evolve the process
model (modify the process classes and create new meta process history instances).

Dynamic schema evolution, which support dynamic model evolution, has been
studied through different perspectives: taxonomy of meaningful changes, semantics
of schema changes, and cost. 'Soft changes', which do not require database updates,
have been distinguished from more costly 'hard changes' [3, 19]. Here, the meta
process specifies which dynamic schema evolutions (i.e. dynamic process model evo-
lutions) are supported and how, on the basis of their significance for the process
being modeled, and their practical feasibility in a collaborative setting. Low cost
changes are those which can be defined by manipulating menus and typing values,
without complex programming. In contrast, changing the code of a method is a
costly soft change. The meta process should also enforces integrity rules of the meta
model. For instance, adding a new issue class requires at least adding one position
class responding to it, and one supporting or objecting argument class.

4 P r o c e s s M o d e l i n g in C P C E

Every customized process model is built by refining the set of predefined generic
classes and methods, belonging to the generic model.

From the statical point of view, the generic model depicted in Fig.2 is an exten-
sion of Potts' model [26]. New generic classes with regard to Potts' model are written
in italics and new link classes are depicted with bold lines. The 'Artifact' class is
the root of an application specific hierarchy with application specific semantic links.
Every other generic class (e.g. 'Argument') is specialized into generic process model
classes ('ProcessArgument') and generic meta process model classes ('MetaArgu-
ment'). Then, each of them is further customized according to the needs of a given
application. Links between specialized classes and attributes of specialized classes
express specific static aspects of the customized model. The set of attributes is richer
in the prescriptive model of CPCE than in the descriptive model of Potts. There are
both class variables for expressing various model properties (e.g. 'IssueType' specify-
ing the resolution protocol used to solve issues of a given type) and for implementing
the relationships of Fig.2 (e.g. argument class X 'ToSupport' position class Y), and

33

~ m p o n e n t .

ToCreate/ToBeCreatedBy

ToModify/ToBeModifledBy
Step

T o B e P e r f o r m e d B y

i s e m a n t i c l inks i

. i

spec i f ic

ToCit~
ToBeCitedBy

ToSupporff

Issue

T o R e s p o n d T o / ~ / [Torrigger/
, ~ . , n ~-a~.. \ T o B e T r i g g e r e d B y

Position

ToObject/ToBeObJectedBy
LEGEND

Argumen t Argument
/ I x / i x

,,/ I \ /t' t x linkdasses:
~ (link name / reverse link name) I xx i I

spec i f i c specialization:
c l a s s e s

Fig. 2. The generic process model

etc.

instance variables for expressing history values (e.g. the text of argument x) and
relationships (e.g. argument instance x 'hasSupported' position instance y).

From the dynamical point of view, class methods of generic classes embody the
basic behavior of all collaborative environments. They are extended within cus-
tomized sub-classes. Class variables are extensively used to describe model properties
in a declarative way. Many dynamic changes to the customized running model are
made just by changing the value of such variables. Class methods of generic classes
are written to cope with all the anticipated values of these variables. For instance,
the 'SolveIssue' class method of every customized issue class uses a 'SolveIssueFixed-
Part ' class method inherited from the generic 'Issue' class, which can cope with all
the anticipated consensus protocols. For every customized issue class, a class variable
'IssueType' gives the kind of protocol which is used to solve it. Therefore, one can
change the protocol, under the control of the meta process model, just by changing
the value of 'IssueType'. It's a good example of 'low cost' change. Conversely, creat-
ing a new unanticipated resolution method is much more costly: a non trivial piece
of code has to be included within the kernel part.

34

5 A C u s t o m i z e d E n v i r o n m e n t D e s c r i p t i o n

This section describes the simple customized environment devoted to the collabora-
tive design of a document and gives a short scenario showing both process and meta
process activities.

