
Model ing  Cooperat ive  Work for Workflow 
Management  

Jon Atle Gulla and Odd Ivar Lindland 

Faculty of Electrical Engineering and Computer Science 
The Norwegian Institute of Technology 

N-7034 TRONDHEIM, NORWAY 

Abs t rac t .  Characteristic to workflow management is modeling of work- 
flow of  manual  coordinat ion activities and automated production ac- 
t ivit ies .  Conceptual models are used to analyze and describe workflow, 
though most of these models are not very suitable for representing and 
relating both coordination activities and production activities. In the 
Input-Process-Output paradigm, workflow is modeled in terms of pro- 
cesses and data flow, whereas the Customer-Supplier paradigm defines 
conversation patterns between the actors. The rather intimate relation- 
ship between actor interactions and processual structures is recorded in 
neither of them. In this paper, we suggest to extend the IPO paradigm 
with concepts for coordination activities. We introduce actors and ser- 
vices as a separate model, and show how two-way flows, ports and rules 
help us model cooperative and manual aspects in data flow diagrams. 

1 Introduction 

Workflows describe the coordination and performance of work undertaken in 
businesses. Workflow management provides mechanisms for planning and con- 
trolling workflow, and has received a lot of attention the last few years. Workflow 
management  should allow the analysis of current workflow in order to detect 
potential  bottlenecks and the design of new workflow patterns so that  shortcom- 
ings can be eliminated. Typically, this includes reorganizing, automating,  and /or  
supporting activities in the current workflow. Business process re-engineering is 
an approach to organizational and technological change that  has drawn on the 
achievements of this field [5]. 

In order to investigate and manipulate workflow in a business, a model of the 
current workflow is used for documenting, understanding, and communicating 
the coordinating business activities. Furthermore, the model is a natural  basis 
for experimenting with and evaluating the consequence of introducing changes 
in the model prior to realization. 

When doing so, it is important  to recognize that  workflow is linked to pro- 
cesses tha t  business are performing. Two types of processes exist: production 
processes and coordination processes [10]. In production processes the business 
produces a result (information or material) to a customer. Since the result is 
expected to be of a certain value for the customer, the processes involves value- 
adding activities. The  work in production processes can be manually and an- 



54 

tomatically performed. Gerrits denotes this process type business processes for 
either material production or information production [3]. Coordination processes 
controls the performance of the value-adding activities without directly adding 
value to the product. Typically, this process type the administrative layer of 
the production processes and involves manual coordination of people in order 
to carry out certain actions. Coordination processes are denoted information 
processes by Gerrits. 

These definitions differ from the process definition of Medina Mora et al. [8]. 
They distinguish between material, information, and business processes. Ma- 
terial processes describe activities which involve physical and mechanical work 
to move, transform, manipulate, consume or combine materials. Information 
processes reflect electronic transfer, manipulation, etc. of information. Business 
processes coordinate actions carried out by people. In Flores and Winograds defi- 
nition information and material processes are low-level and well-defined, whereas 
business processes are high-level, ad-hoc and involve a certain degree of uncer- 
tainty. They manifest themselves in communication between people and may 
trigger material and information processes. 

Although different process terminology exists in literature, it is important 
to recognize that workflow involves and affects both production activities and 
coordination activities. In order to model the workflow in organizations two 
dominating "paradigms" exists [2]: The Input-Process-Output (IPO) paradigm 
and the Customer-Supplier (CS) paradigm. The paradigms are complementing in 
that the IPO paradigm is particularly suited for modeling the chain of production 
activities, whereas the CS paradigm is appropriate for modeling the coordinating 
structure within a business and between the business and its customers. 

This paper further elaborates on integrating the IPO and CS paradigms. 
Section 2 briefly describes the characteristics of these paradigms. In Section 3 
the shortcomings of the IPO paradigm with respect to workflow modeling is 
discussed. As such the section provides the rationale for the new concepts that 
are introduced in Section 4. In Section 5 a concluding discussion is offered. 
Directions for further work are also indicated. 

