
Model ing Cooperat ive Work for Workflow
Management

Jon Atle Gulla and Odd Ivar Lindland

Faculty of Electrical Engineering and Computer Science
The Norwegian Institute of Technology

N-7034 TRONDHEIM, NORWAY

Abs t rac t . Characteristic to workflow management is modeling of work-
flow of manual coordinat ion activities and automated production ac-
t ivit ies . Conceptual models are used to analyze and describe workflow,
though most of these models are not very suitable for representing and
relating both coordination activities and production activities. In the
Input-Process-Output paradigm, workflow is modeled in terms of pro-
cesses and data flow, whereas the Customer-Supplier paradigm defines
conversation patterns between the actors. The rather intimate relation-
ship between actor interactions and processual structures is recorded in
neither of them. In this paper, we suggest to extend the IPO paradigm
with concepts for coordination activities. We introduce actors and ser-
vices as a separate model, and show how two-way flows, ports and rules
help us model cooperative and manual aspects in data flow diagrams.

1 Introduction

Workflows describe the coordination and performance of work undertaken in
businesses. Workflow management provides mechanisms for planning and con-
trolling workflow, and has received a lot of attention the last few years. Workflow
management should allow the analysis of current workflow in order to detect
potential bottlenecks and the design of new workflow patterns so that shortcom-
ings can be eliminated. Typically, this includes reorganizing, automating, and /or
supporting activities in the current workflow. Business process re-engineering is
an approach to organizational and technological change that has drawn on the
achievements of this field [5].

In order to investigate and manipulate workflow in a business, a model of the
current workflow is used for documenting, understanding, and communicating
the coordinating business activities. Furthermore, the model is a natural basis
for experimenting with and evaluating the consequence of introducing changes
in the model prior to realization.

When doing so, it is important to recognize that workflow is linked to pro-
cesses tha t business are performing. Two types of processes exist: production
processes and coordination processes [10]. In production processes the business
produces a result (information or material) to a customer. Since the result is
expected to be of a certain value for the customer, the processes involves value-
adding activities. The work in production processes can be manually and an-

54

tomatically performed. Gerrits denotes this process type business processes for
either material production or information production [3]. Coordination processes
controls the performance of the value-adding activities without directly adding
value to the product. Typically, this process type the administrative layer of
the production processes and involves manual coordination of people in order
to carry out certain actions. Coordination processes are denoted information
processes by Gerrits.

These definitions differ from the process definition of Medina Mora et al. [8].
They distinguish between material, information, and business processes. Ma-
terial processes describe activities which involve physical and mechanical work
to move, transform, manipulate, consume or combine materials. Information
processes reflect electronic transfer, manipulation, etc. of information. Business
processes coordinate actions carried out by people. In Flores and Winograds defi-
nition information and material processes are low-level and well-defined, whereas
business processes are high-level, ad-hoc and involve a certain degree of uncer-
tainty. They manifest themselves in communication between people and may
trigger material and information processes.

Although different process terminology exists in literature, it is important
to recognize that workflow involves and affects both production activities and
coordination activities. In order to model the workflow in organizations two
dominating "paradigms" exists [2]: The Input-Process-Output (IPO) paradigm
and the Customer-Supplier (CS) paradigm. The paradigms are complementing in
that the IPO paradigm is particularly suited for modeling the chain of production
activities, whereas the CS paradigm is appropriate for modeling the coordinating
structure within a business and between the business and its customers.

This paper further elaborates on integrating the IPO and CS paradigms.
Section 2 briefly describes the characteristics of these paradigms. In Section 3
the shortcomings of the IPO paradigm with respect to workflow modeling is
discussed. As such the section provides the rationale for the new concepts that
are introduced in Section 4. In Section 5 a concluding discussion is offered.
Directions for further work are also indicated.

