
Capturing Semantics by Object Relativity

William Wei Song
SYSLAB, Department of Computer and Systems Sciences

Royal Inst. of Technology and Stockholm University
and

Swedish Institute of Systems Development (SISU)
Electrum 212, 164 40, Kista, Sweden

E-mail: william@ sisu.se

Abstract. To acquire the semantics of objects in schemata and hence to identify the
objects is becoming a crucial research problem in schema integration. It is an
effective and feasible way to make use of a group of schemata (schema family) to
capture the meaning/concept of objects. In this paper we analyze the various
relations between a given object and its related objects in the existing schemata and
construct a characteristic set for the object. The relations include attributes,
relationships and mapping constraints, contexts, and some specific inter-object
relations like generalization, etc. The characteristic set so generated for an object can
uniquely identify the object. We also attempt to apply the obtained characteristic set
for the semantic conflict detection and resolution.

Keywords. view integration, schema integration, semantics, entity-relationship
model, conceptual schema design, data dictionary

1 I n t r o d u c t i o n
Schemata are the products of an activity, called conceptual database design, which uses the
semantic model to describe data in an abstract and understandable manner. Schema integration
is the activity of integrating the schemata of existing or proposed databases into a global,
unified schema [2]. Nowadays, the research on schema integration, has gained increasing
attentions because of its significant effect on methods for conceptual information modelling.
The aim of schema integration is either to create a global schema, which takes in all the
possible" user's views, and makes these views consistent; or to provide a common access or
interface to local schemata in which the user's diverse requests (or views) are represented.
Usually, the process of schema integration consists of the following five iterating steps,
canonization (pre-integration), comparison, conciliation, merging (integration), and
restructuring. 1) In the canonizing step the intra-schema conflicts and inconsistencies are
detected against some pre-defined criteria or requirements, such as "an entity type is not
allowed to connect to an attribute by a relationship". 2) The comparison step performs a
pairwise comparison of objects of the schemata to be integrated and finds possible object pairs
which may be semantically similar. The object pair set so generated is called the semantic
similarity relation with respect to some properties, such as synonym, equal key attributes and
equal contexts. 3) In the conciliation step, a variety of user assisted techniques are used to
resolve conflicts and mismatched objects. 4) The merging step generates an integrated schema
from two component schemata. 5) In the last step, restructuring, the objective is to check the
consistency of the integrated schema and build correspondences between the component
schemata and the integrated schema [13].
One of the main tasks of schema integration is to detect semantic conflicts among objects
from schemata or find out semantic similarities between objects. Due to the differences
between the user and designer perceptions of the reality, semantic conflicts arise from time to
time in the schema evolution and integration. These conflicts must be solved with specific
methods, which are not considered in ordinary information system and database design
methodologies.
It is apparent that a common problem both to the processes of schema design and integration
is that of acquiring and applying semantic knowledge. In the process of schema design, the
designer chooses some words to symbolize the concepts in the reality of interest. He also

120

chooses suitable words to reflect the associations between the concepts. He has still to choose
some words to display the attributes of entities. Therefore, so generated schemata contain three
basic components, entities, which represent the conceptual meaning of the objects in the real
world, relationships, which describe the association between the entities, and attributes, which
give the possible features of the entities. These schemata, which represent some portions of
the reality of interest, are usually intersected and interrelated.
In the process of schema integration, the components of schemata are contrasted to and
compared with each other. The aim of such contrasts and comparisons is to find the semantic
similarity between schema objects for the subsequent object integration or to detect the
semantic conflicts among schema objects for the schema semantic integrity. At present, these
contrasts and comparisons are mainly fulfilled by human (such as DBA). He uses his
experiences and knowledge (including both syntactic and semantic) to interpret the schemata to
be integrated and further perform integration on schemata. In addition to the user's subjective
understanding of the schemata to be integrated, he also uses the semantic relations which
exists between the object types in the previous schemata and his previous integration
assertions.

1.1 Problems to be addressed
One of the major problems of schema integration is the semantic knowledge acquisition from
the existing schemata and the representation of such acquired knowledge in some way. It is
difficult to precisely and exactly acquire the semantics of the objects in schemata, since it
involves the correct interpretation of people's perceptions (views) of the reality, the correct
representation of these perceptions (views) by using schemata, and the correct re-appearance of
these perceptions after schema integration [12].
Key problems, addressed in this paper, are how to obtain and apply the semantic knowledge
which exists in the previous schema design for the use of subsequent schema .integration and
semantic integrity checking. In schemata, entities are assigned certain conceptual meanings.
Such meanings stipulate that an object is different from the other objects. Similarly, the
conceptual meanings of relationships stipulate that what entities can be the domain and what
entities can be the range of the relationships. Still as the like, the attributes of an entity may
tell the distinction of this entity from the other entities. Besides, many schemata are modelled
by an extended ER modelling tool. This extension will give some additional semantics. For
instance, generalization offers a new association (supertype) between entities.
Consequently, the capture of the schema object semantics should focus on the existing
schemata and make use of the semantic relationships among the schema objects for
establishing the characteristic set of the objects. In the paper .w.e analyze the various relations
between a given object and its related objects in the existing schemata and construct a
characteristic set for the object. The relations include attributes, relationships and mapping
constraints, con[exts, and some specific inter-obj..ect relations like generalization, etc. The
characteristic set so generated for an object can uniquely identify the object. We also attempt
to apply the obtained characteristic set for the semantic conflict detection and resolution. To
our knowledge, little research work has been focused on this aspect of schema integration
issues.