When a participant connects to the environment, he can interact through a menu
driven and graphical interface. The menu driven part allows participants to take ini-
tiatives and to obtain various assistance and guidance information either related to
the process or to the meta process. Various model-based prescriptions are enforced.
Ra i se a (me ta -) i s sue . The user chooses a given type of issue among the predefined
set of customized issue types (e.g. 'AddIdeaIssue', 'EndBrainstormingPhaseIssue' for
the process, 'AddArgumentTypeIssue', 'SuppressTriggerIssue' for the meta process)
and relates the new issue to a given ongoing step. He provides the text of the issue
to be solved. In fact, dynamically built menus only show permitted choices in accor-
dance to the process state and the user's role.
G ive a (m e t a -) p o s i t i o n . The user chooses a given type of position among the
predefined set of customized position types (e.g. 'Stop' or 'Continue' for 'EndBrain-
stormingPhaseIssue') and relates the new position to a given ongoing issue. Only
permitted choices are displayed. Currently, the kernel supports a simple model of
consensus, with mutually exclusive position types, and one or several argument types
supporting every position type. For individually solved issues with a single related
position class, the position is automatically given by the system.
G i v e / R e m o v e a (m e t a -) a r g u m e n t . The user chooses a given type of argument
among the predefined set of customized argument types (e.g. 'InsufficientDuration'
and 'InsufficientResults' for 'Continue' position type) and relates the new argument
to a given position of an ongoing issue. He can also give an explanation text. Only
permitted choices are displayed. In contrast with mathematical theories of consensus
described in [23], interactions between participants are possible: a participant may
give several consistent arguments for the same position in order to react to other
participants' arguments. He can also remove his own arguments, if he changes his
mind.
Solve a (me ta -) i s sue . Every customized issue type is characterized by a resolu-
tion protocol. If the issue cannot be solved, i.e. no position can be selected by the
protocol according to the process state, the request is rejected. The current kernel
provides three protocols: individual resolution, collective unanimous resolution, col-
lective resolution by a majority of participants. Others could be supported, such as
resolution by the author of the issue after obtaining an authorization.
P e r f o r m a (m e t a -) s t e p . Within every process model there are two kinds of steps:
process phases (e.g. 'BrainstormingPhase', 'StructuringPhase') defining which issue
types can be raised at which moment, and activity steps (e.g. 'CreateDocument',
'AddIdea', 'DeleteLink') evolving the artifact. Apart from the initial step, every
step is either automatically triggered or made ready for invocation by an issue res-
olution. The user interface is used in the latter case, when a participant takes the
initiative to perform a step.
Q u e r y a b o u t ongo ing (me ta -) s t ep s and (meta-) i ssues .
D i sp lay h i s to r i ca l data : the set of existing (metaT)steps , (meta-)issues, (meta-)
positions, (meta-)arguments.

35

O b t a i n g u i d a n c e in fo rma t ion : about 'raisable' (meta-)issues and 'performable'
(meta-) steps in the current process state and according to the participant's role.

The following snapshots exemplify the interleaving of process and meta process
activities. As these activities take place asynchronously on severM user workstations
we show their effects mainly through graphical representations of process and meta
process histories. In Fig.3 the 'Step view model' window gives the overall organiza-
tion of the document design process with a sequence of phases. It is worth noting
that non sequential structures are also possible. Links between phases in the graph
are just abstractions of links between some positions inside the phases and subse-
quent phases (steps) they 'ContributesTo' or 'Trigger' (see Fig2). The 'Step graph'
window details the 'BrainstormingPhase' model when participants individually pro-
pose their ideas for the document. The 'Issue view model' window gives the position
and the argument classes related to the 'AddIdeaIssue' (there is only one position
type because this kind of issue is individually solved).

The purpose of the scenario is to exemplify the dynamical and consensual creation
of a second argument class ('RelevantIdea') supporting 'AddIdeaPosition'. Extend-
ing argumentative capabilities is expected to be a rather frequent kind of dynamic
change. The 'Step view history' window displays the current history of the process:
two ideas have been proposed. 'Issue view history' windows detail the corresponding
individual issue resolutions. 'Idea graph' window displays the resulting document
design state.