2 T h e I P O a n d C S p a r a d i g m s

The Input-Process-Output (IPO) Paradigm is used to model the workflow pro-
duction processes. The structure of the IPO paradigm is shown in Figure l(a).
The workflow is regarded as a chain of activities that takes information and
material as input and produces information or material as output. Complex
activities can be decomposed into simpler and more structured activities. The
management of the workflow chain is realized by control to and feedback from
the process. In an IPO model it is expected that inputs, transformations, and
outputs are well-defined. The IPO paradigm is suitable for modeling workflows
in repeatable procedure-based processes. The commitments among the workers
and in particular between the business and its customers in order to carry out
the work is is not explicitly described in IPO models.

5 5

Control/

mSn":t,...

1. Request or O i f~ ~ 2. P romw oc ~4~reemem

$=tkdaat~n 3. D~'ler=tkm

(a) (b)

Fig. 1. (a) The IPO paradigm and (b) the CS paradigm to workflow modeling.

Whereas the IPO paradigm views the workflow as a chain of production ac-
tivities the CS paradigm focuses on coordination among people. The paradigm
has been established by Flores and Winograd [14] and is founded on Searle's
Speech Act [15]. The basic structure is shown in Figure l(b). Two major roles,
customer and supplier, are modeled. Workflow is defined as coordination between
these roles, and is represented by a conversation pattern with four phases [14].
In the first phase the customer makes a request for work, or the supplier makes
an offer to the customer. In the second phase the customer and supplier aims at
reaching a mutual agreement about what is to be accomplished. This is reflected
in the contract Conditions of Satisfaction. In the third phase, after the performer
has performed what has been agreed upon and completed his work, completion
is declared for the customer. In the fourth and final phase the customer assesses
the work according to the conditions of satisfaction and declares satisfaction or
dissatisfaction The ultimate goal of this paradigm is customer satisfaction. This
implies that workflow loops have to be closed and that the customer must ac-
knowledge that the work has been satisfactory completed. As such, the paradigm
is appropriate for explicitly modeling the chain of commitments that exists be-
tween people in order to satisfy the customer. The specific activities carried out
in order meet the contract is not modeled. Also, the information and material
needed in each production activity is not described.

In order to manage the workflow properly, we would like to a comprehensive
overview of the workflow both in the coordination activities and in the produc-
tion activities. Furthermore, we would to model the interdependencies between
the coordination and the production processes. When doing so, the shortcom-
ings in the coordination process might be explained by an insumcient production
process. A comprehensive workflow modeling technique encompassing these in-
terdependencies can be obtained in several ways. In this paper, we show how
the IPO paradigm can be extended to capture customer-supplier relationships.
We add new concepts for modeling actors and their cooperation within the IPO

56
paradigm. We are then able to model manual parts of coordination processes as
well as automated parts of production processes.

3 Shortcomings of the IPO Paradigm

Although there are good reasons for adopting the IPO paradigm in workflow
management, there are aspects of IPO that make it insufficient for modeling
coordination activities. We address here three issues that concerns the cooper-
ative aspects of workflow management: (1) the involvement of actors, (2) the
exchange of information between actors, and (3) the structuring of cooperative
work processes.

recommendation

app~Jca lion accept ance

aoolication raiection

I I T ~176
Customer | I Dll Customer_data

l
confirrnation q~ ~i~iction i j

al:~ication : ~
~ rocommondation

[D21 Application_data

] rt~mmen~lt~n

Fig. 2. Data flow diagram for loan processing.