1.2 Rela ted work

Since the mid eighties, the research direction in schema integration has been gradually
changed. It can be featurized as I) the entity relationship model or some extension of it is
considered as the major schema design model [10, 13]; 2) the in-depth structure (the role of
attributes, mapping constraints, etc.) of schemata is focused on [8, 9, 13, 15]; and 3) the
semantics of schema objects is emphasized [13]. Recently, the research on data or semantic
dictionary is emerging [I, 4, 11]. In our opinion, research on semantic of schema object types
consists in the basis of the semantic dictionary while the development of semantic dictionary
is undoubtedly the result of the semantic analysis on schemata. A comprehensive survey of
early view integration research results can be found in [2].

121

An incisive analysis of schema integration semantics is made in [6], where some of the
methods are analyzed for the database syntax and semantics which populate and can differ
among the resources of an enterprise information system. These distinctions are caused by a
number of factors, including the different perspectives of the schema designers, the different
representations of the reality concepts by the users, etc. The author emphasizes that the
database semantics should be taken into account at the early stages of.the database design
process.
It is stated in [3, 5] that the view integration is a semantic unification which takes into
account the domains of atomic objects. Semantic relations are based on the name relation,
domain relation, and structure relation of objects. The result of the semantic unification of
two concepts is represented by a multiple information called similarity vector whose
interpretation of the different components will vary from the semantic equivalence, the
semantic similarity, to the semantic dissimilarity.
A deep analysis of the semantic similarity relations between schema objects is presented in
[13]. Based on such semantic similarity relations, the user is supposed to have more decision
information (suggestions) for the assertion makings during the schema integration. The
similarity relation between two objects is obtained through the examination of their names,
their attributes, their relationships, and their contexts. Such similarity relations are further
categorized into 4 groups: weak semantic relation, compatible semantic relation, equivalence
semantic relation, and mergeable semantic relation.
A methodology for data dictionary design is proposed in [1, 11]. The methodology is based on
the concept of local area schema, a data description realized with a given model, at different
levels of abstraction. Data abstraction is realized through the introduction of refinement,
which is a mechanism allowing for modelling the same portion of reality in terms of several
schemata at different levels of abstraction. Refinements are formally defined through the
introduction of transformations from a source schema to target one. The methodology for data
dictionary design performs a multilevel integration starting from the chain of refinements of
local schemata and the sequence of transformations representing them, and generates an
integrated schema.
Consequently, it is widely accepted that semantic relations in schemata play an important role
in the schema integration. Even more important is the use of such semantics already-existing
in the schemata. However, current research is restricted to obtaining such semantic knowledge
from the current, isolated schemata to be integrated and to temporarily applying the semantic
knowledge obtained only for the current integration work. To our knowledge, little attention
has been paid to the capture of semantic knowledge existing in a group of schemata which are
designed for a certain application domain and closely related to one another. We name such a
group of schemata a schema family. In this paper, we attempt to take into account the
semantic knowledge which exists in a schema family and to present an approach to expand the
knowledge during the process of schema design and integration for an application domain.

1.3 An overview of the paper

The acquisition of the semantics from the existing schemata is a key problem of correct
understanding of the current schemata to be integrated. In this paper, we are going to propose
an approach to schema semantics capture for schema integration, which makes use of various
relations existing between different schema objects, such as attributes, relationships and
mapping constraints, object contexts, generalization, etc., to extract the semantic knowledge
(i.e., characteristic set) for objects, we also extend this concept to the semantic capture of
objects from a group of schemata, we call it schema family. In the next section, we
present some assumptions as the basis on which object semantics is expressed. We will
discuss the relations among a concepts, its name (or word), and its physical occurrences. We
define entity types, relationship types and attribute types in schemata as concepts which are
represented by names. In the section 3, we analyze the functions of various relationships and
contexts of a given entity type and investigate their contribution to the characteristic set of the
given entity type, as well as the contribution from a schema family, and hence form some

122

characteristic set expansions. The detection of possible semantic conflicts in terms of the
entity characteristic set is observed in section 4, where three typical semantic conflicts are
taken into account, i.e., synonym, homonym and cyclic generalization. We conclude the paper
in the last section, the section 5, and discuss future work in this area.

2 Some Basic Concepts

2.1 M o t i v a t i o n

Two major steps of the database design process are: conceptual schema design and physical
database design. The corresponding products are respectively conceptual schemata and
databases which contain instances (the facts in the reality). For example, let us consider
modelling Department and Employee, and the relationship works-at between them. Two
possible schemata can be designed to model the case (see Fig. 1), and the result database is
shown in Table 1.

Fig. 1 The schemata for employee, secretary and department.

Employee Department
Era# name ~ Dp~ title loc head

600102 John addrl 1111 CS loci John
600202 Mary addr2 2222 Ph 1oc2 Mary

Table 1 An example of instances of the schema 1.
Comparing the two schemata, 1 and 2, one may possibly jump to the conclusion that the
entity 'Secretary' could be identical to the entity 'Employee', which is hint by the facts that
both the entities have the same attribute 'Era#', 'name' and 'addr', and the same context 'works-
at-Department'. In other words, by attributes, relationships, and contexts of entities, we can
capture the semantic of the entities of interest and identify them. Database design involves
two aspects of matters: the concepts appearing in the database schema and the instances or the
facts in the concrete database. Table 1 gives a part of instances of the proposed schema in
Fig. 1. The concepts reflect the understanding of the users or the designers to the reality and are
used to describe the reality. The instances are the physical occurrences of the concepts in the
real world. As a matter of fact, we have a third component, words (or names), which
symbolize the concepts. In other words, an object in schema corresponds to three components:
its name (word), a concept the word represents, and a set of instances the concept refers to.
The relationships between them are illustrated in Fig.2. In the database schema design and
integration, concept capture and representation are the main problems to be attacked. In the
rest of this section we give some assumptions, based on which we can discuss the semantic
properties of objects. sym~

word object

Fig.2 The meaning triangle

2.2 Words and concepts
Schemata are designed to describe a portion of the real world, its perceived concepts and the
associations among the concepts. This portion of the real world is called the universe of

