
Building Workfiow Applications on Top of WooRKS*

Gang Lu and Martin Ader

Bull S.A.
7. rue Amp6re. 91343 Massy Cedex, France

M.Ader@ffmy.bull.fr

Abstract: On top of an object-oriented database management system, we have
developed WooRKS, a workllow system used to synchronize a group of users
working together based on the circulation of documents. Thanks to the object-
oriented development lnethodology and the generic reusable object class library of
WooRKS, we can quickly build a concrete workflow application for a specific
customer. In this paper, we will describe how we can obtain this high productivity
through a concrete application. This workflow application is used now in Bull's
hnaging and Office Solution department. As such, we will present also the initial
reactions of WooRKS users.

Key Words: CSCW. workflow, object-oriented application, object-oriemed database,
object reusability, user interface, object-oriented development methodology and office
automation

1 I n t r o d u c t i o n
A lot of routine office task can be described as structured recurring tasks (called
procedures) whose basic work items (called activities) nmst be performed by various
persons and computer systems (called actors) in a certain order (sequential or
parallel). Inside a procedure, the coordination between the actors in different places
(e.g., the synchronization of activities in a procedure) is characterized by the
circulation of a folder, forms or papers. The examples of such routine office tasks
include dealing with a customer order requirement in a sales department and
preparing a business trip in a big company. The examples of the activities inside the
above order processing procedure include "order entry", "inventory check",
"shipping", "eval order", etc. A workflow system is used to assist people in defining,
executing, coordinating and monitoring such routine office procedures based on a
shared environment. Unlike other CSCW systems[Gnldin 91]. such as electronic
colfferencing [Applegate 86] and real time shared editors [Ellis 90], a workflow
systeln, in general, interacts asynchronously with its actors (e.g., end users) working
in different places [Johansen 91], and a workflow procedure can spread over several
weeks.

In this paper, we will describe the designs and the first experience of WooRKS. an
object-oriented workflow system which is developed as a demonstration of a 4 year

* The research was founded by the Commission of the European Communities through
ITHACA. Esprit project No. 2705.

43

Esprit project ITHACA (Integrated Toolkits for Highly Advanced Computer
Applications [Proefrock 89]). The objectives of ITHACA are to build an object-
oriented database management system [Elsholtz 90], to develop the tools
([Bellinzona 91], [De Mey 91] and [Vassiliou 90]) to support a complete object-
oriented methodology [De Antonellis 91], and to validate the database, the tools and
the methodology by applications like office automation, financial management and
chemical process control.

The goal of the ITHACA methodology is to reduce the long-term costs of application
development and maintenance for standard applications in selected application
domains [De Antonellis 91]. The key assumption here is that one must be able to
adequately characterize the selected application domains so that individual
applications can be constructed largely from a reusable object class library. On the
one hand, we have to build different workflow applications for different customers
because a workflow procedure in one company is rarely the same as that in another
company. On the other hand, different workflow applications for different customers
do have many common features. As such, workflow applications meet our
assumption to reach a good reusability.

In the ITHACA development life cycle, as shown in Figure 1, we clearly separate two
roles: application engineers and application developers. The application engineers
build and maintain a generic reusable object class library: based on this object class
library, the application developers build and nmintain a concrete application
application package according to the requirements of a customer.

I Existing Applicatons &
Domain Knowledge

Generic Reusable Object
ClaFs Library

Figure 1.

I Customer's
Requirements

~ ~ 1 Specific Application
Package

ITHACA development life cycle

WooRKS is implemented on top of an object-oriented database management system
(e,g., NooDLE [Elsholtz 90]). WooRKS now consists of nearly four hundred reusable
object classes belonging to five modules. The five modules are: Organization (e.g..
line unit, manager and project), Information (e.g., folder, documem and letter).

44

Time (e.g.. time point, event and calendar). Operator (e.g.. mail. print and revise).
and Coordination (e.g.. procedure and workflow basket). The Organization module
describes who will work in worldlow procedures and which roles they. will play, The
hfformation module describes the semantic attributes and contents of the information
circulated inside world'low procedures. The Time module provides the basic to define
timing constraints for procedures and actMties. The Operator module describes the
atomic actions of each actor, while the Coordination module describes how a group
of actors work together to car D' out a procedure. If we compare building a procedure
in the Coordination module to writing a sentence, the Organization module, the
hfformation module, the Time module and the Operator module provide respectively
four lexical modules: who will work, what will be dealt with, when the work will be
done and how the work will be done.

