
IKUMI: A Groupware Development Support
System with Visual Environment

Hiroyuki Tarumi, Atsushi Tabuchi, Kenji Yoshifu *

Kansai C&C Research Labs., NEC Corporation

Abs t rac t . IKUMI is a groupware development support system, which
is based on MEGUMI, the e-mail platform, developed by the authors.
IKUMI provides the workflow feature, including body-less mail for syn-
chronizing activities (beacon messages), visually defining of branching
conditions, and cooperation between e-mail and realtime groupware.
With IKUMI, end-users can easily and dynamically define relatively sim-
ple cooperative work with workflow, and system engineers are able to
embed groupware functions into applications at low cost.

1 I n t r o d u c t i o n

Recent CSCW technologies have produced many kinds of groupware systems - -
general communication tools, including teleconference systems like MERMAID[I],
e-mail, and bulletin board systems, and task-oriented applications, including co-
authoring systems like Quilt[2] and decision support systems like gIBIS[3].

Task-oriented groupware applications are specifically designed only for par-
ticular tasks, e.g. co-authoring or decision making. Application developers, how-
ever, may want to build groupware applications for other unsupported group
tasks by using general communication tools. If a groupware toolkit and a group-
ware development support system (GwDvSS) are provided to the application
developers, these applications would be developed at lower cost.

GwDvSS should be able to be used not only for developing groupware appli-
cations, but also for customizing groupware configuration. In case of cooperative
writing systems, for example, comments and corrections are transmitted with
e-mail. If the system user wants to change the number of commentators or co-
authors, e-mail routing must be customized. Such customization are sometimes
prepared as built-in features of the cooperative writing system. If such customiza-
tions can be implemented without changing any application code, groupware
applications would be more flexible.

For the above reasons, GwDvSS is very important and promising. GwDvSS
should provide the following features:

1. Workflow design:
(a) Information structure design, including multimedia data.
(b) Information processing program design.

* {tarumi,tabuchi,yoshifu } @obp.cl.nec.co.jp

67

(c) Information routing design among people, designed programs, and ex-
isting tools.

(d) Hierarchical workflow structure design.
(e) Teleconferencing system usage design in the groupwork context.
(f) Bulletin board usage design in the groupwork context.
(g) Organizational structure design for the groupwork participants.

2. Generating executable rules and/or codes from the workflow.
3. Allowing ad-hoc design and customization of the groupwork by end users.

For this purpose, many workflow management systems[4] were developed and
are in the marketplace now. The authors appreciate them as innovative systems,
but they are still insufficient as GwDvSS. First, their application area is mostly
focused on business applications. To support other areas, e.g. software devel-
opment management or co-authoring, GwDvSS should support ad-hoc workflow
definition, coordination between realtime and non-realtime groupware tools, mul-
timedia data handling, etc. Second, application development assistance should
be enhanced, e.g. by means of workflow libraries.

The GwDvSS described in this paper, IKUMI, generates rules from visually
defined workflow, which consists of information structure, processing, and flow
design. IKUMI also supports a realtime and non-realtime groupware connection
model and parameterized workflow library model. The generated rules are passed
to an e-mail platform "MEGUMI," which can handle multimedia data, developed
by the authors.

Thus, IKUMI is designed to support all above requirements, while existing
workflow systems do not or weakly support l(a), l(e), l(f), l(g), 2, and 3.

After describing MEGUMI in Section 2, IKUMI profile is given in Section
3. Special IKUMI workflow features will be described in Section 4. Comparison
and discussion will be given in Section 5.

2 M E G U M I : t h e E - m a i l p l a t f o r m

2.1 Fea tures

MEGUMI is an e-mail system developed by the authors. It has the following
pertinent features:

- Semi-formal message structure, like OVAL[5], with form oriented user inter-
face, developed on Canae[6] and OSF/Motif UI toolkit.

- Multimedia data: figures, images including handwritten image and fax image.
- Form definition based on an expansion of the MIME[7].
- Flow management features: circular mail, express mail, and deadline man-

agement.
- File attachment on mail, as an external-body defined in MIME standard.
- Mail tracking.

68

- Mail processing rules in the HyperScheme language [8]. 2
- Application Program Interface (API) as C and HyperScheme functions.