123

discourse, denoted U. We assume that the universe of discourse U is monolithic, i.e., no
association existing between U and outside U. All the elements contained in U are concrete
objects 1 (in contrast to abstract, conceptual objects) for a certain application domain in the
reality. We still assume that the schemata defined on U are homogeneous, i.e., designed for a
certain particular area of interest and by the same modelling tool. To make such assumptions
is to better investigate the contribution of schema family to the schema semantic capture.
These concrete objects are grouped into classes. Each class corresponds to a concept in the
concept set C. A class in U can be further divided into sub-classes, which also correspond to
sub-concepts in C. A concept is symbolized by a word (or name) in the word set W. In the
following, we will define these relations between them.

Definition 2.1 Let W and C be the word set and the concept set respectively. We
define that symbolize is a mapping from W to C,

symbol ize : W -> C,
so that symbolize(w) = c, c ~ C and w ~ W.

When the mapping symbolize maps two different words to one concept, the two words are
considered synonymous. When it maps one word to two different concepts, the word is
considered homonymous.

Definit ion 2.2 Given that C is the concept set and U the universe of discourse,
which contains the concrete objects, we define that extension is a mapping,

extension : C => 2 U,

so that extension(c) = {ol, 02 on}, c E C and oi ~ U.
The concept of a word is also called the intension of the word. The intension of a word is that
part of meaning that accords with general principles in semantic memory. The extension of
a word is the set of all existing things (instances) to which the word applies [14]. In the other
words, the intension of a word is a set of properties, a set of characteristics which uniquely
identify a concept represented by the word. During the comparison step in schema integration
process, one of the main tasks is to identify words. Because the difficulties of capturing the
intension of words, this work is mainly carried out by the user. Our aim is to acquire the
intension of words through investigating the interrelations of schema objects.

2.3 The characteristics of a word (or a concept)
There are three approaches discussed in [14] to capture the semantics (concept) of a word: I)
using the type definition, 2) using a prototype and 3) using schemata. Type definition of a
word (concept), in general, is to give its genus and differentia. In a simpler way, we may
explain it as that to define a word is to find out its super-concept (of course symbolized by a
word) and one or several properties which differ the word to be defined from the words which
represent the rest concepts within the super-concept. However, it is rather difficult to find a
suitable super-concept and the properties which exactly identify the word to be defined 2.
Prototype approach is to recognize a word (concept) against an existing set of properties.
When the word resemble all the properties, it is considered to be identified. However, the
problem here is how to obtain the needed properties and according to what criteria to group the
properties.Concept schemata are considered as a kind of means to acquire the properties of a
word (or a concept). For each concept symbolized by a word, schemata describe the
conventional, normally occurring, or default roles that it plays with respect to other concepts.
Comparing to the type definition method, where for example, the definition of Employee will
present the primary (identically, uniquely) defining characteristic, a schema would include the

1We use the 'concrete object' to indicate an individual instance (or fact) in the real world, e.g., Mr.
Smith, in contrast to the 'abstract object', e.g., person. We adopt the term object for the latter.
2In addition, normally the definitions are in natural languages, therefore difficult to deal with by
computer.

124

neighbouring information about Employee such as having an employee number, earning
salary, reporting to a manager, working in a department, and so forth, all of which together
form the properties of Employee and may uniquely identify it.

Def in i t ion 2.3 (Charac ter i s t ic funct ion and cha rac te r i s t i c set 3) For each

concept c in C, there is a function 2 ̀: C -> 2 7. (Z is a set of all properties for all the

concrete objects in U), that 2 ̀(c) = a, cr can uniquely identify the concept c. We call 2 ̀

the characteristic function, a the characteristic set. This set is assumed to contains all
the characteristics (or properties) of the concept c.

The intension of a word indicates the nature of the word and therefore indicates the common
nature of all the objects in the word extension, i.e., the object type. Therefore, we may
conclude that if two words have the same intension, their corresponding object types in the
schemata can be integrated. In the section 3, we will discuss in detail how to form the
characteristic set of a word from the schemata to be considered and the users' assertions given
during the schema integration.

2.4 Schema and its components
As known to us, schemata are designed by some semantic models (for example, the ER
model). Semantic models attempt to provide more powerful abstractions for the specification
of database schemata. They allow the designers to think of data in ways that correlate more
directly to how data arise in the real world and to model data at a higher, conceptual level [7].
ER model is one of such semantic models. The schemata created by this model support the
representation of abstract sets of entities, relationships which establish some conceptual
associations between entities, and attributes to describe the features of entities. In this paper,
we apply an extended ER model, called ER+, which has been defined in [13]. However, for the
aim of capturing semantics of the objects (i.e., entities, relationships, and attributes) we only
focus on the parts of an object, which are dedicated to semantics, and rule out the other
information attached to the object. Fundamentally, we consider the name and the characteristic
set of an object.

Defini t ion 2.4 (Object type) An object type O is a triple:
<name(O), 2`(O), extension(O)>,

where
1) name(O) is the name of the object type O,
2) 2, (O) is the characteristic set of O, which uniquely identifies O, and
3) extension(O) is all possible instances of O.

Defini t ion 2.5 (Entity type) An entity type e is an object type. We assume that
no entity type in a schema is isolated. That is, any entity type in a schema must be
related to at least one other entity type by a relationship type.