2 T h e  I P O  a n d  C S  p a r a d i g m s  

The Input-Process-Output (IPO) Paradigm is used to model the workflow pro- 
duction processes. The structure of the IPO paradigm is shown in Figure l(a). 
The workflow is regarded as a chain of activities that takes information and 
material as input and produces information or material as output. Complex 
activities can be decomposed into simpler and more structured activities. The 
management of the workflow chain is realized by control to and feedback from 
the process. In an IPO model it is expected that inputs, transformations, and 
outputs are well-defined. The IPO paradigm is suitable for modeling workflows 
in repeatable procedure-based processes. The commitments among the workers 
and in particular between the business and its customers in order to carry out 
the work is is not explicitly described in IPO models. 
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Fig. 1. (a) The IPO paradigm and (b) the CS paradigm to workflow modeling. 

Whereas the IPO paradigm views the workflow as a chain of production ac- 
tivities the CS paradigm focuses on coordination among people. The paradigm 
has been established by Flores and Winograd [14] and is founded on Searle's 
Speech Act [15]. The basic structure is shown in Figure l(b). Two major roles, 
customer and supplier, are modeled. Workflow is defined as coordination between 
these roles, and is represented by a conversation pattern with four phases [14]. 
In the first phase the customer makes a request for work, or the supplier makes 
an offer to the customer. In the second phase the customer and supplier aims at 
reaching a mutual agreement about what is to be accomplished. This is reflected 
in the contract Conditions of Satisfaction. In the third phase, after the performer 
has performed what has been agreed upon and completed his work, completion 
is declared for the customer. In the fourth and final phase the customer assesses 
the work according to the conditions of satisfaction and declares satisfaction or 
dissatisfaction The ultimate goal of this paradigm is customer satisfaction. This 
implies that workflow loops have to be closed and that the customer must ac- 
knowledge that the work has been satisfactory completed. As such, the paradigm 
is appropriate for explicitly modeling the chain of commitments that exists be- 
tween people in order to satisfy the customer. The specific activities carried out 
in order meet the contract is not modeled. Also, the information and material 
needed in each production activity is not described. 

In order to manage the workflow properly, we would like to a comprehensive 
overview of the workflow both in the coordination activities and in the produc- 
tion activities. Furthermore, we would to model the interdependencies between 
the coordination and the production processes. When doing so, the shortcom- 
ings in the coordination process might be explained by an insumcient production 
process. A comprehensive workflow modeling technique encompassing these in- 
terdependencies can be obtained in several ways. In this paper, we show how 
the IPO paradigm can be extended to capture customer-supplier relationships. 
We add new concepts for modeling actors and their cooperation within the IPO 
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paradigm. We are then able to model manual parts of coordination processes as 
well as automated parts of production processes. 

3 Shortcomings of the IPO Paradigm 

Although there are good reasons for adopting the IPO paradigm in workflow 
management, there are aspects of IPO that make it insufficient for modeling 
coordination activities. We address here three issues that concerns the cooper- 
ative aspects of workflow management: (1) the involvement of actors, (2) the 
exchange of information between actors, and (3) the structuring of cooperative 
work processes. 
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Fig. 2. Data flow diagram for loan processing. 

3.1 Invo lvement  of  Actors  

Consider the DFD model shown in Figure 2, which describes a rather simple 
processing of loan applications. A clerk checks that the customer is eligible for 
a loan, and either rejects the application or sends it to a loan consultant for 
further processing (process P1). The consultant suggests an appropriate amount 
to the customer, and if the customer accepts the offer, a loan contract is set 
up in cooperation between these two. In case of a rejection of the offered loan, 
the consultant just returns a confirmation that ends the whole process, ttow- 
ever, neither the clerk nor the consultant is explicitly represented in the model, 
and we just have to know who is responsible for doing the tasks. For a simple 
model like this, that might not be a problem, but in a more general setting it 
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can be difficult to decide who the actors are. And looking at the characteristics 
of workflow management  systems, we wee that  this lack of information is rather  
problematic. Both manual and automated tasks are relevant in workflow man- 
agement. Automated parts can - -  at least in theory - -  be specified all the way 
down to algorithms, and these can then be analyzed with respect to correct- 
ness, efficiency, and effectiveness. What  manual parts are concerned, an analysis 
must also take into account who is designated to do the various tasks. Bottle- 
necks due to overloaded employees, for example, cannot be detected if there is 
no information about  actors in the model. 