In Fig.4 we have similar windows showing the meta process model with only one
phase ('ChangeProcessModel') and several meta issue types within it for evolving
the process model. The 'AddArgumentTypeIssue' model is detailed in the 'Meta
issue view model' window. The meta process history shows the dynamical creation
of the new meta argument type. The meta issue has been solved consensually by
the two model performers each giving a 'UsefulType' meta argument. The 'inspect'
windows displays the textual definition of the meta issue. In the TEX T field, the
three parameters for creating the argument class appear. No other data is needed.
This exemplifies what we have called a 'low cost' unanticipated change.

Fig.5 demonstrates the use of this new consensually agreed argument class for
creating, through the menu based interface of one participant, the third idea in
the document. The central window shows the interaction trace with an example of
a system initiative (trigger). The pop-up menus for process execution and process
assistance are pinned up on the low part of the picture. The graphical representation
of the new 'AddIdeaIssue' resolution and the new document design state are depicted
on the right part of the screen.

6 S o m e I m p l e m e n t a t i o n I s s u e s

CPCE prototype is built on top of the GemStone multi-user object-oriented database
management system which offer a distributed client-server architecture[4].

For the control aspect, both controls related to the semantics of generic classes,
which are coded in their class methods, and specific controls, through the test of
predefined class variables of the customized sub-classes, are supported. For instance,
every customized step class has a 'Precond' class variable with a conditional block

"AddldeaJssue
~-t'Term

lnateB~nstorm
ingl

T:Cc.'.t~.~:.%
T: l'StructudngPhasel

ToBe~qe~-dedBy
~..~'B ra~st o rmlngTemlnate 1,~_______

~
.
To Ra[J~mr-cO~ep

T
o
g
e
~
e
d
g
y

['B~dnst orralngPhase~_~.
~'~'Cont,nueBr~dnstorm

,ng 1

T
oR

ais~ ~

S
tep

view

h

isto
ry

'Cre~eOocument#l

!: :.'-'C ~:'--:: ~
"StarICognoter#l

...... ~
:t cpT:!w

I
'

~~'Elrainst
o

r
m

l
n

g
P

h
a

s
e

_
#

~

;*.: pT,!;,;crc~

Issue view
 hlsfory~:~ll~] Issue view

 histo~

F
i

~
m

o P-..

,.-
]

�9

'"
r.

r
L'l

at
~

�9

"'"
 $

se
OO

~l
�9

"'"

 ie
po

t~
 ss

eo
o4

d

[]

[]

iu
~m

uc
ul

N
J3

IP

..o
lq

de
Jo

 [
~

um
q:

)u
ol[

 :H
3S

IV
~;

aS

~
:ss

ou
on

blu
n U

O~
ltS

Oo
~e

plp
pu

 :p
od

dn
so

J.
eO

pll
ue

^e
le ~

 :B
lU

e N
 :J

.X
:tl

' J
u~

17
61

76

I

~1
62

17
6

Le
en

ss
le

d~
llu

ew
nw

/[J
O

lS
lq

 ~
1^

en

ss
l

B
le

w

L J
ad

/,.L
;U

SL
Un

6J
 Vp

pv
,

L e
U

O
lll

S
O

da
d(

/]
ua

uz
n6

Jv
pP

~
L #

en
ss

la
d~

/l
ue

~u
n6

Ju

~O
tS

lq
/~

oi
A

de
|s

 B
lo

w

i[
]

[u
o!

ps
od

Ja
BB

Ul
Pp

v)u
oO

.]"
~-

.._

,
-

^B
pa

pu
o,

,s
aa

~~

,
~

~
-

UO

ltlS
 o d

J a
t~B

u3
J)p

V.J
 ~
-

~l
ld

/~
ltU

eu
in

6J
vp

pv
,;

=i
:~

'~
;:;

:::
3:

:
~u

Ot
llS

Od
ed

~ll
ue

um
6J

Vp
pu

,C
~.

'J .
' :.

;.
~U

O
,V

S
O

o~
Lq

lO
S

~e
H

pp
v.

~

~e
ns

sla
d.