Def in i t ion 2.6 (Re la t ionsh ip type) A relationship type r is an object type,
which, expressed by an arrow, connects an entity type, the domain of the relationship,
with one or more entity types, the ranges of the relationship. Each relationship type
has a mapping constraint, described by the predicate

tel_map(r, [(M1 :N1), (M2:N2)]),
where r is the relationship type, (MI:N1) represents that the domain entity must
participate in at least M 1 and at most NI instances of the relationship type r, and
(M2:N2) indicates that the range entity must participate in at least M2 and at most N2
instances of the relationship.

For example, the mapping constraint of the relationship type 'owns' in the schema

3We use characteristic set and semantic set as synonym.

125

o w n s I-:::q
indicates that an owner may have zero up to many cars and a car must be owned by at least
o n e o w n e r .

Defini t ion 2.7 (Attribute type) An attribute type A is a an object type. An
attribute type must be associated to an entity type and an entity type must have at least
one attribute. The entity type is called the domain of its attributes. Each attribute type
has also a mapping constraint, denoted by a predicate as

attr_map(A, [(M1 :N1), (M2:N2)]),
where A is the attribute, and the mapping constraint [(MI:N1), (M2:N2)] shares the
same explanation as in the definition of relationship type.

Def in i t ion 2.8 (Key At t r ibu te) Let ex tens ion(A) and e x t e n s i o n (E) be the
extensions of an attribute A and an enfty type E respectively. If there is one-to-one
mapping between extension(E) and extension(A), and the element number of
ex tens ion(E) is the same as that of extension(A), it is said that A is the key
attribute of E.

This definition implies that some attribute (i.e. key attribute) can uniquely determine an entity
type.

Defini t ion 2.9 (Schema) A schema is a meaningful conceptual structure (or
graph), which has four components:

S = <S name, E', R', A'>,
where S_name ~ W, E' c E, R' c R, and A' c A.

Assumpt ion The entity type set E, the relationship type set R, and the attribute
type set A together partition the object type set and are pairwisely disjoint.

This assumption intentionally excludes the structural conflicts, such as a word is used for an
entity type in one schema and an attribute type in another.
These definitions are graphically illustrated by the following meta-schema (Fig.3).

characteristic set
rlanlr

Fig.3 A meta-schema for the interrelations of schema components.
In addition to the general relationships described above, there are three relationships which are
the elements of the above stated relationship types and play a special semantic role in the
schema design and integration. They are generalization, coverage, and aggregation. Thus, it is
necessary to define them separately.

Definition 2.10 (Generalization) Let cl and c2 be two concepts. The concept cl

is a generalization of c2, denoted <cl, c2> ~ G e n i f e x t e n s l o n (e 2) c
extension(cl). Gen is a binary relation 4.

In terms of this definition, we can directly jump to the theorem as follows:

4The generalization relation sometimes is represented as is-a(c2, cl), which indicates cl a
generalization of c2. The reverse relation of Gen is specialization, denoted Spec.

126

Theorem 1 The generalization relation Gen is non-reflexive and transitive. That is,
suppose that el , c2, and c3 are three concepts in C and <el, c2> e Gen, and <c2, c3>

Gen, then <el, c3> e Gen.

Definition 2.11 (Coverage) Suppose that ci , c2 cn, are n concepts, and
extenslon(ci) are the extensions of ci, i=l, 2 n, the relation coverage can be
defined as a binary relation,

Coy: C -> 2 C, C is the concept set, so that
<el, {c2 cn}> ~ Coy if

extension(el) = extension(c2)u extension(c3)u . . .uextens ion(cn) ,

and extension(ci) n extension(cj) = ~, i, j = 2 n, i;~j.

3 T h e c a p t u r e o f c h a r a c t e r i s t i c se t
The existing schemata provide us with a list of entity types, a list of relationship types which
associate the entity types, and a list of attributes which describe the entity types. The
integration activities provide us with the assertions which are formalized into a so called
knowledge base. All these inter-object type relations provide us the semantic interpretation of
the object types in schemata. In other words, we can build the characteristic set of an object
type and then expand the characteristic set with the help of such inter-object type relations.
Although the characteristic set so obtained may not contain all the features and may not be
sufficient to identify an object type, they will lead to at least a correct and exact interpretation
of the object type. The integration activities could be built on such solid basis -- a relatively
full, correct, and exact interpretation of the meaning of the object type. In this section, we
propose a set of methods for the obtainment and expansion of the characteristic set of a given
entity type. Let us first consider to capture the characteristic set of an object type within one
schema. Without loss of the generality, we consider just entity types in the schema. Suppose
that e is an entity type in schema S. We denote the characteristic set of e ~ S(e), which are
obtained only from the schema S.
Then, a broader context, schema family, is taken into account for capturing the characteristic
set of an entity type. Suppose that an entity type e occurs in a group of schemata SI , $2,
.... Sn (schema family F). We denote the characteristic set of e 9, F(e), which are obtained
only from the schema family F.

3.1 Cap ture ~, s(e) from attributes
The attributes of an entity type play an important role in understanding the meaning of the
entity. Any pair of object types whose identifying attributes can be integrated can themselves
be integrated [9]. This statement claims that the attributes of an entity can in some way give
the intension of the entity. In one place, an attribute (say, key attribute) or a group of
attributes can determine its entity, for example, security number vs. person while in the other
place, a group of attributes can partly determine an entity. That is, the group of attributes may
at least constitute a part of the intension of the entity. For example, the attribute 'name' gives
an intension of a concept. All the objects which have 'name' will be the extension of the
concept.