3.1 Invo lvement of Actors

Consider the DFD model shown in Figure 2, which describes a rather simple
processing of loan applications. A clerk checks that the customer is eligible for
a loan, and either rejects the application or sends it to a loan consultant for
further processing (process P1). The consultant suggests an appropriate amount
to the customer, and if the customer accepts the offer, a loan contract is set
up in cooperation between these two. In case of a rejection of the offered loan,
the consultant just returns a confirmation that ends the whole process, ttow-
ever, neither the clerk nor the consultant is explicitly represented in the model,
and we just have to know who is responsible for doing the tasks. For a simple
model like this, that might not be a problem, but in a more general setting it

57

can be difficult to decide who the actors are. And looking at the characteristics
of workflow management systems, we wee that this lack of information is rather
problematic. Both manual and automated tasks are relevant in workflow man-
agement. Automated parts can - - at least in theory - - be specified all the way
down to algorithms, and these can then be analyzed with respect to correct-
ness, efficiency, and effectiveness. What manual parts are concerned, an analysis
must also take into account who is designated to do the various tasks. Bottle-
necks due to overloaded employees, for example, cannot be detected if there is
no information about actors in the model.

3.2 Exchange of I n f o r m a t i o n

Exchange of information is common both in production activities and in co-
ordination activities. Consider for example process P3 in Figure 2, where the
customer and the loan consultant are to work out a loan contract. Both actors
contribute to the final contract, and the whole work is organized as a negotia-
tion process where new ideas and suggestions are exchanged. However, the flow
contract_negotiation, which should represent the costumer's contribution, only
model the sending of one single piece of information and is unable to capture
the responsive nature of negotiations like that .

What is needed here, is the ability to specify that the input flow's values
at t ime t, for any t within the receiving process's active period, depend on the
output flow's values at t ~ < t, and vice versa. As long as the flows are modeled
as independent, this relationship cannot be made explicit in the model.

3.3 Structuring o f A c t i v i t i e s

Traditionally, process logic has been specified as algorithms [4], state transition
diagrams [11, 13], Petri nets [7], and decision tables/trees [12]. These may work
fine for automated processes, but in manual ones one cannot specify the process
as a complete calculation - - if that was possible, it would not have to be a
manual process. Instead, notations for structuring the work itself is needed, in
particular for coordinating the efforts of the actors involved. Looking back at
process P3 in Figure 2, we see that there is little information represented that
can be used to guide the manual execution of the process. The customer should
either reject the offer or start negotiating the contract, but this is not clear from
the model. Similarly, the result is either a loan or a confirmation that the offer
is rejected, but the model just states that there are a number of possible input
flows and a number of possible output flows. It is not feasible to specify that a
flow depends on or excludes another one, or that the work has to be carried out
in accordance to certain rules or constraints.

4 C o n c e p t s f o r M o d e l i n g C o o p e r a t i v e W o r k

Our objective is to extend the IPO paradigm with some basic concepts for mod-
eling coordination activities and cooperative work. The concepts can be worked

58

out at different levels of formalization for integration with other formalized ex-
tensions of DFD, but we will here assume the traditional DFD notation (as
described in [9]) as a basis.

A coordination activity involves actors and describe how these interact and
cooperate with each other. They can be described on the basis of conversation
theories like Speech Act though there is a great deal of variation among the
activities. In some coordination activities, the actors are negotiating as indepen-
dent customers and suppliers; in others, the cooperation is manifested more as
a command or dependency relationship. In [1], the relationships between actors
are classified as power relationships, peer relationships, and service relationships.
Each is characterized by its own pat tern of cooperation, and there is no general
conversation theory that can easily account for them all. Still, there are some
fundamental principles that underpin all these relationships, and these have to
a large extent been neglected in the IPO paradigm used today. We define an
additional model, the Actor Service model, that provides a cooperative point of
view and is linked to the DFD model as part of the modeling process.

The DFD model itself is also supplemented with some extra concepts. These
enable modeling of cooperative work processes and routing decisions.

4.1 A c t o r S e r v i c e M o d e l

The Actor Service model is a supplement to the DFD model, intended for the
modeling of actor relationships in coordination activities. It describes how actors
interact and cooperates in accordance to intentions and goals, but there is no
control flow or data flow represented. The main concepts are - - not surprisingly
- - actor and service, and these are briefly explained below.