3.2 Exchange of  I n f o r m a t i o n  

Exchange of information is common both in production activities and in co- 
ordination activities. Consider for example process P3 in Figure 2, where the 
customer and the loan consultant are to work out a loan contract. Both actors 
contribute to the final contract, and the whole work is organized as a negotia- 
tion process where new ideas and suggestions are exchanged. However, the flow 
contract_negotiation, which should represent the costumer's contribution, only 
model the sending of one single piece of information and is unable to capture 
the responsive nature of negotiations like that .  

What  is needed here, is the ability to specify that  the input flow's values 
at t ime t, for any t within the receiving process's active period, depend on the 
output  flow's values at t ~ < t, and vice versa. As long as the flows are modeled 
as independent, this relationship cannot be made explicit in the model. 

3.3 Structuring o f  A c t i v i t i e s  

Traditionally, process logic has been specified as algorithms [4], state transition 
diagrams [11, 13], Petri nets [7], and decision tables/trees [12]. These may work 
fine for automated processes, but in manual ones one cannot specify the process 
as a complete calculation - -  if that  was possible, it would not have to be a 
manual  process. Instead, notations for structuring the work itself is needed, in 
particular for coordinating the efforts of the actors involved. Looking back at 
process P3 in Figure 2, we see that  there is little information represented that  
can be used to guide the manual execution of the process. The customer should 
either reject the offer or start  negotiating the contract, but  this is not clear from 
the model. Similarly, the result is either a loan or a confirmation that  the offer 
is rejected, but  the model just  states that  there are a number of possible input 
flows and a number of possible output  flows. It is not feasible to specify that  a 
flow depends on or excludes another one, or that  the work has to be carried out 
in accordance to certain rules or constraints. 

4 C o n c e p t s  f o r  M o d e l i n g  C o o p e r a t i v e  W o r k  

Our objective is to extend the IPO paradigm with some basic concepts for mod- 
eling coordination activities and cooperative work. The concepts can be worked 
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out at different levels of formalization for integration with other formalized ex- 
tensions of DFD, but  we will here assume the traditional DFD notation (as 
described in [9]) as a basis. 

A coordination activity involves actors and describe how these interact and 
cooperate with each other. They can be described on the basis of conversation 
theories like Speech Act though there is a great deal of variation among the 
activities. In some coordination activities, the actors are negotiating as indepen- 
dent customers and suppliers; in others, the cooperation is manifested more as 
a command or dependency relationship. In [1], the relationships between actors 
are classified as power relationships, peer relationships, and service relationships. 
Each is characterized by its own pat tern of cooperation, and there is no general 
conversation theory that  can easily account for them all. Still, there are some 
fundamental  principles that  underpin all these relationships, and these have to 
a large extent been neglected in the IPO paradigm used today. We define an 
additional model, the Actor  Service model, that  provides a cooperative point of 
view and is linked to the DFD model as part  of the modeling process. 

The DFD model itself is also supplemented with some extra concepts. These 
enable modeling of cooperative work processes and routing decisions. 

4.1 A c t o r  S e r v i c e  M o d e l  

The Actor  Service model is a supplement to the DFD model, intended for the 
modeling of actor relationships in coordination activities. It describes how actors 
interact and cooperates in accordance to intentions and goals, but there is no 
control flow or data  flow represented. The main concepts are - -  not surprisingly 
- -  actor and service, and these are briefly explained below. 

- An actor a is any entity that  has the ability to provide a service to another 
actor. A hardware or software component can be classified as actors, though 
in this exposition the focus is rather on human actors. These can be external 
to the workflow management system, like external entities in DFD, but  can 
also be employees working as part  of it. Furthermore, an actor can be formed 
by grouping other actors, in which case it is more like a role played by 
these actors. Formally, the role actors are defined as sets of other actors ai, 
a = {ai}. An actor is assumed to have some kind of intention i(a, s) that  
motivates her action; that  is, i(a, s) is a's reason for taking the responsibility 
for bringing about s. 