Definition 3.1 (Key semantic expansion) Let ~, s(e) be the characteristic set of

entity type e in a schema S. If k is the key attribute of e, then k e),s(e).

Def in i t i on 3.2 (Attribute semant ic expans ion) Let) , s (e) be the
characteristic set of entity type e in a schema S. If a set of attributes { a 1, a2 an } of
e can uniquely determine e, then {al, a2 an} e ~,s(e).

127

In fact, the definition 3.2 indicates that a set of attribute types may play a role of key which
can uniquely identify the entity type they are attached to. For instance (see Fig.4), the entity
type 'Book' can be certainly uniquely identified by its key attribute 'B#' (book number), so B#
is an element of,~ s('Book'). Assuming that B# is missing from the schema S (This happens
more often than not during the schema design), the other three attributes, 'authors', 'edition',
and 'publisher' may together uniquely determine 'Book'. In this case, these three attributes as a
whole will be an element of ~, s('Book').

Fig.4 capture semantics of the entity 'Lecturer' from its attributes

3.2 Capture ~, s(e) from relationships and their mapping constraints
Relationship types play an important role in stipulating the semantics of the entity types it
relates, since a relationship type not only associates two entity types but also dominates
them. In other words, a relationship needs a subject which carries out the action represented by
the relationship and an object which accepts the action. Therefore the relationship, or the
action, demands that its subject should possess some particular features which stipulate a
semantic category (the category here means a set, each of whose elements can be a subject of
this relationship) of which the subject is an element. Similarly, the object is also an element
of a semantic category. The semantic category is intensionally a set of features, and
extensionally, a group of things which possess these features. For instance, the relationship
type 'attends' in the statements 'author attends a conference' and 'submitter attends a conference'
imply that 'author' and 'submitter' as subjects should belong to the same semantic category,
which has the feature 'can attend', on one hand. On the other hand, 'attends' stipulates that
'conference' should be an element of the semantic category having the feature 'can be attended'.
Inversely, relationships are of course affected by their subjects and objects.

Defini t ion 3.3 (Mapping constraint) Let r be a relationship type which has a
domain el and a range e2, both being entity types. The mapping constraint of r with
respect to el and e2, denoted [ml:m2, nl:n2], indicates that
1) for each element in extension(el), there are at least ml and at most m2 elements
in extension(e2) participating in the relationship r; and
2) for each element in extension(e2), there are at least nl and at most n2 elements in
extension(el) participating in the relationship r.

D e f i n i t i o n 3.4 (Relationship semantic expansion) Let ~, s (e) be the
characteristic set of entity type e in a schema S. If the entity type e is related to another
entity type e' with a relationship type r and the mapping constraint is [1:1, 1,1], then
{name(r), Xs(e')} ~ ~,s(e), where name(r) is the name of the relationship type r and

~,s(e') is the characteristic set of entity type e'.
This definition states a fact that an entity type can be uniquely identified by a given
relationship and a known entity type which participates in the relationship when there is a
one-to-one mapping between the extensions of two entity types with respect to the
relationship. For example, a schema contains such components as 'Dean administrates
Department'. The mapping constraint of this particular 'administrates' is [1:1, 1: l]. Suppose
that we have already known the key of the entity type 'Department' to be 'Dept#', according to
the definition, we can uniquely identify the entity type 'Dean' by 'administrates' and
'Department'.

128

3.3 Capture 3, s (e) from contexts
As we discussed above, the relationships of an entity can give some characteristics (or part of
intension) of the entity, whereas the contexts of the entity can give more refined
characteristics of the entity set which the entity is contained. A context of an entity e' is a set,
whose e lement is an ordered pair, <r, e>, where r is a relationship and e is an entity.
Obviously, a context of e', <r, e>, specifies a set of entities, while e' is an element of the
entity set. Consider the example 'Driver drives a _CA['. The relationship 'drives' and the entity
'Car' together determine a group of entities, each of whose elements has the property 'able to
drive a car'.

De f in i t i on 3.5 (The con tex t of an en t i ty type) Let e be an entity in schema
S and e is related to a set of entities e l , e2 en through a set of relationships r l , r2,
. . . . rn. The context of e, denoted Con tex t s (e), is the set {<ri, el> I i = 1 n}.

D e f i n i t i o n 3.6 (C o n t e x t s e m a n t i c expans ion) Let 2, s (e) be the characteristic
set of ent i ty type e in schema S and the context of e be C o n t e x t s (e) . I f

Con tex t s (e) can uniquely identify the entity type e, then the set {<name(ri), X s (e i)>

I i = 1 n} a gS(e), where name(ri) is the name of the relationship ri and ~,s(ei) is
the characteristic set of entity type el, for i = 1, 2 n.

For instance (see Fig.5), schema S contains three entities 'Lecturer', 'Department ' and
'Course' . The enti ty 'Lecturer ' has the context c o n t e x t s (' L e c t u r e r ') = {<'works-at ' ,

'Department'>, <'gives', 'Course'> }. Then ~, s('Lecturer') includes { <'works-at', 'Department'>,
<'gives', 'Course'>}.

Schema S

gir~_.~ves ~k0:n,l:n works-at

Fig.5 capture semantics of the entity 'Lecturer' from its contexts

3.4 C a p t u r e)` s (e) from the spec i a l r e l a t i onsh ip s

3.4.1 Generalization

D e f i n i t i o n 3.7 (G e n e r a l i z a t i o n s eman t i c expans ion) Let e l and e2 be two
entity types in schema S and ~, s (e l) and },S(e2) the characteristic sets of e l and e2

respectively. I f <e l , e2> ~ Gen, then ,k s (e l) is included in ~, s(e2).
This definition indicates the fact that a sub-concept inherits all the characteristics of its super-
concept. For instance (see Fig.6), in the schema S, we have the entity 'Lecturer', which is
sub-concept of the entity 'Employee' . Then it inherits all the characteristics of 'Employee' .
That is ,) , S('12ecturer') is expanded to include {Era#, salary, <'works-for', 'Organization'>}.