WooRKS is a generic workflow systeln, instead of one workflow application
developed for a specific customer. WooRKS defines an architecture (i.e.. client-selwer
communication, sharing information based on an object-oriented database
management s).'stem, and a method for structuring object classes), imposes a
development methodology, and provides a reusable object class libraD ~. Based on this
generic workflow system, we can develop a workflow application for a specific
customer in one mouth. The short building time of a workflow application is one of
the most important features compared with the workflow systems based on a
relational database management system, such as FlowPATH of Bull. ProcessIT of
NCR and Workflo of Filenet.

In the rest of this paper, we will describe how we can obtain this high productMty in
our first pilot application. In Section 2. we will present some guidelines to choose our
first pilot worldlow application. In Section 3. we will present how we practise the
development lnethodology of WooRKS through the application. In Section 4. we will
give an evaluation of the application.

2 G u i d e l i n e s to C h o o s e t h e F i r s t P i l o t W o r k f l o w A p p l i c a t i o n
In Chinese, we say that a good beginning is half way to success. As such. we need to
carefuUy choose our first pilot application of WooRKS. Some of our guidelines are as
follows:

- Overhead-Benefi t Relation
The question of who is paying for the overhead of a CSCW system and who is going
to receive the benefits is crucial for its snccess [Grudin 89]. We should ensure that
the persons who benefits from WooRKS can persuade the persons who pay the
overhead to use the system.

- Minimum Critical Mass
A CSCW system serves a group of persons. Evel3' person working on the same
procedure should use WooRKS in order to maximize the benefit of WooRKS and to
miuimize the overhead to exchange i~fformation between different persons [Francik
91]. This requires that our pilot application should support enough users to cover a
critical mass [Markus 87]. In order to simplify our work. we should choose an
application having a small critical mass.

45

- Integration with Existing System
Groupware is based on the computerization of individual's work. This requires the
compatibility and interoperability between WooRKS and existing tools. In our pilot
application, we have tried to minimize the work to integrate WooRKS with other
existing tools without dissatisfying the users. The integration is not limited to
technical issues. Other points to consider include existing colrtpany procedures and
organizational constraints.

- Typical Workf low Problem
We need to design an attractive demonstration to get end users interested in
WooRKS. Attractive demonstrations, however, may mislead users as described by
[Francik 91] about Wang's Freestyle system The customers of Freestyle were
strongly drawn to the power and ease of use of annotation tools per se. particularly
the synchronized playback of their handwriting and voice. As a result, they initially
paid less attention to group communication: that is, how the annotated documents
would enter and leave their PCs. Therefore. our pilot application should focus on the
true workflow problem, i.e.. the asynchronous coordination between a group of users
in different places.

- Min imum Testing Cost
We could spend at most two man-months to develop the first pilot application and to
train the users to use it.

3 D e v e l o p m e n t M e t h o d o l o g y
The main steps to build a concrete workflow application using WOORKS include
identification of the problem, identification of the objects in the different modules of
WooRKS. prototype of the user interface, development of new object classes, and
modifications according to the end-users' comments. In this section, we will briefly
describe the first three steps.

3.1. Identification of the Problem
Keeping the above guidelines in mind, we start to look for our pilot application. Our
secretary is heavily overloaded. As such. we think that she will be interested in
WooRKS. She described several routine tasks, and we choose the leave management
problem. The way to manage leave in our departnaent of Bull is as follows:

- The employee fills in a specific form and passes it to his* manager:
- The manager approves the request and passes the form to his secretary:
- The secretary checks the leave balance of the employee: and
- If the employee has enough leave remaining, the secretary modifies the
leave records: Otherwise, the secretary will notify the employee to modif 3"
his request.

At the end of every week, the secreta~" sends a summary to the payment department.

* Through this paper, the pronoum "he" is used in the neuter sense.

46

3.2. Identification of the Objects in the Different Modules
For the leave management problem, we identify four kinds of persons: the employee,
the secretary, the manager and the persons in the payment department. The manager
only signs the request, and the communication with the persons in the payment
department is only through the secretary, on papers. As such, we decide that WooRKS
supports only the employee and the secretary ,at the first stage.