- An actor a is any entity that has the ability to provide a service to another
actor. A hardware or software component can be classified as actors, though
in this exposition the focus is rather on human actors. These can be external
to the workflow management system, like external entities in DFD, but can
also be employees working as part of it. Furthermore, an actor can be formed
by grouping other actors, in which case it is more like a role played by
these actors. Formally, the role actors are defined as sets of other actors ai,
a = {ai}. An actor is assumed to have some kind of intention i(a, s) that
motivates her action; that is, i(a, s) is a's reason for taking the responsibility
for bringing about s.

- A service is defined in terms of a task, a result, or both. Its boundaries relate
it to actors, so that there are actors responsible for performing it as well
as actors requesting or benefiting from its result. Formally, the service itself
is represented as the tuple s = (t, r), where t is a task and r is a result
specification. A service with its associated actors is called a service consteb
lation. This constellation may also contain the intentions of the performing
actors and the means for realizing the service, and is specified as a 4-tuple
c = (p, b, s, m). Variable p is the set of performing actors p = {(i(ai , s), ai)},
where ai is an actor, s is the service, and i(ai, s) is ai 's intention of doing

59

s. Variable b is the set of actors {aj} benefiting from or requesting service
s, and m is a set of subordinate service constellations {si}, DFD processes
{pi}, or DFD flows {fi}. At the level of elementary services, thus, a service
is realized as a number of elements in the DFD model.

,~ Ca~tomer

~ Negotiate " loan COntract

n|jon .-~ Loan rejection hack credib/~ty
\

Re--lit Consultant

Task Link ~ I' loan contract ~ or

Fig. 3. Actors and services.

Graphically, we use the symbols shown in Figure 3. This figure is the Actor
Service model for our loan processing system from Figure 2. The customer is
responsible for sending the loan request to the clerk and is also negotiating with
the consultant about the contract. The clerk rejects loan applications when the
applicants do not have the necessary credibility.

At last, the Actor Service model can be worked out at different levels of
detail. In our model in Figure 3, for example, we could decompose the contract
negotiation constellation, introducing the consultant 's offer as well as customer's
rejection and acceptance as new services. Alternatively, we could specify the re-
alization of the constellation as the set of DFD processes {P2, P3}. The constel-
lation containing the task Check credibility is given a reference to DFD process
P1 in its specification.

4.2 A T w o - W a y F low

An ordinary one-way flow transports information from one location to another.
A two-way flow denotes the exchange of information between two parties, such
that information floating in one direction is followed by a response in the other
direction. Conceptually, this corresponds to a conversation pat tern where two or
more actors work together and contribute to a common task.

Following the formalization of DFD indicated in [9], we assume flows to carry
items, where each i tem is defined as a set of attributes. A flow transports an i tem
from one location to another in zero time, without changing the values of the
i tem's attributes 1. It is defined as the tuple f = (lr l , r2) , where i tem place

1 Actually, this type of flow is referred to as an ideal flow in [9].

60

~ti specifies a location of a chosen type of item, which means that an i tem at
a location represented by r l is consumed and an i tem with exactly the same
attributes is immediately produced at a location represented by 7r2. I tem places
~rl and ~r~ represent locations for the same type of item, and the locations must
be different from each other. Let us also define (f , t) to mean that a particular
i tem is transported along flow f at t ime t. Now, a two-way flow can be defined
as the tuple ~b = (f l , f2), where f l = (~q, 7r2) and f~ = (r [, 7r~), where 7q and
~r~ represent one location and r2 and x[represent another one.

In the loan processing example, two actors are negotiating a loan contract in
process P3. The loan consultant is part of the banking system and is associated
with P3 through the Actor Service model, but the clerk is also contributing to the
manual work of the process. Since the clerk is an external entity, she cannot be
held responsible for P3's execution, and her contribution must then be modeled
by means of a two-way flow to P3, as shown by the flow contract_negotiatlon in
Figure 5. A two-way flow is drawn as a thick line and counts as an input flow
what ports are concerned (see next section).