Fig.6 capture semantics from generalization
Note that during the process of this semantic expansion of), s('Lecturer ') , a new semantic
relat ionship between, for example, the entities 'Organization' and 'Department ' may be

129

discovered. Hence, the characteristic sets for 'Organization' and 'Departmenf should be formed
for the identification of this new relationship. Possibly, the two entities have synonymous
names, or one is the generalization of the other, etc.

3.4.2 Coverage

Def in i t ion 3.8 (Coverage semantic expansion) Let e be an entity and e l , e2,
.... en be a group of entities in schema S. 3, S(e) is the characteristic sets of e and

3,s(ei) the characteristic sets of el, i --- I, 2 n. If <e, {el, e2 en}> ~ Coy ,
then
1) 3 ̀S(e) is included in 3 ̀s(ei); and

2) n3`s(ei) is included in 3`s(e), for i = 1, 2 n.
The first conclusion of the definition indicates the fact that a sub-concept inherits all the
characteristics of its super-concept. The second conclusion is that the characteristics that are
possessed by all the sub-concepts should be the characteristics of the super-concept. As a
matter of fact, it is still the inheritance put in another way. A schema appears in Fig.7, which
model a part of a library information. In a library, we keep the publications which can be
broken into three disjoint classes: books, journals, and newspaper. That is, the entity
'Publication' covers the entities 'Book', 'Journal', and 'Newspaper'.

Fig.7 capture semantics from generalization
According to the definition 3.7, ~, s('Book') should be expanded to include ~k s('Publication'),

and so should 3 ̀S('Journal')and), s('Newspaper'). Since the attribute 'location' belongs to all

the covered entities, the property { location } should be included in 3 ̀s('Publication').

3.5 C a p t u r e 3, F(e) f rom schema family
Conceptual schemata can be considered to be a very effective approach to the capturi.ng of the
characteristics of an object, where the objects related to the given object along with the
relationships are taken into account for the contribution of the object characteristic set. The
3,s(e) obtained from a single schema S for an entity is only reflecting a lopsided view of a

concept, whereas the characteristic set 3, F(e) obtained from a group of schemata F may reflect
a relatively manifold views of a concept. This is rather crucial in schema integration.
However, since several schemata are considered in order to obtain the 3,F(e) for an entity, the
pre-condition is necessary that these schemata should be consistent, i.e., no semantic conflicts
existing between them.
The semantic conflicts include 1) synonym, where two different words represent the same
concept, 2) homonym, where one word represents two different concepts, and cyclic
generalization, where the concept A is a sub-concept of the concept B in one schema while in
another schema B is a sub-concept of A. When a semantic conflict is detected, a semantic
dictionary or the user's assertion is required to resolve the conflict. In the semantic dictionary,
we maintain a list of synonyms for looking up when necessary [13]. A detailed definition and
discussion for these conflicts will be given in the next section.
After all the semantic conflicts detected among the schema family are eliminated, the 3, s(e) of

the entity e can be expanded to include 3,si(e) into 3 ̀F(e), Si is a schema in the schema

family. The 3 ̀F(e) can be defined as follows.

130

Definition 3.9 (Collectives semantic expansion) Suppose that the entity e
occurs in a group of schemata S1, $2 Sn and the characteristic sets of e in these

schema are respectively ~, Sl(e), ~, s2(e) J~ S n (e). If S 1, S 2 S n are

consistent, then X F(e) = X Sl(e) u ~,s2(e) u ... u XSn(e).

For instance, the entity Employee is common in two schema S1 and $2 in Fig 8. The
characteristic set of Employee in schema 1 is ~, Sl('Employee ') = {<works-at, Department>,

Era#}, and that of Employee in schema 2 is ~, S2('Employee') = {<works-for, Project>, Em#}.
Hence, the characteristic set of Employee in the schema family (combining schema I and 2) is
?,F('Employee') = { <works-at, Department>, <works-for, Project>, Era# }.

works-at works-for

Schema 2

, Fig. 8 Schemata o f department and project

3.6 A summary of this section
We have observed that the intension, i.e., characteristics of an entity can be acquired from its
attributes, its relationships with other entities, and its contexts in a single schema. Through
eliminating the semantic conflicts among schemata and unifying the characteristic sets
obtained from these schemata, the intension of a common entity can also be acquired. It is
more significant to form the characteristic set of an entity by considering a group of schemata.
In addition, by capturing the schema family semantics, we may maintain the schema design
and integration history. That is, the schema family (assuming it is content after removing
conflicts) can be used as a new semantic dictionary in broader sense for the detection of new
schema design and integration. Therefore, the detection and resolution of the semantic
conflicts become crucial in this sense. In the following section, we will discuss how to apply
the characteristic sets to the conflict detection and hence the suggestions for the user's
assertions when the conflicts are detected.

4 Some examples of using the semantic se t

The aim of capturing the characteristic set of an entity is to support the resolution of the
semantic conflicts which are found during schema integration. The semantic conflicts arise
because of the diversity of the people's understanding of concepts and the diversity of their
representations in names (or words) in schemata. Semantic conflicts can be seen as the
incorrect or inappropriate usage of words for concepts which are established during people's
percepting the reality (or part of the reality). The characteristic sets obtained by the methods
discussed in the last section are mainly applied, in the schema comparison step, to detect the
semantic conflicts. The semantic conflicts can break into these cases: synonym, homonym,
and cyclic generalization. When the semantic conflicts are found some suggestions to indicate
the causes resulting in the conflicts and the possible resolutions of the conflicts should be
provided for the user's assertions.