2.2 C o n f i g u r a t i o n

Each MEGUMI user has one's own daemon process, megumi-d (Fig. 1). It re-
ceives all mail for the user, applies rules every time mail is received, opened,
accepted, or sent, reminds the user of a deadline, invokes application programs
for the user and passes them the mail, and manages the mail traffic history. Be-
cause a megumi-d can ask other megumi-d about the traffic history, mail tracking
is possible.

Mail Handler libGG.a ~

(sendma,l~,---~- ~ RPC~i~)

Rule
Application Programs

Fig. 1. MEGUMI Configuration

Application programs and mail handler (i.e. mail reader/composer program)
are connected to megumi-d, via RPC protocol. Precisely, the mail handler is
an application, too. The RPC protocol routines for applications are prepared
as a library: libGG.a. The functional specification for libGG.a is the API for
MEGUMI.

A megumi-d can communicate with two or more applications with RPC.
According to the rule, megumi-d dispatches mail to their corresponding appli-
cation programs. There are two groupware application architectures with this
mechanism. On one architecture, all mail traffic belonging to the application
is exclusively handled by an application-oriented tool. On another architecture,
application mail traffic is put into one's inbox and handled with the standard
mail handler, with special rules pertinent to the application.

2 HyperScheme is a Scheme language expansion, providing object oriented features
and an easy way to accomplish mutual calling with the C language.

69

3 I K U M I : the G w D v S S

3.1 C o n f i g u r a t i o n

The IKUMI configuration is shown in Fig. 2.

m m �9 m i m i u g g m i i n w i i l l l l l l �9 i m m m l m m m m m m m m B B

�9 " Form D . orkflow Def. -"

." Rule

�9 ~ Environment Def. ~" ~ �9
�9 IKUMI �9
�9 l l l l l l m l m m l l � 9 � 9 � 9 1 4 9 i � 9 a i l l s l l l l l l l I

J ,"'] MEGUMI]

Fig. 2. IKUMI configuration

IKUMI is a set of tools, whose names all begin with the prefix GG 3. The final
tool for IKUMI, GGtrans , generates rules for the MEGUMI mail system. Other
tools are all prepared for the definition of workflow or groupwork environment,
with graphical user interfaces. Their main tool is G G w f (Fig. 3) 4, for defining
the workflow based on the visual workflow chart.

In this subsection, we will describe each tool.

G G t m p l - - F o r m D e f i n i t i o n Too l With GGtmpl , the user can define the e-
mail format with a visual user interface. Fig. 4 is a hardcopy showing G G t m p l ' s
user interface.

The upper window is a palette of form components. They are form sheet,
label, choice field, number field, text field, figure field, and image field, f rom left
to right. The lower big window is the form editor. The user can pick up a form
component from the palette, put it on the form editor, and resize individual
components to fill the sheet.

Individual component at t r ibute can be specified by double-clicking the com-
ponent to open the a t t r ibute editor, as shown at top of the form editor window
in Fig. 4. In this example, the at tr ibutes for a choice field - - candidate choices,
allowed choice number, etc. - - are being edited.

After creating a form definition (in the authors ' special language), it is passed
to GGwf. Since the definition can also be directly referred to by MEGUMI mail
to specify the mail 's format, GGtmpl can be used separately from other IKUMI
tools.

3 GG stands for Groupware Generator
4 All screen dumps are taken from IKUMI English version, which is converted from

the original Japanese version.

70

'~!yN~":"gi:~N:

A flow

The flow
/form

,,-An agent node

A role node

Fig. 3. GGwf

G G w f - - W o r k f l o w D e f i n i t i o n T o o l The following explains the GGwf out-
line with rather simple workflow examples. Enhanced workflow features will be
described in Section 4.

As already shown in Fig. 3, the user defines a workflow as a visual workflow
chart - - a directed graph - - in GGwf. Each node may be a role or an agent.
Each arc of the graph is an e-mail transfer. In this paper, individual arc is called

a f low.

R o l e Role is a task unit in the workflow, which is performed by a single person.
The role definition is given as the one responsible for receiving a form as an e-
mail, filling or editing particular fields of a form, invoking a program and putt ing
a form to the program, creating a new form, or sending a form; or a combination
of these responsibilities.