4.3 P o r t s a n d R u l e M o d e l i n g

An automated completely specified process can be described by its input flows,
its output flows, and the functions determining the at tr ibute values of the output
flows' items on the basis of the input flows' items. Being a little more precise, we
say that a process can consume items from a set of i tem places, HI, and produces
items to another set of item places, 17o, where all 7r E I7i U 17o represent the
same location.

For manual processes, and incompletely automated ones, the functions may
not be available, and one must use other means for describing their contents and
internal structures. Rather than formulating functional relationships between
inputs and outputs, we then specify constraints on the flows consumed and
produced during process executions. These constraints serve as a structure for
the work to be carried out and provide guidelines for the actors in cooperative
work processes. We introduce input port expressions, output port expressions,
and constraint rules for the specification of the constraints:

AND XOR

1.1 (hi

Fig. 4. (a) AND port and XOR port. (b) Nested ports.

61

- An input port ezpression lists all possible combinations of input flow items
that can be consumed during one process execution. Formally, it is specified
as the tuple (17I, 171o), where set HI is as above and 171o is a subset o f / / l ' s
powerset, 17tc C_ ~(17t) 2. 17xc identifies combinations of i tem places, from
which items are consumed during a single process execution.
In the DFD model, we add input port expressions using XOR ports and
AND ports on input flows to processes. The AND port in Figure 4(a), which
includes two flows with destination places ~r, and ~b, means that the process
must consume both item a from 7ra and b from lrb. Correspondingly, the XOR
port means that the process must consume either a from 7ra or b from ~rb,
but not both. Of course, ports may be nested, so that the port expression in
Figure 4(b) specifies that the process consumes either {a, b} or {b, c} during
each execution.

- An output port expression lists all possible combinations of output flow items
that can be produced during one process execution. Formally, it is specified
as the tuple (IIo, IIoc), where set Ho is as above and Hoc is a subset of
17o's powerset, 17oc C P(/-/o)- 17oc identifies combinations of i tem places,
to which items are produced during a single process execution.
Similarly to input port expressions, XOR ports and AND ports are used in
the DFD model for the specification of the constraints.

- A constraint rule specifies the existence relationship between consumed items
and produced items; that is, given that a process consumes a specific com-
bination of input flow items, the rule determines which output flow items
are produced. The values of the items' attributes are not involved in these
rules, just their existence. Formally, we can describe the relationship R as a
subset of the Cartesian product of the sets IItc and IIoc, R C_ 17tc x 17oc,
where 17IV and 17ov are as described above.
In the model, the constraint is specified as a number of constraint rules
associated with a process. Each rule is of the form

IF < input]lows >
THEN < output]tows >,

and specifies how the production of items to specific output flows depends on
the consumption of items from specific input flows. Note that this notation
is consistent with the rule notation in TEMPORA [6], so that our additions
can easily be integrated with rule-based approaches to information systems
development.

We can now describe the internal structure of manual processes more pre-
cisely. In process P3 in Figure 2, the process must either receive offer_rejection,
or contract_negotiation and recommendation, and this is easily shown as an XOR
port with an subordinate AND port in Figure 5. The output port expression
says that an update is always produced, though only one of loan and confir-
mation_of_rejection can be produced during a particular process execution. The

2 P(Hz) is the collection of all subsets of/ /z .

62

rg<~mmsn~i~igfl

I I- Customer I D1 Customer data I D21 Application_data
update

l P3 @~
loan t up

confirmation of L...~ contract
r e i ~ - - ~_
9tier rei~ion

contra~_negotiation

Fig. 5. Extended data flow diagram.

relationship between input flows and output flows is specified by means of the
two constraint rules in Table 1. An offer_rejection is followed by the sending of
confirmation_of_rejection, whereas an contract_negotiation leads to the generation
of a loan. With these constraints specified, one can define tools and methods
that structure the cooperative work of P3.