~l
lu

e=
n~

Vp
pv

, I

le
po

'"
/,~

el
^

on
ss

j B
le

w
 j

qc
ku

O
 d

ai
s

B
lo

w

~l
ep

~m
~o

Ja
o~

J.
~.

 I

[]

le
po

m
 ~

el
^

de
ls

 B
le

w

CO

-.4

r 03

m
~

Collaborative Process-Centered E
nvironm

ent

�9 (. Process Action v~
C

 M
ete Process Action ~'~)

~C
raphlcal Envl

nt ~)

Process Guldance,,,v.)
(Me~ Pr~ess Guld ~

~Connectlon Management v~
(qUIT)

FORMAT: Idea:
<anldea> R

ationale:
<aR

attonale>
"Idea:

process m
odeling language R

ationale:
describes process m

odels"
s

AddIdeaIssue issue ts ongoing
The unique position has been given autom

attca]]y
C

em
ntted: AddZdeaPositton position is recorded

R
elevantIdea C

iveArgum
entTo: ~

text:
"is a relevant concept"

Com
nJted: R

elevantIdea argm
~ent is recorded

AddIdealssue Solve:
"M

dIdealssueH
3"

From
: "Brainstorm

ingPhase#l"
C

~nited:
M

dldealssueH
3 has been so]red

and AddIdea#3 has been triggered successfully

J~
]l~

Issue view

 m
odel T~y'Addldealssue

~dd~deaPos~ont

I,~po.~.0eat

I C~ Process Action [E~]
~] Process Guidance ,~'

(Pe,~m
 st~p

~
I

(set of steps
)

Raise Issue
I

Set O
f Issues

G
ive Position

I
Set O

f Positions
G

ive Argum
ent

I
Set O

f Argum
ents

=

Rem
ove Argum

ent
I

O
ngoing Steps

Solve Issue
l

O
ngoing Issues

Q
uit

Executable Steps
Ralsab(e Issues
Q

uit

~] Issue view
 hl6tory

l',dd,de=~0,,i,on~

Idea graph

I'process m
odeling language:}

PJI

.o

"0

<

39

(i.e. a parameterized logical expression) as its value. When a 'Perform' message is
sent, the method is executed only if the 'Preeond' block is evMuated to true.

For the automation aspect, only one kind of process-related 'trigger' is currently
implemented. Methods are used to implement triggers [20]. When an issue is solved
through a position selection, the generic 'SolveIssueFixedPart' class method tests if
a 'ToTrigger' link exists between the customized issue class and a step class. If a link
exists, a step of the corresponding class is automatically performed by the system.
This implements a simple event(-condition)-action rule. Different events could be
considered for other trigger types (e.g. raising automatically a given issue at every
beginning of a given step).

For the assistance aspect, the main focus is on 'retrospective assistance' rely-
ing on the history and design rationale. Guidance based on the current process
state and user's role is also available (see 'raisable issues', and 'performable steps'
queries). 'Prospective assistance', for instance through planning and impact analysis
capabilities, is not currently considered.

For the evolution aspect, dynamic 'hard changes' rely mainly on class versioning
and instances migration as provided by GemStone.

In the document design application, all activities, such as participating to issue
resolutions or modifying a given aspect of the document, are short lived. These ac-
tivities can proceed in parallel and their results are committed into the repository
when they finish if no read/write or write/write conflict has occurred between them.
In the case of a conflict, a rollback is performed. Obviously this optimistic scheme
is not sufficient for all applications. In the next future we plan to enrich the kernel
with other schemes. In the technical review application, a new requirement for the
kernel is to support parallel isolated work before the merging of all individual con-
tributions into a common workspace for the collaborative phase of the inspection.
Sub-schema and sub-database mechanisms are required. Other working modes with
semi-isolated work and conflicts resolution should Mso be supported. It implies to
mix asynchronous and synchronous work, for instance for negotiating how conflicts
have to be solved. We plan to rely mainly on user consensus to solve conflicts, and
to assist them by tracking all dependencies and commitments resulting from their
interactions.

The current prototype has shown that simple programming techniques were avail-
able for implementing basic control, automation, assistance, evolution, and multi-
user support. They will be used more extensively and enhanced in next versions of
CPCE.