These responsibilities are defined in the detailed definition window shown in
Fig. 5, which appears when the user double-clicks the role node. In this window,
the workflow designer can specify the program that processes the incoming mail,
fields that should be filled by the role, conditions for branch, and the processing
deadline at this node.

To specify fields that should be filled, the user pops up another window, like
Fig. 6, and clicks the target field on the window. This visual definition method
is simple and acceptable by end users.

More description regarding condition specifications are given in Section 4.2.

71

Form Editor

S * l ~ t l a m]

s~= . : I r a I h:~[~'--------

~'1 , []

P a l e t t e

Attribute Editor

Fig. 4. GGtmpl

i ~te ~od~ ~ .

Processing option i
for incoming form

i O ~ - } I

~ " [~~%]1 Button to ~ j ~ , ; ~ ;]
invoke Fig.6

~ . ~ = ~ ;

Buttons for ~ - ; . - - i ~ . - - ~ - - - - -] i
outgoing f~m ID-s ',~,~-- - -]

~" Role name I " " II 0 ~ . ~

Incoming form list

l i Button to invoke
I i HyperScheme editor

~ Outgoing form
list

I

Deadline options ,.=,~: iO~- ~ IIOF~- ,~l~e E~-~I O~Y *11�9 ~- , - ~ ' - - " W " -

[~ [] : [] ' i

w=,c,~.: ~ . t . IO+to,~m.~ _ I ~ ..
~ 0 m ~ - . ~ Branch specifications

Fig. 5. Node Specification in GGwf

72

Buttons to select
f ie lds/ ... Selected field to fill(colored)

Rea=m fop RsJect.:Lon:

Fig. 6. Field Selection in Node Specification

The user can also define the name for each role, the icon for each role, and
constraints among roles. An constraint example is a rule to prohibit a person
from concurrently engaging in two particular roles.

Agent In IKUMI, agent means a computer program which receives and sends
e-mail traffic, without interacting with any user. For example, a program which
automatically fills in the serial number field for a form can be an agent, if the
form is given from and sent to another node as e-mail. Each agent is represented
as a circle icon in the visual workflow chart.

When the GGwf user double-clicks an agent node, the detail definition win-
dow similar to Fig. 5 appears. In this window, the user can specify the program
name that processes the incoming mail, or directly write a program in Hyper-
Scheme language. If the agent function is simple, e.g. copying fields or filling
fields with constant values, the user can specify this visually in almost the same
way as in Fig. 6. Hence, even end users can define agents without writing codes.

F low A flow basically represents an e-mail transfer from one node to another
node. The user can specify the mail form by attaching a form name to the fow.
More discussion on a special flow type (beacon message) will be presented later
in this paper.

T o t a l G G w f U s a g e D e s c r i p t i o n The GGwf usage outline is as follows:

1. Click the ROLE button and select the role subwindow; create new roles on
the subwindow and insert them on the workflow editor.

2. In the same way, click the AGENT button and select the agent subwindow;
create agents on the subwindow and insert them on the workflow editor.

73

3. Connect nodes by flows.
4. Click the FORM button and select a list of forms defined in GGtmpl . For

each information flow, a form name must be selected and at tached.
5. Double-click each node, and select a detail definition window for the role or

agent, and give the detailed definition.
6. Save the workflow and quit.

The GGwf output is given as a set of S-expressions.

G G e n v - - E n v i r o n m e n t D e f i n i t i o n Too l With GGenv, the user defines the
environment for executing the groupware application. For example, the name of
person who fulfills each role, machine type which each person uses, and people 's
organizational s tructure are environmental parameters . These definition will be
reflected onto the rule generation phase at GGtrans .

Currently, GGenv only supports the definition of the name of the person who
fulfills each role. To achieve workflow portability, it is necessary to separate this
definition from the workflow.

G G t r a n s - - R u l e G e n e r a t i o n Too l GGtrans is the only tool which has no
graphical interaction with the user. It receives the definitions from other IKUMI
tools, and generates rules for each user 's megumi-d.