IF contract_negotiation AND recommendation
THEN update AND loan

IF offer_rejection
THEN update AND confirmation_of_rejection

Table 1. Rules associating input flows and output flows for process P3.

Additionally, we can restrict the values of the items carried by the flows. This
is done by extending the constraint rule notation with a special WHERE field,
which specifies the arithmetic or logical relationships between items consumed
and produced during a process execution. For example, the flows recommenda-
tion, update and loan in Figure 5 all carry an item applicant, and the value of this
item must be the same for all flows. Similarly, the amount item carried by loan

63

and update must have the same value. Assuming that the value of this amount
has to be less or equal to recommendation's amount, we can now replace the first
rule in Table 1 with the following extended rule:

IF contract_negotiation A N D recommendation
T H E N update A N D loan
W H E R E recommendation.applicant = update.applicant = loan.applicant A N D

recommendatlon.amount _> loan.amount A N D
loan.amount = update.amount

Finally, the rule can contain an initial WHEN field that specifies what flow
- - or combination of flows - - triggers the execution of the rule. Looking at
the rule above, we notice that the rule is triggered by the arrival of flow con-
tract_negotiation: W H E N contract_negot iat ion. In the diagram, this information
can be made explicit by marking that particular flow with a T.

5 Concluding Discussion

Our work relies on the distinction between workflows manifested in coordina-
tion and production processes. As indicated in Figure 5, the IPO paradigm is
appropriate for modeling production processes, but lacks concepts for model-
ing coordination processes. For the CS paradigm the situation is the other way
round. It is suitable for modeling coordination processes, but lacks direct links
to production activities. Although both paradigms are flexible and can be ex-
tended with new concepts, it seems problematic to combine them as they are
today. We find a focus on control [low in both paradigms - - though differently
modeled - - and if these models are just combined, this redundancy of informa-
tion would clutter the model and complicate consistency checks. Other problems
are related to the cyclic and linear nature of these paradigms, and their different
interpretation of flow content.

J Actor J
J Service I
/ Model /

Coor~,.atio. / cs Paradigm I L_ 1 -r.~ r_l activities

. o o

activities [iPu paraa=gm j Process
Mode

Fig. 6. Towards an integrated workflow modeling approach.

Our main contribution has been to provide a comprehensive framework for
workflow modeling, where coordination activities and the production activities

64

are integrated. The IPO paradigm forms the basis, but we have now added
concepts for the modeling of coordination and cooperative work. First, we in-
troduced the Actor Service language which enable us to explicitly model the
services provided by the actors, their intentions, and the relationships among
the actors. Secondly, a two-way flow makes it possible to model exchange of in-
formation between two parties. Finally, ports and rules give us the opportunity
to model the routing of work and the constraints imposed on it. In that sense,
we have extended the modeling language to the realm of coordination activities
and also established well-founded links between these too kinds of activities.

The Actor Service model records coordination patterns among people in-
volved or affected by the organization. It captures many facets of the CS paradigm,
though the following properties of our model should also be noted:

- A model like this does not represent a fixed conversation pattern, since such
a pattern would include both a number of fixed types of interactions and
a control flow specifying their sequencing. As the model is, we have the
freedom to specify simplified interaction patterns when that is appropriate,
whereas control aspects can be completely left out of the model.

- Contrary to the CS paradigm, we can here associate tasks and results with
intentions of the actors, which in turn provides a mechanism for recording
the rationale of DFD elements. Actors may cooperate in doing a task, but
the model does not require them to have the same intentions.

In our current model, intentions are modeled in a rather simplistic way, but
the basis idea now is to extend the notion of intention and relate it to other
parts of the enterprise model. Intentions provide background information that
can help us analyze communication breakdowns and predict both desirable and
undesirable situations in organizations. More specifically, we are working on
the relationship between intentions and constraint rules, letting the intentions
influence on the organization of work among people.