7 R e l a t e d W o r k s

Most of process-centered software engineering environment prototypes provide to a
certain extent control, assistance, and automation. For instance, the ALF project [9]
has put a strong emphasis on assistance and guidance for its users, mainly through
planning techniques Object oriented process model formalisms have been studied,
among many other paradigms. The IPSE 2.5 project [33] is a well known example of
an object oriented process modeling approach. Model customization through class
specialization is one of its basic mechanism [28].

40

Groupware tools for collaborative document design [24, 2] and for collaborative
technical review [18, 22] are available. Their processes are hard coded into the tools.
Other less specialized groupware tools are partially process model oriented: the Con-
versation Builder (CB) system [21] is a representative example of such customizable
active groupware tools. CB protocols are roughly similar to process model fragments.
No concept can be related to the meta process level. A customized environment for
technical review built on top of CB has been developed [12].

The general concept of meta process, is discussed in several papers (' the process
of development and evolution of a process model ' [6]). A few projects have started
to study issues for implementing model driven meta process support: reflective high
level Petri nets in [1], schema updating controlled by meta-level operations and
incremental replanning of task networks when task types dynamically evolve in [8],
model construction from a single base role to a set of dedicated roles driven by a
meta process model written in a reflective process modeling language in [32]. But
modeling and implementation issues for assisted consensual process model evolutions
were unexplored so far.

F~ture work will improve incrementally the kernel. The second version is un-
der development and a customized environment will be devoted to collaborative
review/inspection. The main effort will be to make concrete ideas of 'open' (or
'reflective') object-oriented implementations as described in [27]. Implementation
aspects that could evolve will be clearly localized ('reified') within specific distinct
meta-objects, with their access and change under the control of the meta-process,
playing the role of an active meta-interface [27]. 1

R e f e r e n c e s

1. S. Bandinelli, A. Fuggetta: Computational Reflection in Software Process modeling: the
SLANG Approach. Proc. 15th ICSE, Baltimore, 144-154, 1993, IEEE Press.

2. S. Baydere, T. Casey, S. Chuang, M. Handley, N. Ismail, A. Sasse: Multimedia Con-
ferencing as a Tool for Collaborative Writing-A Case Study. Research Note RN/91/77,
University College London, 1991.

3. J. Banerjee, W. Kim, H.J. Kim, H.F. Korth: Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, San Francisco, 1987.

4. R. Bretl, D. Maier, A. Otis, J. Perrey, B. Schuchardt, J.Stein, E.H. Williams, M.
Williams: The GemStone Data Management System. in W. Kim, F.H. Lochovsky, ed.,
Object-Oriented Concepts, Databases and Applications, 283-308, Addison-Wesley, 1989.

5. J. Conklin, M.L. Begeman: glBIS-A Hypertext Tool for Exploratory Policy Discussion.
ACM Trans. on Office Inf. Systems, 4, 303-331, 1988.

6. R. Conradi, C. Fernstrom, A. Fuggetta, R. Snowdon: Towards a Reference Framework
for Process Concepts. Proc. 2nd European Workshop on Software Process Technology,
Trondheim, Norway, LNCS 635, Springer-Verlag, 1992.

7. PROMOTER: Software Process Modeling and Technology. Research Studies Press, 1994.
8. R. Conradi, M.L. Jaccheri: Customization and Evolution of Process Models in EPOS.

Inform. System Development Process, IFIP Transact. A-30, Elsevier Pub., 3-20, 1993.

1 I would like to acknowledge all the members of the Software Engineering Team in CRIN
and all the partners of 'PROMOTER' ESPRIT Working Group for fruitful discussions,
and Coumba Diouf Ndiaye for participating to the prototype development.

4]

9. G. Canals, N. Boudjlida, J.C. Derniame, C. Godart, J. Lonchamp: ALF, a Framework
for Building Process-Centered Software Engineering Environments, in [7].