- A service is defined in terms of a task, a result, or both. Its boundaries relate 
it to actors, so that  there are actors responsible for performing it as well 
as actors requesting or benefiting from its result. Formally, the service itself 
is represented as the tuple s = (t, r),  where t is a task and r is a result 
specification. A service with its associated actors is called a service consteb 
lation. This constellation may also contain the intentions of the performing 
actors and the means for realizing the service, and is specified as a 4-tuple 
c = (p, b, s, m). Variable p is the set of performing actors p = {(i(ai ,  s), ai)},  
where ai is an actor, s is the service, and i(ai, s) is ai 's intention of doing 



59 

s. Variable b is the set of actors {aj} benefiting from or requesting service 
s, and m is a set of subordinate service constellations {si}, DFD processes 
{pi}, or DFD flows {fi}. At the level of elementary services, thus, a service 
is realized as a number of elements in the DFD model. 
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Fig. 3. Actors and services. 

Graphically, we use the symbols shown in Figure 3. This figure is the Actor 
Service model for our loan processing system from Figure 2. The customer is 
responsible for sending the loan request to the clerk and is also negotiating with 
the consultant about the contract. The clerk rejects loan applications when the 
applicants do not have the necessary credibility. 

At last, the Actor Service model can be worked out at different levels of  
detail. In our model in Figure 3, for example, we could decompose the contract 
negotiation constellation, introducing the consultant 's offer as well as customer's 
rejection and acceptance as new services. Alternatively, we could specify the re- 
alization of the constellation as the set of DFD processes {P2, P3}.  The constel- 
lation containing the task Check credibility is given a reference to DFD process 
P1 in its specification. 

4.2 A T w o - W a y  F low 

An ordinary one-way flow transports information from one location to another. 
A two-way flow denotes the exchange of information between two parties, such 
that  information floating in one direction is followed by a response in the other 
direction. Conceptually, this corresponds to a conversation pat tern where two or 
more actors work together and contribute to a common task. 

Following the formalization of DFD indicated in [9], we assume flows to carry 
items, where each i tem is defined as a set of attributes. A flow transports an i tem 
from one location to another in zero time, without changing the values of the 
i tem's attributes 1. It is defined as the tuple f = ( lr l , r2) ,  where i tem place 

1 Actually, this type of flow is referred to as an ideal flow in [9]. 
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~ti specifies a location of a chosen type of item, which means that  an i tem at 
a location represented by r l  is consumed and an i tem with exactly the same 
attributes is immediately produced at a location represented by 7r2. I tem places 
~rl and ~r~ represent locations for the same type of item, and the locations must 
be different from each other. Let us also define (f ,  t) to mean that  a particular 
i tem is transported along flow f at t ime t. Now, a two-way flow can be defined 
as the tuple ~b = ( f l ,  f2), where f l  = (~q, 7r2) and f~ = ( r [ ,  7r~), where 7q and 
~r~ represent one location and r2 and x[ represent another one. 

In the loan processing example, two actors are negotiating a loan contract in 
process P3. The loan consultant is part  of the banking system and is associated 
with P3 through the Actor Service model, but  the clerk is also contributing to the 
manual work of the process. Since the clerk is an external entity, she cannot be 
held responsible for P3's execution, and her contribution must then be modeled 
by means of a two-way flow to P3, as shown by the flow contract_negotiatlon in 
Figure 5. A two-way flow is drawn as a thick line and counts as an input flow 
what ports are concerned (see next section). 

4.3 P o r t s  a n d  R u l e  M o d e l i n g  

An automated completely specified process can be described by its input flows, 
its output  flows, and the functions determining the at tr ibute values of the output  
flows' items on the basis of the input flows' items. Being a little more precise, we 
say that  a process can consume items from a set of i tem places, HI,  and produces 
items to another set of item places, 17o, where all 7r E I7i U 17o represent the 
same location. 