4.1 The detection of synonym
The semantic conflict case - synonym occurs when the same concept is represented by two or
more words (names).

Definition 4.1 Let wl and w2 be two different words of the word set W
respectively. If there exists the equation symbol ize(wl) = symbolize(w2), the
words wl and w2 are considered to be synonymous.

131

An example appears in Fig.9, where two schemata are designed to describe the departments in
a university. give~ give~

Fig.9 Example of synonym
The words 'Lecturer' and 'Teacher' are adopted to represent the same group of people who have
degrees, work at a department, and advise courses, etc. (the same concept in the real world).
Keeping two distinct entities in the integrated schema would result in modelling a single
concept by means of two different entities.
1) Detection of synonym. Synonymous woids can be detected by comparing the semantic sets
of the words. Suppose that)` l(el) and 9 ̀2(e2) are two characteristic sets and e 1 and e 2 are two

different entity types in two different schemata I and 2. If), l (el) = 9 ̀2(e2), e I and e 2 have the
great possibility to be synonymous since they share almost all the characteristics in common.
Consider again the above example, the semantic set of the entity 'Lecturer' is)` l('Lecturer') =
{<name, position, addr, degree>, <works-at, Dept>, <gives, Course>}, and the semantic set
of the entity 'Teacher' is)` 2(Teacher) = {<name, position, addr, degree>, <works-at, Dept>,
<gives, Course>}. Here we assume that <name, position, addr, degree> can determine
'Lecturer'.
Since for each element in 7. l('Lecturer'), there is a same element existing in 9, 2('Teacher'), we
may conclude that the entities 'Lecturer' and 'Teacher' are synonymous. However, It is quite
often that not all elements in one semantic set can be found in another semantic set and vice
verse. That is, for example, 9̀ l('Lecturer') and)` 2('Teacher') have majority of common
elements. Then, the suggestion that 'Lecturer' is synonymous to 'Teacher' is proposed to the
user for confirmation.
2) Suggestion. After the synonym conflict is detected, the suggestion that two entities be
synonymous is presented, along with their characteristic sets, to the user for confirmation.
When the user asserts that the two entities are same, then one preferable name is required to
replace the names of the two entities and a new item is recorded in the semantic dictionary
with the fact that the two entities are synonymous. At last, the two entities are integrated
with the union of their characteristic sets.

4.2 The detect ion of homonym
The second semantic conflict case is homonym, which arises when the same name (word) is
used to represent two different concepts in different schemata.

De f in i t i on 4.2 Let w be a word in the word set W and cl and c2 be two concepts
in the concept set C. If w is mapped into two different elements of C, i.e.,
symbolize(w) = cl and symbolize(w) = c2, then w is a homonym.

Consider the example in Fig. 10, where two entities 'Equipment' in schema 1 and 'Equipment'
in schema 2 obviously refer to different concepts, but are represented by the same name.
Merging the two entities in the integrated schema would result in producing a single entity for
two distinct concepts.

132

contains

is-a

Schema 2 Schema I

Fig. I0 Example of homonym
1) Detection. By analyzing the semantic sets of the entities with the same name, we can find
out whether the homonym case occurs. Suppose that), l (e l) and 9, 2(e2) are two characteristic

sets and el and e2 have the same name in two different schemata. Ifg, l (e l) ~: 9, 2(e2), el and
e2 can be considered to be two distinct concepts since they have no characteristics in common.
Consider again the above example, the semantic set of the entity 'Equipment' in schema 1 is
9`1('Equipment') = {<Department, owns>, <has-sub-concept, Computer>} and the semantic

set of the entity 'Equipment' in schema 2 is 2, 2('Equipment') = {<Building, contains>, <has-
sub-concept, Furniture>}.
Since there is no element which belongs to both 9, l('Equipment') and 3, 2('Equipment'), we
may conclude that 'Equipment' is homonymous and a suggestion should be given to rename
one the entities.
2) Suggestion. When a homonym conflict is detected, the user is required to assert whether the
two entities refer to different concepts (perhaps they refer to the same concept). The assertion
making is of course supported by presenting the user with the characteristic sets of the
entities. After the user's confirmation that the two entities are homonymous, a rename
operation is triggered to give a more suitable name to either of the entities.

4.3 The detect ion of cyclic generalization
The semantic conflict, cyclic generalization, happens when in one schema <el, e2> ~ G e n

and in another schema <e2, el> ~ Gen, and the two schemata are merged into one This case
often occurs, in particular, when the schemata are designed by different designers with different
perspectives and views on the reality. This conflict must be eliminated during schema
integration; otherwise a cyclic generalization will appear in the integrated schema, which
apparently violates the transitivity of the generalization.

Def ini t ion 4.3 Let el and e2 be two entities. When that there exist both the
generalization relations <el, e2> ~ Gen 5 and <e2, e l> G Gen, a cyclic generalization
O c c u r s .