For each person engaging in any role in the workflow, GGtrans generates
rules, i.e. compile workflow and environment definition into rules, that will be
invoked at the event of creating, receiving, and sending a form, and originating
a workflow. It also generates metarules, which are used to select the rule file
at each event. These rules and metarules are distributed by control mail to the
megumi-d for each groupwork member.

If a person engages in two or more roles in a workflow, rules for all these roles
are merged for the user with metarules. The user 's rnegumi-d selects the proper
role rule, when it receives or sends e-mail traffic, by evaluating the metarules.

An metarule example is:

(gg-eval-rule "receive"
("exl" 1.0 1.0 "FLO01") ("FormA" 1.0 1.0) "exl-l.O-C-l.scm")

This metarule means that , if the megumi-d receives mail, whose workflow-name is
"exli" whose workflow-version is 1.0, whose flow-id in the workflow is "FL001,"
whose form is named "FormA," and whose form-version is 1.0, then it executes
a rule file "exl - l .0-C- l . scm." Flow-id is a unique ID in a workflow, which is
appended on every e-mail, by the sender node's rule at the sending event.

For each agent, rules are given to the agent program. The agent p rogram is
a UNIX program, invoked f r o m / u s r / l i b / s e n d m a i l on receiving mail traffic.

3.2 Target Users

IKUMI ' s target users are groupware application developers and groupware end
users. This subsection describes the applications for these target users.

74

G r o u p w a r e A p p l i c a t i o n D e v e l o p e r s Application developers develop group-
ware application, in the following way:

1. Designs the workflow, and defines it on IKUMI tools.
2. Installs the generated rules and agents.
3. If necessary, develops programs which are called from the rules or agents,

using MEGUMI ' s API (libGG.a).
4. Installs the programs.

G r o u p w a r e E n d - U s e r s End users can use IKUMI in almost the same way
as the developer's. However, because they cannot develop programs in C or
HyperScheme language, function of agents and roles are restricted.

Even with this restriction, end users can develop form handling groupware
applications. They can define forms, each role's responsibility for filling form
fields, and fows. They can even define agents for copying or filling form fields.
MEGUMI ' s s tandard mail handling program is used for such an application. It
supports sufficient features for such simple groupware applications, i.e. form-like
user interface and interface for reminding the user of a deadline for making a
response.

Thus, the end-user can create and install ad-hoc workflow definitions. This
is impor tan t for support ing real office work.

4 W o r k f l o w F e a t u r e s

This section describes special IKUMI workflow features. These features are given
by expansion or additional a t t r ibutes for flows (Section 4.1) or nodes (other).
These features enhance the workflow expressive power in the visual environment.

4.1 B e a c o n M e s s a g e

A beacon message is a special flow category, which is implemented as e-mail with
no body and is invisible to the end users. A beacon message is represented as a
broken line arrow in GGwf.

It is useful to synchronize group members ' activities. For example, assume
such a workflow as that shown in Fig. 7. Role A, the originator of this workflow,
creates a progress report and sends it to Role C. At the same time, Role C
requires the newest financial report, which is made by Role B, in reading the
progress report . I n this case, Role A sends a beacon message to Role B, when
Role A sends the progress report to Role C. Role B's megumi-d prepares (i.e.
invokes or creates a GUI icon for) an editor for the financial report, when it
receives the beacon message. The beacon message is, of course, automatically
sent by the rule. With this mechanism, Role A and Role C do not need to write
a message to Role B, like "Please prepare the newest financial report." Role B
does not need to read such routine-work mail, either.

75

~-~ Financial
Ro,e. E ort

\

report

Role A

Fig. 7. A Workflow with Beacon Message

4.2 B r a n c h in W o r k f l o w

Some workflows have flow branches. IKUMI provides two branch categories:
AND-branches and OR-branches.

The OR-branch specification is visually defined in the detailed definition for
the branching node, with a window such as shown in Fig. 8. The user defines
the specification by clicking the focused field on the form, specifies the value and
operator for comparison, and gives the selection for each comparison result.

Selected field in the
Condition Table form (colored)

~ - q ~

Fig. 8. Window for branch specification

4.3 R e a l t i m e C o n f e r e n c e N o d e

Realtime communication and non-realtime communication are both necessary
for groupwork. Most existing groupware tools support only one of them. The

76

authors support seamless connection between non-realtime communication and
realtime communicat ion by conference nodes in groupwork workflow.