After browsing the reusable object class library, we identify the existing objects
which can be reused and the new objects to be created. In the Organization module,
we create bullAetor, a sub-class of actor, where the new attributes include birthday,
sen'ice duration, leave emitlement, home address and home telephone. In the
hlformation module, leave request, a sub-class of information, where the new
attributes include leave applicant (bullActor), leave starting date, leave ending date.
leave reason, the number of leave days and leave approval status. In the Operator
module, we introduce weeklyReport, a sub-class of command, to generate weekly
leave reports based on agenda objects in the Time module. In the Coordination
module, ieaveRequest where the employee executes the first activity to fill in a
request form: the secretar). ~ executes the second activit?" to check the leave balance:
WooRKS executes automatically the third activity to print the leave request form:
and when the secretary receives the signed leave request form, he executes the forth
activity to archive the leave request and to send the employee a notice if his request is
not approved.

3.3. Prototype of the User Interface
WooRKS allows the application developers to rapidly build the end-user's working
scenario without creating the object classes in various modules (e.g.. Organization,
hlformation and Coordination). As such, we can ask the end users to evaluate a
WooRKS application before the application is built.

The imroduction of workflow will change the way people work. For the employee,
the way to require leave using WooRKS will be modified as follows:

- The employee (e.g.. Mr. Ader) logs in to WooRKS and sees the top-level
menu as shown in Figure 2;
- The employee selects "otherOps", then "leave request" from a pull-down
menu. A "leave request" procedure is created and Figure 2 will be modified
as Figure 3 to ask the employee to work on the "request" activiD of the
procedure. The activity is started automatically so that Figure 4 is shown
also:
- The employee fills in Figure 4 (e.g.. "from". "to" and "Leave reason").
WooRKS has an agenda for each actor (i.e., employee). The agenda of the
employee will be modified automatically after the employee confirms his
request by selecting "OK" in Figure 4" and
- Figure 3 becomes Figure 2, and the employee can select "OK" to quit
WooRKS.

4?

............................ I
l emdl :wfBaske t a b o r t OK o the rOps

I Workflow Basket o f ~

Figure2. Employee'stop-levellnenu

~ d l : w f B a s k e s a b o r t OK os

Workflow Basket Of[~a~

A c t i v i t i e s : I
Activity Procedure Responsible

ileave request 000101 Isouriaul

Figure3. UpdateofFigure2

cmd2:create abort OK otherOps

Leave Request Form

Last name Ader

First name Martin

Employee Id 62639 AR

Department Id 28460

Leave entitlement (91): 29 days I

Duration

from l

to I

of leave:

I
I included

Leave reason:J[

Leave balance: 17 days]

Date: 20102/92

Figure 4. Leave request tbnn for the "request" activity

For the secretary, the way to deal with a leave request will be as follows:

- The secretary (e.g., Mrs. Souriau) logs in to WooRKS and sees the top-
level menu as shown in Figure 5. Figure 5 consists of three parts: an
indication line (Workflow Basket of Souriau). a list of activities (e.g.. all
activities which the secretary is asked to work on) and a list of procedures
(e.g.. all procedures under the responsible of the secretary):
- The secretary selects "otherOps", then "start activity" from a pull-down
menu, and finally selects the activity to be started (e.g.. "verification" in
Figure 5). Then Figure 6 will be shown:
- The secretalw fills in Figure 6 (e.g.. "Number of leave days"). After he
selects "OK", a complete form will be printed: Then Figure 7 will be shown.
The secretary puts the printed form in the employee's mail box: and

48

- When the secretory receives the form signed by both the employee and his
manager, he initiates the "archive" activit3.' in Figure 7. If the leave request
is not approved by the manager, a notice will be printed and the employee's
agenda will be modified to cancel the leave mark.

~d3:wfBaske t abort OK otherOps

A c t i v i t i e s :]
Act Ivity Procedure R e ~

lai'~hivel tleave r'equest "00005]
[v e l i f i c a t i o n I ileave r e . s t o, oolo I

Procedure:]

Starting time]

10102192 14:00:001

20102/92 I0:00:00]

Procedure

leave, request 00'005 I
ileave request 0o0101

Figure 5. SecretaD"s top-level menu

~ad4:revise abort OK

Leave Request Form

Last Name ~ I
First name Martin

Employee Id 62639 AR

Department Id 28460

Leave entitlement (91): 29 days]

Duration of leave:

from]12/03/92

to118/0~/92
Number of leave days:l

I
J included

Leave reaso.']r 91 I l

otherOps

Leave balance:]17] days]

Figure 6 Leave request lbnn for the "verification" activity

49

cmd3:wkBasket abort OK
Workflow Bas~et oflSouzlau [

~ct iv t t ies : I
Activity

larchive[

Procedure:[
Procedure

leave request 00010[

Procedure

Ileave request O0010J

Starting time I
20/02/92 10:00:00

otherOps

Responsible

ISouriau[

Figmre 7. Archive activity

The weekly reports will be printed automatically thanks to the periodic event
mechanism of WooRKS.