The data flow model itself now includes concepts that enable a more precise
specification of manual working procedures. Actor responsibilities and collabora-
tive work are described by means of the new concepts and the links to the Actor
Service model. Since these extensions are not in conflict with existing DFD con-
cepts, the model is now well suited for models of both manual and automatic
systems.

So far, our work is only theoretical. Further work should emphasize on ap-
plying the modeling language on case studies in order to evaluate its strengths
and weaknesses. Tool support for model construction and model analysis should
be provided. A natural basis here will be the experimental ICASE-environment
PeP [4].

References

1. A. J. C. Blyth, J. Chudge, J.E. Dobson, and M. R. Strens. ORDIT: A new
methodology to assist in the process of eliciting and modelling organisational re-

65

quirements. In Proceedings on the Conference on Organisational Computing Sys-
tems, San Jose, November 1993.

2. P. J. Denning. Work Is a Closed-Loop Process. American Scientist, 80:314-317,
July-August 1992.

3. H. Gerrits. Business Process Redesign and Information Systems Design: A Happy
Couple? In N. Prakash, C. Rollaad, and B. Pernici, editors, IFIP WG 8.1 Working
Conference on Information System Development Process, pages 325-336, Como,
September 1993. Elsevier Science Publishers B. V. (North-Holland).

4. J. A. Gulla, O. I. Lindland, and G. WiUumsen. PPP: An Integrated CASE Envi-
ronment. In R. Andersen, J. A. Bubenko jr., and A. S~lvberg, editors, Proceedings
of the Third International Conference on Advanced Information Systems Engineer-
ing (CAiSE'91), pages 194-221, Trondheim, May 1991. Springer-Verla~.

5. M. Hammer. Reengineering Work: Don't Automate, Obliterate. Harvard Business
Review, pages 104-112, July-August 1990.

6. J. Krogstie, P. McBrien, R. Owens, and A. H. Seltveit. Information Systems De-
velopment Using a Combination of Process and Rule Based Approaches. In
R. Andersen, J .A. Bubenko jr., and A. Sctlvberg, editors, Proceedings of the
Third International Conference on Advanced Information Systems Engineering
(CAiSE'91), pages 319-335, Trondheim, May 1991. Springer-Verlag.

7. D. C. H. Kung. The Behavior Network Model for Conceptual Information Model-
ing. Information Systems, 18(1):1-21, 1993.

8. R. Medina-Mora, T. Winograd, R. Flores, and F. Flores. The Action Workflow
Approach to Workflow Management Technology. In Proceedings of CSCW'9~,
1992.

9. A. L. Opdahl and G. Sindre. Concepts for Real-World Modelling. In C. Rolland,
F. Bodart, and C. Cauvet, editors, Proceedings of the Fifth International Confer-
ence on Advanced Information Systems Engineering (CAiSE'93), pages 309-327,
Paris, June 1993. Springer-Verlag.

10. M. E. Porter and V. E. Millar. How Information Gives You Competitive Advan-
tage. In Revolution in Real Time: Managing Information Technology in the 1990s,
chapter II-1, pages 59-82. Harvard Business Review, Boston, 1984.

11. G. Richter and B. Maffeo. Toward a Rigorous Interpretation of ESML - - Ex-
tended Systems Modeling Language. IEEE Transactions on Software Engineering,
19(2):165-180, February 1993.

12. A. Sr and D. C. H. Kung. Information Systems Engineering. Springer-
Verlag, 1993.

13. P. T. Ward. The Transformation Schema: An Extension of the Data Flow Diagram
to Represent Control and Timing. IEEE Transactions on Software Engineering,
12(2):198-210, February 1986.

14. T. Winograxl. A Language/Action Perspective on the Design of Cooperative Work.
Human-Computer Interaction, 3(1):3-30, 1987-88.

15. T. Winograd and F. Flores. Understanding Computers and Cognition: A New
Foundation for Design. Ablex Publishing Corporation, New Jersey, 1986.