10. M. Dowson: Software Process Themes and Issues. in [14].
11. S. Greenberg, R. Bohnet: GroupSketch-A multi-user Sketchpad for Geographically Dis-

tributed Small Groups. Proc. Graphics Interface'91, Calgary, Alberta, 207-215, 1991.
12. J. Gintell, M. Houde, J. Kruszelnicki, R. McKenney, G. Memmi: Scutiny-A Collabora-

tive Inspection and review System. Proc. CASE'93, Singapore, 1993.
13. U. Hahn, M. Jarke, T. Rose: Teamwork Support in a Knowledge-Based Information

Systems Environment. IEEE Trans. on Software Engineering, Vol 17, 5, 467-481, 1991.
14. Proc. of 2nd Int. Conf. on The Software Process, Berlin, Germany, IEEE Press, 1993.
15. Proc. of First Int. Conf. on The Software Process, Redondo Beach, IEEE Press, 1991.
16. A. Jarczyk, P. Loftier, F. Shipman: Design Rationale for Software Engineering-A Sur-

vey. Proc. 25th Hawaii Int. Conf. on System Sciences, 577-586, 1992.
17. M. Jarke, K. Pohl: Vision Driven System Engineering. Information Systems Develop-

ment Process, IFIP Transact. A-30, Elsevier Pub., 3-20, 1993.
18. P. Johnson, D. Tjahjono: Improving Software Quality through Computer Supported

Collaborative Review. Proc. Third European Conference on CSCW, Milan, Italy, 1993.
19. W. Kim: Introduction to Object-Oriented Databases. Computer Systems Series, The

MIT Press, 1990.
20. W. Kim, Y.J. Lee, J. Seo: A Framework for Supporting Triggers in Object-oriented

Database Systems. Int. Journal of Intelligent and Cooperative Information Systems, 1,
1, 127-143, 1992.

21. S. Kaplan, W.J. Tolone, D.P. Bogia, C. Bignoli: Flexible, Active support for Collabo-
rative Work with Conversation Builder. Proc. CSCW'92, Toronto, 1992, ACM Press.

22. V. Mashayekhi, J. Drake, W. Tsai, J. Riedl: Distributed, Collaborative Software In-
spection. IEEE Software, 66-75, 9/1993.

23. K. Ng, B. Abramson: Consensus Diagnosis - A Simulation Study. IEEE Trans. on
Systems, Man, and Cybernetics, 22, 5, 916-928, 1992.

24. C.M. Neuwirth, D.S. Kaufer, R. Chandhok, J.H. Morris: Issues in the Design of Com-
puter Support for Co-authoring and Commenting. Proc. CSCW'90, Los Angeles, 1990.

25. L. Osterweil: Software Processes are Software Too. Proc. 9th ICSE, Monterey, CA,
IEEE Press, 3-12, 1987.

26. C. Potts: A Generic Model for Representing Design Methods. Proc. l l th ICSE, 217-
220, 1989.

27. R. Rao: Implementational Reflection in Silica, Proc. ECOOP91, Geneva, 251-267, 1991.
28. C. Roberts: Describing and Acting Process Models with PML. ISPW4, Moretonhamp-

stead, 1988.
29. T. Rodden, J.A. Mariani, G. Blair: Supporting Cooperative Applications. CSCW Int.

Journal, 1, 41-67, 1992
30. K. Schmidt, L. Bannon: TaJdng CSCW Seriously. CSCW Int. Journal, 1, 7-40, 1992.
31. M. Stefik, G. Foster, D. Bobrow, K. Kahn, S. Lanning, L. Suchman: Beyond the

Chalkboard-Computer Support for Collaboration and Problem Solving in Meetings.
CACM, 1, 32-47, 1987.

32. R. Snowdon: An Example of Process Change. Proc. 2nd European Workshop on Soft-
ware Process Technology, Trondheim, Norway, LNCS 635, Springer-Verlag, 1992.

33. R.A. Snowdon: An Introduction to the IPSE 2.5 Project. ICL Tech. Journal, 6, 3,
467-478, 1989.

34. G. Weinberg, D. Freedman: Reviews, Walkthroughs, and Inspections. IEEE Trans. on
Software Engineering, Vol 10, 1, 68-72, 1983.