4. Evaluat ion
The leave management is a typical worktlow problem. The critical nmss is small after
we limit WooRKS to support only the employees and the secretary. Because we can
tr3." our pilot application within our own department this significantly reduces the
testing cost. One of main reasons to choose leave management as our pilot
application is that the leave management is not yet computerized. As such. we are
quite free to choose systems and ilfformation fornmts. After we resolve the signature
control problem as described in the section above, the integration problem is
resolved.

4.1. Overhead-Benefit Balance
The employee need to fill in only 3 fields in Fignre 4, instead of 16 before WooRKS
is used. He need not remember his Bull elnployee Id and his Bull internal department
Id. He need not refer to the calendar to calculate the number of working days during
his vacations. He need not worry about mistake of leave balance calculation. The
overhead of the employee is that the creation of the leave request form is separated
from the signature of the form.

The secretal T gets the most benefit from WooRKS. The weekly reports will be
generated automatically. The verification of leave request is also simplified because a
large part of "leave request fornf' (Figure 6) is filled in by WooRKS. Because the
agenda is modified automatically to take into account the absence of the employees.
other persons can retrieve the absence information from WooRKS without
interrupting the secretary. The overhead of the secretary is that he has to invoh,e
txvice for each leave request (i.e.. leave balance calculation and archive).

4.2. Security Control
Data security is one of the key issues to decide whether WooRKS can realh be used.
Each user has to give his password when he logs in to WooRKS. The user can only
access the authorized connnands according to his roles defined in the Organization
module. For instance, only the secretary can access command "revise" to modify the

50

leave entitlement of each employee. The accessible information is context-sensitive.
The home address and home telephone nulnber become visible only through
command "revise". As such, only the secretary can access this personal information.

The object-oriented database managemem system guarantees the data recovery from
software and hardware errors. When we change the data schema of WooRKS, the
ODBMS sometimes cannot automatically transfer the existing object instances from
the old data schema to the new data schema. We resolve this schema versioning
problem by introducing our own "loader" and "unloader" utilities.

4 . 3 . E n d - U s e r s ' F e e d b a c k

We officially imroduced WooRKS in our department in February 1992. The users, in
general, like WooRKS. WooRKS really simplifies their work. So, they use WooRKS.

People apply for leave only several times per year so that they are always occasional
users of WooRKS. Occasional users require the user interface to be simple, flexible
and ilfformative. The main criticism about WooRKS comes from the users of
Microsoft Windows. The user interface style is not the same as what they use to be.

Using WooRKS. the secretary now spends about 2 minutes to deal with one leave
request. This is nmch shorter than when she deals with leave request without
WooRKS. However, the secretary has to frequently wait for WooRKS to deal with his
inputs during these two minutes. As such, he requires a better response time of
WooRKS.

5 C o n c l u s i o n s

This pilot application proves our idea of generic application framework based on the
object-oriented technologies. Less than 10% of the object classes used in this first
pilot application were newly developed. Other objects were reused from WooRKS
generic object class libralw. To build this application, we spent:

- a half-day to identi~" the problem,
- a half-day to identify the reusable object classes and the object classes to be
developed.
- four days to prototype user interfaces and to edit the end-user manual.
- ten days to develop new objects and perform integration, and
- two days to make modifications according to user's initial comments.

This well meets our basic objective to build a concrete workflow application using
WooRKS in one month. This first experience show that the object-oriented
technologies increase the productivity of CSCW software development and
maintenance. We live in a world changing rapidly. Companies are jointed and
reorganized all the times. Their workflow procedures have to follow the changes.

To the best of our knowledge, few papers describe a workflow system built on top of
an object-oriented database management system. Our experience shows that the
performance and the fimctionalities of an object-oriented database management
system can satisfy the requirements to build a usable workflow product. Our first

51

pilot application of WooRKS is successfifl. WooRKS simplifies the work of
eve13'body. It is really used by our department.