For manual processes, and incompletely automated ones, the functions may 
not be available, and one must use other means for describing their contents and 
internal structures. Rather than formulating functional relationships between 
inputs and outputs,  we then specify constraints on the flows consumed and 
produced during process executions. These constraints serve as a structure for 
the work to be carried out and provide guidelines for the actors in cooperative 
work processes. We introduce input port expressions, output port expressions, 
and constraint rules for the specification of the constraints: 

AND XOR 

1.1 (hi 

Fig. 4. (a) AND port and XOR port. (b) Nested ports. 
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- An input port ezpression lists all possible combinations of input flow items 
that  can be consumed during one process execution. Formally, it is specified 
as the tuple (17I, 171o), where set HI is as above and 171o is a subset o f / / l ' s  
powerset, 17tc C_ ~(17t) 2. 17xc identifies combinations of i tem places, from 
which items are consumed during a single process execution. 
In the DFD model, we add input port expressions using XOR ports and 
AND ports on input flows to processes. The AND port in Figure 4(a), which 
includes two flows with destination places ~r, and ~b, means that  the process 
must consume both item a from 7ra and b from lrb. Correspondingly, the XOR 
port means that  the process must consume either a from 7ra or b from ~rb, 
but not both. Of course, ports may be nested, so that  the port expression in 
Figure 4(b) specifies that  the process consumes either {a, b} or {b, c} during 
each execution. 

- An output port expression lists all possible combinations of output  flow items 
that  can be produced during one process execution. Formally, it is specified 
as the tuple (IIo, IIoc), where set Ho is as above and Hoc is a subset of 
17o's powerset, 17oc C P(/-/o)- 17oc identifies combinations of i tem places, 
to which items are produced during a single process execution. 
Similarly to input port expressions, XOR ports and AND ports are used in 
the DFD model for the specification of the constraints. 

- A constraint rule specifies the existence relationship between consumed items 
and produced items; that  is, given that  a process consumes a specific com- 
bination of input flow items, the rule determines which output  flow items 
are produced. The values of the items' attributes are not involved in these 
rules, just their existence. Formally, we can describe the relationship R as a 
subset of the Cartesian product of the sets IItc and IIoc, R C_ 17tc x 17oc, 
where 17IV and 17ov are as described above. 
In the model, the constraint is specified as a number of constraint rules 
associated with a process. Each rule is of the form 

IF < input ]lows > 
THEN < output]tows >, 

and specifies how the production of items to specific output  flows depends on 
the consumption of items from specific input flows. Note that  this notation 
is consistent with the rule notation in TEMPORA [6], so that  our additions 
can easily be integrated with rule-based approaches to information systems 
development. 

We can now describe the internal structure of manual processes more pre- 
cisely. In process P3 in Figure 2, the process must either receive offer_rejection, 
or contract_negotiation and recommendation, and this is easily shown as an XOR 
port with an subordinate AND port in Figure 5. The output  port expression 
says that  an update is always produced, though only one of loan and confir- 
mation_of_rejection can be produced during a particular process execution. The 

2 P(Hz) is the collection of all subsets of/ /z .  
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Fig. 5. Extended data flow diagram. 

relationship between input flows and output flows is specified by means of the 
two constraint rules in Table 1. An offer_rejection is followed by the sending of 
confirmation_of_rejection, whereas an contract_negotiation leads to the generation 
of a loan. With these constraints specified, one can define tools and methods 
that structure the cooperative work of P3. 

IF contract_negotiation AND recommendation 
THEN update AND loan 

IF offer_rejection 
THEN update AND confirmation_of_rejection 

Table 1. Rules associating input flows and output flows for process P3. 