1) Detection. Suppose that ~, Sl (e l) and X Sl(e2) are two characteristic sets and <el, e2>

Gen in schema S1, and 2,$2(el) and XS2(e2) two characteristic sets and <e2, el> ~ G e n in

schema $2. According to the Definition 3.7, X S l (e l) should be included in ~. Sl(e2) and

9,$2(e2) should be included in ~.s2(el). By comparing ~, S l (e l) and ~, S2(el) (assuming that

X s I (e l) = ~ s2 (e l) before the generalisation expansion), immediately, we have the

contradiction that 9 ,Sl(el) is a subset of Z s2(el) . The same contradiction happens when

comparing .~ Sl(e2) and .2. $2(e2) (assuming that X Sl(e2) = .~ $2(e2) before the generalisation
expansion).
2) Suggestion. As soon as a cyclic generalization is found, this generalization chain will be
presented to the user along with all the characteristic sets associated with the entities in the

5According to the theorem 1, el can be an indirect generalization of e2. That is, there may exist a
entity e', so that <el, e'> ~ Gen and <e', e2> ~ Gen.

133

generalization chain. Due to misuse of some concepts, and/or some words, the user's
assertions are necessary to either re-consider more precise concepts or rename some words
which will precisely represent the concepts.
In conclusion, by applying the characteristic sets of entities, not only can the semantic
conflicts be detected, but some suitable suggestions can be presented to the users for
confirmation as well. In particular, when such characteristic sets of entities are acquired from a
family of schemata, the conflict detection proposed will be more powerful and the suggestions
presented to the users will be more precise.

5 The conclusion and future work

To acquire the semantic of schemata is difficult but significant a research area both for schema
design and integration. By investigating the surroundings of schema objects to capture the
schema semantics is one of the approaches to the schema semantic capturing. In this paper,
we have discussed some methods to acquire the semantics of schema objects in schemata in
terms of their attributes, their relationships and their contexts, and hence to form the
characteristic sets for the schema objects. In our opinion, this approach is feasible to explore,
to a large extent, the semantic associations of objects existing in schemata.
The contributions in the paper are 1) to investigate the semantic association of schema
objects; 2) to" present an approach to the obtainment of the object semantics and to the
expansion of the semantics; 3) to use the characteristic sets obtained for the detection of the
semantic conflicts; and 4) to pave a road to the further study of the semantic knowledge
acquisition for schema design and integration.
There are still a lot to do in the semantic knowledge search for schema integration. Our future
work is intended to deeply explore the semantics existing in the schema objects, not only
entity types but relationship types and attribute types as well, and to form a semantic
dictionary based on the semantic knowledge so obtained. Such semantic knowledge
acquisition, in our opinion, can be done not only from the schema families, but also from the
users assertions during schema integration.
The semantic dictionary, which was discussed in [1, 13], can be considered to be a powerful
tool for schema integration since it plays the role of a carrier both for semantic knowledge
explored in schema design and integration, as well as for semantic knowledge obtained from
the user's assertions for the schema integration. However, the forming and structure of the
semantic dictionary have not yet been well studied.
In addition, little focus has been put on the quantitative analysis of the semantic similarity of
the integrating schemata. This is perhaps another bottleneck problem (schema semantic
knowledge acquisition is one) of the generation of semi-automatic, even automatic schema
integration.

The author would like to thank Prof. Janis A. Bubenko, jr. for his valuable comments on the
previous version of the paper.

Reference

1. Batini, C., G. Di Battista and G. Santucci. Representation Structures for Data
Dictionaries. Dept. of Informatics and Systematics, The university of Rome. Report No.
09.91. Sept. 1991.

2. Batini, C., M. Lenzerini and S. B. Navathe. A Comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Surveys. 18(4): 323-364, 1986.

3. Bouzeghoub, M. and I. Comyn-Wattiau. View Integration by Semantic Unification and
Transformation of Data Structures. the 9th Int'l Conf. on Entity-Relationship Approach.
Lausanne, Switzerland. 1990

4. Bubenko, J. J. Knowledge for Schema Restructuring and Integration Tools. SYSLAB,
DSV. Internal Working Note. SYSLAB IWN No.1. Dec. 1985.

134

5. Comyn-Wattiau, I. and M. Bouzeghoub. Constraint Confrontation: An Important Step
in View Integration. the 4th Int'l Conf. CAiSE. Manchester, UK. 1992

6. Howe, G. A. A Collision of Semantics. DP&D. 93(2) pp.54-61, 1993.
7. Hull, R. and R. King. Semantic Database Modelling: Survey, Applications and

Research Issues. ACM Comput. Surveys. 19(3): 201-260, 1987.
8. Johansson, B.-M. and C. Sundblad. View Integration: A Knowledge Problem.

Department of Computer and Systems Sciences, University of Stockholm. Working
Paper. SYSLAB WP No. 115. 1987.

9. Larson, J., S. Navathe and R. Elmasri. A Theory of Attribute Equivalence in Database
with Application to Schema Integration. IEEE TOSE. SE-15(4): 1989.

10. Navathe, S. and S. G. Gadgil. A Methodology for View Integration in Logical Database
Design. the 8th Int'l Conf. o n VLDB. Mexico City, Mexico. 1982

11. Pirri, F. and C. Pizzuti. Data Dictionary Design: A Logic Programming Approach. The
1 lth Int'l Conf. on the Entity Relationship Approach. Karlsruhe, Germany. 1992

12. Song, W. W. and P. Johannesson. Schema Integration: Present and Future. ICYCS'93.
Beijing. 1993

13. Song, W. W., P. Johannesson and J. J. Bubenko. Semantic Similarity Relations in
Schema Integration. the l lth Int'l Conf. on the Entity Relationship Approach.
Karlsruhe, Germany. 1992

14. Sowa, J. F. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley Publishing Company. 1984.

15. Spaccapietra, S. and C. Parent. View Integration: A Step Forward in Solving Structural
Conflicts. Laboratoire de Bases de Donnees, Dept. d'informatique, Ecole Polutechnique
de Lausanne. Research Report. Report No. 1990.