We have ported a part of WooRKS on top of commercial object-oriented database
management systems: Versant and Ontos in order to show that WooRKS does not
depend on a specific object-oriented database management system. We need to enrich
the development and maintenance tools of WooRKS.

6. Acknowledgement
We gratefiflly acknowledge Mr. Najah Naffah for his support of this research.
Frequent discussions with Mr. Clarence Ellis when he worked in our department
helped greatly in the design of WooRKS. Mr. Patrick Pons was one of the key
members of WooRKS and made many suggestions for the first WooRKS pilot
application. Thanks are also due to Mr. Srinivas Raghunandan. Mr. Kabada Srivaths.
Mr. Kumar Vel~kataraman and Mr. Sudarshan Murthy who helped to undertake a
large portion of WooRKS implementation.

References

[Ang 91] J.Ang, G.Lu and M.Ader, The Active Office Object Model: its Conceptual
Basis and its Implementation. Proc. of the IFIP Colfference on the Object Oriented
Approach in hfformation Systems, Quebec City, Canada, Oct. 1991. pp. 419-431.

[Applegate 86] L.Applegate. B.Konsynski and J.Nunamaker, A Group Decision
Support Svsteln for Idea Generation and Issue Analysis in Organization Planning,
Proc. of the First Conference on Colnputer-Supported Cooperative Work. New York.
1986, pp. 16-34.

[Bellinzona 911 R.Bellinzona and M.Fugini, RECAST Prototype Description,
ITHACA.POLIMI. 91.E.2.8.# 1. Politecnico di Milano, 1991.

[De Antonellis 9l] V.De Antonellis and B.Pernici, ITHACA Object-Oriented
Methodology Manual: Introduction and Application Developer Manual,
ITHACA.POLIMI-UDUNIV.E.8.#1, Politecnico di Milano and Univ. of Udine. 1991.

[De Me? 91] V.De Me3", VISTA Implementation, ITHACA.CUI.90,E4.#1, University
of Geneva, 1991.

[Deux 91] O.Deax. Tile 02 System, Conununication of the ACM. vol. 34, no. 12.
October 1991, pp. 35-48.

[Elsholtz 90] A.Elsholtz. The NooDLE Database Kernel. Technical Report
ITHACA.Nixdorf.90.X4.#4. Siemens Nixdoff I~fformationssystenle A.G.. Germany.
1990.

[Ellis 901 C.Ellis, S.Gibbs and G.Rein. Design and Use of a Group Editor,
Engineering for Human-Computer Interaction, North-Holland. Amsterdam. 1990.
pp. 13-25.

52

[Ellis 91] C.Ellis and S.Gibbs, Groupware Implementation: Issues and Examples,
Tutorial Presented at CHI'91. New Orleans, U.S.A., 1991.

[Francik 91] E.Francik. et al, Putting Innovation to Work: Adoption Strategies for
Multimedia Communication Systems, The Comnmnications of the ACM, vol. 34, no.
12, December 1991, pp. 53-63.

[Gerson 86] E.Gerson and S.Star, Anab'zing Due Process in the Workplace, ACM
Trans. on Office Information Systems, vol. 4. no. 3, July 1986, pp. 257-270.

[Gmdin 89] J.Gmdin, why groupware applications fail: problems in design and
evaluation, Office: Technology and People, vol. 4, no. 3, 1989, pp. 245-64.

[Grudin 91] J.Gmdin, CSCW Introduction, The Communications of the ACM, vol.
34. no. 12, December 1991, pp. 3(I-34.

[Johansen 91] R.Johansen. Leading Business Teams. Addison-Wesley. 1991.

[Lu 90] G.Lu. A Task-Oriented Architecture of Man-Machine Interaction for Office
Automation Systems. Ph.D dissertation, Ecole Nationale Superieure des
T~o'eV'l\o'eV'comnmnications, Dec. 1990.

[Markus 87] M.Markus, Toward a "Critical Mass" TheoD" of imeractive Media:
Universal Access, Interdependence and diffusion, Connnun. Res., vol. 14, no. 5,
1987, pp. 491-511.

[Proefrock 89] A.Proefrock, D.Tsichritzis. G.Muller, and M.Ader, ITHACA: An
Integrated Toolkit for Highly Advanced Computer Applications. Object-Oriented
Development. Univ. of Geneva, July 1989, pp. 321-344.

[Vassiliou 90] Y.Vassiliou, et al, Technical Description of the SIB.
ITHACA.FORTH.90.E2.#2, FORTH, Greece, 1990.