Additionally, we can restrict the values of the items carried by the flows. This 
is done by extending the constraint rule notation with a special WHERE field, 
which specifies the arithmetic or logical relationships between items consumed 
and produced during a process execution. For example, the flows recommenda- 
tion, update and loan in Figure 5 all carry an item applicant, and the value of this 
item must be the same for all flows. Similarly, the amount item carried by loan 
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and update must have the same value. Assuming that the value of this amount 
has to be less or equal to recommendation's amount, we can now replace the first 
rule in Table 1 with the following extended rule: 

IF contract_negotiation A N D  recommendation 
T H E N  update A N D  loan 
W H E R E  recommendation.applicant = update.applicant = loan.applicant A N D  

recommendatlon.amount _> loan.amount A N D  
loan.amount = update.amount 

Finally, the rule can contain an initial WHEN field that specifies what flow 
- -  or combination of flows - -  triggers the execution of the rule. Looking at 
the rule above, we notice that the rule is triggered by the arrival of flow con- 
tract_negotiation: W H E N  contract_negot iat ion.  In the diagram, this information 
can be made explicit by marking that particular flow with a T. 

5 Concluding Discussion 

Our work relies on the distinction between workflows manifested in coordina- 
tion and production processes. As indicated in Figure 5, the IPO paradigm is 
appropriate for modeling production processes, but lacks concepts for model- 
ing coordination processes. For the CS paradigm the situation is the other way 
round. It is suitable for modeling coordination processes, but lacks direct links 
to production activities. Although both paradigms are flexible and can be ex- 
tended with new concepts, it seems problematic to combine them as they are 
today. We find a focus on control [low in both paradigms - -  though differently 
modeled - -  and if these models are just combined, this redundancy of informa- 
tion would clutter the model and complicate consistency checks. Other problems 
are related to the cyclic and linear nature of these paradigms, and their different 
interpretation of flow content. 

J Actor J 
J Service I 
/ Model / 

Coor~,.atio. / cs Paradigm I L_ 1 -r.~ r_l activities 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  o o  . . . . . . . . . . . . . . . . .  . . . .  

activities [ iPu  paraa=gm j Process 
Mode 

Fig. 6. Towards an integrated workflow modeling approach. 

Our main contribution has been to provide a comprehensive framework for 
workflow modeling, where coordination activities and the production activities 
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are integrated. The IPO paradigm forms the basis, but we have now added 
concepts for the modeling of coordination and cooperative work. First, we in- 
troduced the Actor Service language which enable us to explicitly model the 
services provided by the actors, their intentions, and the relationships among 
the actors. Secondly, a two-way flow makes it possible to model exchange of in- 
formation between two parties. Finally, ports and rules give us the opportunity 
to model the routing of work and the constraints imposed on it. In that sense, 
we have extended the modeling language to the realm of coordination activities 
and also established well-founded links between these too kinds of activities. 

The Actor Service model records coordination patterns among people in- 
volved or affected by the organization. It captures many facets of the CS paradigm, 
though the following properties of our model should also be noted: 

- A model like this does not represent a fixed conversation pattern, since such 
a pattern would include both a number of fixed types of interactions and 
a control flow specifying their sequencing. As the model is, we have the 
freedom to specify simplified interaction patterns when that is appropriate, 
whereas control aspects can be completely left out of the model. 

- Contrary to the CS paradigm, we can here associate tasks and results with 
intentions of the actors, which in turn provides a mechanism for recording 
the rationale of DFD elements. Actors may cooperate in doing a task, but 
the model does not require them to have the same intentions. 

In our current model, intentions are modeled in a rather simplistic way, but 
the basis idea now is to extend the notion of intention and relate it to other 
parts of the enterprise model. Intentions provide background information that 
can help us analyze communication breakdowns and predict both desirable and 
undesirable situations in organizations. More specifically, we are working on 
the relationship between intentions and constraint rules, letting the intentions 
influence on the organization of work among people. 

The data flow model itself now includes concepts that enable a more precise 
specification of manual working procedures. Actor responsibilities and collabora- 
tive work are described by means of the new concepts and the links to the Actor 
Service model. Since these extensions are not in conflict with existing DFD con- 
cepts, the model is now well suited for models of both manual and automatic 
systems. 

So far, our work is only theoretical. Further work should emphasize on ap- 
plying the modeling language on case studies in order to evaluate its strengths 
and weaknesses. Tool support for model construction and model analysis should 
be provided. A natural basis here will be the experimental ICASE-environment 
PeP  [4]. 
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