Fig. 9 is a conference node example in a workflow definition. A conference
node has at t r ibutes such as the name of the chairperson, names of participants,
and the name of minutes writer. All incoming flows to the conference node rep-
resent the required documents for the conference. The sources for these flows are
the roles responsible for the documents. The outgoing flows from the conference
node represent the minutes, and the destination nodes of these flows are the
receivers of minutes other than participants.

• ~Report A
~ , . ~ ~/f Conference

~-~'~ j ~ 1 ~ I CHAIR = ManagerA
~ - ~ Report ~ t ~ B] P '_/q ~1~ laPnAa;eTr~ '
/ \ | Manager C}

MINUTES = Manager C

Fig. 9. A Conference Node Example

From such a workflow, GGtrans will generate the following rules for the
chairperson's rnegumi-d .

1. Rules to wait for M1 incoming documents.
2. Rules to prepare a GUI icon for the conference, which can invoke a conference

program with specified parameter file.

GGtrans also generates a parameter file for the conference. The parameter in-
cludes the names of required documents, the conference participants, the chair-
person's and minutes writer names. When the conference is started, an editor for
the minutes appears on the minutes writer 's display. The editor sends the min-
utes to all destinations by e-mail, when the conference is finished and minutes
are completed.

This type of workflow is still effective for a non-electronic, traditional style
meeting. In such a case, GGtrans can generate rules for the chairperson, like:

1. Rules to wait for all incoming documents
2. Rules to send these documents to all part icipants by e-mail
3. Rules to show a message to the chairperson indicating that the chairperson

can call the meeting.
4. Rules to send a beacon message to the minutes writer, which let the minutes

writer 's megumi-d prepare the editor for minutes.

77

4.4 Workflow Library

Frequently used workflow pat terns should be collected and prepared as a work-
flow library set. For example, a comment-and-rewrile pat tern should be prepared
as a parameter ized skeleton for the workflow in Fig. 10(a). It will be used as a
node in a concrete workflow in the same way as macro expansion, as shown in
Fig. 10(b).

V
!
!

V

Writer

~
O C - X

0oc.x 0 -x

Commentator Writer

Ib
doc-x

(a) Comments-and-rewrite pattern definit ion

~
" " "~"f Role A

Comments-and-rewrite

Writer = RoleA Commentator = RoleB
dox-x = research report

"~ Research

(b) Comments-and-rewrite pattern usage

Fig. 10. An Workflow Skeleton Example

Note that the role "writer" in Fig. 10(a) is replaced by "Role A" in (b). This
causes the source and destination nodes for the beacon message to be identical.
In such cases, no beacon message is made when this workflow is executed, but
a s tate transition from the previous mode to the comment-and-rewri te mode is
caused in Role A's megumi-d .

5 Comparison and Discussion

5.1 C o m p a r i s o n w i t h O t h e r W o r k f l o w S y s t e m s

The closest systems to IKUMI would be WorkMAN [9][10] and Regat ta[l l] .
WorkMAN provides Forms Designer and Forms Router tools, corresponding to

78

GGtmpl and GGwf. Regat ta[I l l also provides a visual environment for group-
work design. IKUMI's most notable differences from them are visual program-
ming environment with direct manipulation on forms (Fig. 6 and Fig. 8) and
connection to realtime conference.

5.2 Mai l vs. S h a r e d Fi le

IKUMI's workflow model represents every flow as an e-mail transfer. Data trans-
fer among groupwork members can also be realized by shared files. However,
IKUMI also supports a file sharing type of data transfer. As described in Sec-
tion 2, the user can attach a shared file as an external-body component to
MEGUMI mail. In this case, the mail is a control transfer among groupwork
members, and it is logically equal to the workflow system based on shared files.

Using this method, a simple and uniform control transfer mechanism can be
obtained. Regardless of the data transfer style - - mail, shared file, or hybrid - - ,
megumi-d can get all control transfers from any person or agent by mail, so that
megumi-d can manage all to-do items for all workflow definitions uniformly.

5.3 D i s t r i b u t e d vs. C e n t e r e d C o n t r o l

Some workflow systems have centered control mechanisms [9]. In this category,
there is logically one control and data center. (Physically, the data repository
may be duplicated or distributed.) IKUMI and MEGUMI do not adopt it. In the
author 's system, megumi-d units have distributed control, and data stores are
personally managed or given as project repositories in each workflow. Megumi-d
units exchange implicit control messages to track mail, to inform about dynamic
alternations to mail route, etc. Such distributed architecture can be applied to
cross-organizationM working group.

6 C o n c l u s i o n

This paper has described a Groupware Development Support System IKUMI,
especially its function and the workflow model. IKUMI supports multimedia
mail (requirement l(a) in Section 1), agents(l(b)) , mail routing (1(c)), workflow
libraries (l(d)) , conference node (l(e)), rule generation (2), and visual environ-
ment which gives easy interfaces even to end users (3).

Groupwork support is expected in not only business applications, but also in
CASE and CAD applications. In these areas, questions and answers on product
specifications, bug reports, progress reports, etc. are e-mail items. Tracking these
documents is helpful for manager's work, and also an effective way to satisfy ISO-
9000 standards. Of course MEGUMI's multimedia mail feature is indispensable
to these application areas.

The authors believe that the workflow system is an important unit in the
groupware toolkit, but it is not the entire thing. Other important factors are
co-producing and sharing. As for co-producing, multimedia document review

79

and decision support would be important functions in a groupware toolkit. For
sharing, bulletin boards must be in the toolkit. Co-producing and sharing toolkit
are now being developed.

IKUMI and MEGUMI are implemented on SVR4 UNIX system. Client pro-
gram library, libGG.a, is also implemented on personal computers running MS-
Windows 3.1 operating system. IKUMI and MEGUMI are applied to CASE and
CAD products.

Acknowledgements

The authors would like to thank Masao Managaki, Hitoshi Miyai, and other
laboratory members for helpful comments on this research, and thank Hiroyuki
Yagyu for the implemention of IKUMI and MEGUMI. Finally the authors wish
to acknowledge the support of several divisions in NEC.

References

1. Watabe, K., et al. : Distributed Multiparty Desktop Conferencing System: MER-
MAID. Proc. of ACM 1990 Conf. on CSCW (1990) 27-38

2. Leland, M. D. P., et al. : Collaborative Document Production Using Quilt. Proc.
of ACM 1988 Conf. on CSCW (1988) 206-215

3. Conklin, J., and Begeman, M. L. : gIBIS: A Hypertext Tool for Exploratory Policy
Discussion. Proc. of ACM 1988 Conf. on CSCW (1988) 140-152

4. Marshak, R.T.: Requirements for Workflow Products. Groupware '92 Proceedings,
Coleman, D.D. Ed. (1992) 281-285

5. Malone, T.W. and Fry, Ch. : Experiments with Oval: A Radically Tailorable Tool
for Cooperative Work. Proc. of ACM 1992 Conf. on CSCW (1992) 298-205

6. Tarumi, H., Rekimoto, J., Sugai, M., et al.: Canae - - A User Interface Construc-
tion Environment with Editors as Software Parts. NEC Research and Development.
98 (1990) 89-98

7. Borenstein, N. and Freed, N.: MIME (Multipurpose Internet Mail Extensions) Part
One: Mechanisms for Specifying and Describing the Format of Internet Message
Bodies. RFC1521 (1993)

8. Saji, K. and Kageyama, T.: HyperStation: Concept of Distributed Object-Oriented
Dynamic Language HyperScheme. Proc. 45th Annual Conf. of IPSJ. (1992) 2Q-1
(in Japanese)

9. Reinhardt, A.: Smarter E-mail is Coming. Byte. 18-3 (1993) 90-108
10. Udell, J.: Workman Needs Work. Byte. 18-9 (1993) 167-170
11. Swenson, K.D.: A Visual Language to Describe Collaborative Work. Proc. of 1993

IEEE Symp. on Visual Languages. (1993) 298-303

UNIX is a trademark of UNIX System Laboratories, Inc. OSF/Motif is a trademark
of the Open Software Foundation, Inc. MS-Windows is a registered trademark of Mi-
crosoft Corp. WorkMAN is a trademark of Reach Software Corp. MEGUMI, IKUMI,
and Canae are trademarks of NEC Corp.

