
From Analysis to Code Generation:
Experiences from an Information Engineering Project

Using I-CASE Technology

Karl Kurbel

University of Muenster, Institute of Business Informatics,
G-revener Strasse 91, D-48167 Muenster, Germany

Abstract. Development of a large information system, following the Infor-
mation Engineering approach by James Martin, is described. Knowledge-
Ware's Application Development Workbench (ADW) was used as I-CASE
(Integrated CASE) environment. The 3V2-person-year project went all the way
from analysis to code generation. Within the project, 160,000 lines of code
were successfully generated; the final system is expected to amount to
330,000 lines. The information system is probably one of the first ones of
such size that was actually generated with ADW for an OS/2 target environ-
ment. The paper gives an outline of the project and reports on experiences
with/-CASE technology. The project was part of advanced business-informa-
tics education at Muenster university.

1 Computer-aided Information Engineering

In this paper, a medium-size project following James Martin's approach to Informa-
tion Engineering (IE) is described. Both Information Engineering methodology and
corresponding integrated CASE tools were applied. The goal of the project was to
develop an information system (IS) that supports administrative work of a fairly
large university institute.

Information Engineering as introduced by James Martin looks at the organization
as a whole. According to Martin, Information Engineering stands for "the applica-
tion of an interlocking set of formal techniques for the planning, analysis, design,
and construction of information systems on an enterprise-wide basis or across a ma-
jor sector of the enterprise" ([4], p. 1). The comprehensive Information Engineering
view covers all stages of IS planning and development, starting from strategic plan-
ning down to technical construction of programs and data structures. It also means
that the focus is not (only) on a particular information system, but on enterprise-
wide information processing as a whole. Finally, separate views of information
systems are integrated: data, functions, and processes are analyzed and modelled
within a unique framework.

Information Engineering consists of four main stages: Information Strategy
Planning is the top stage where strategic goals, critical success factors, and informa-

215

tion requirements of major parts of the enterprise are determined. The result of In-
formation Strategy Planning is a global model of the enterprise and its division into
business areas. On the second level, Business Area Analysis is performed within one
or more major sectors of the enterprise. Data models (e.g. entity-relationship dia-
grams), process models (e.g. decomposition diagrams) and other models are devel-
oped, and desirable information systems within the business areas are defined. Sys-
tem Design is the third level where procedures, data structures, screen layouts, win-
dows, reports, etc. are specified. On the fourth level called Construction, programs
and data structures are implemented, tested, and integrated. Figure 1 shows a pyra-
mid view of the stages as presented by James Martin.

Information Strategy Plat

Business Area Analysis

System Design

Construction

Fig. 1: Stages of Information Engineering according to Martin [4]

Information Engineering requires integrated CASE support for all stages. One of the
objectives is to generate code automatically. Tool integration is to be achieved by a
common repository, the so-called encyclopedia. All information collected during the
stages of Information Engineering is transformed into a common representation for-
mal and stored in the encyclopedia.

Although there is quite a number of integrated CASE (I-CASE) tools (see [12]
for a survey, for example), only two of them support the comprehensive Information
Engineering approach so far: ADW (Application Development Workbench) by
KnowledgeWare [2] and IEF (Information Engineering Facility) by TI Information
Engineering [13]. Both have been used to develop mainframe-oriented applications
in practice [8, 10, 12]. However, little has been reported on workstation LANs as
target environments yet. In this paper, we set the focus on the workstation level and
describe our experiences with ADW in such an environment.

2 What are the "Business Areas" of a University I n s t i t u t e ?

The Information Engineering approach is tailored to meet the requirements of enter-
prises and does not lend itself naturally to bureaucratic organizations like German

216

universities. Information strategy planning with regard to strategic goals and critical
success factors would certainly have been a challenging task, but it was beyond the
scope of our project. Therefore, only some global relations were considered and
modelled, and the business areas to be analyzed later were defined during this stage.

At first glance, "teaching", "research", and "administration" might be considered
"business areas" of a university institute. A closer look reveals, however, that only
formal aspects of research lend themselves to analysis and modelling, whereas ad-
ministration is a very complex field that needs to be split up in several business
areas.

The Institute of Business Informatics at Muenster university in Germany for
which the information system was developed employs about 70 people (including
professors, scientific and non-scientific personnel as well as some 30 student assis-
tants). Large portions of administrative tasks are not performed by the central uni-
versity administration but have been delegated. The institute, however, has no com-
parable administrative machinery. This means that scientific and technical staff
have to spend significant portions of their time for activities like buying equipment,
updating inventory lists, paying bills, accounting, budgeting, keeping leave books,
and so on. In 1992, for example, about 3,300 order positions had to be booked and
1,840 invoices had to be paid.

Effective support for administrative tasks was therefore urgently required. The
problem of finding the "fight" tasks to attack was solved in a straightforward man-
ner, as the institute director was involved in the project as supervisor. In pre-project
planning, three "business areas" emerged:

Budgeting and Purchasing

Administration of financial means on the one hand, and preparations of purchases
(hardware, software, furniture, books, etc.) on the other hand are the most time-con-
suming tasks, involving about 15 people throughout the institute. Different proce-
dures apply, depending on where the funds come from (state, foundations,
enterprises, etc.), whether they are assigned to the institute as a whole or to indivi-
dual professors, and what their intended appropriations are. Accounts correspond to
those determinants. Purchases are closely related with accounts. For example, re-
servations have to be made when procurement orders are placed; they have to be
confirmed when goods are delivered and finally booked when invoices are paid.
Therefore budgeting and purchasing are based on the same data model.

Resources Management

Resources to be administered are chairs, projects, persons, posts, hardware, soft-
ware, rooms, keys, etc. A large number of connections between them - some of
them rather sophisticated - have to be considered. For example, hardware configura-
tions - which monitors, boards, disks, etc. belong to which computers? - are treated
as relationships between hardware components. Some procedures depending on re-

217

sources data are: updating inventory lists, leave books, and lists of official tours, as-
signing office rooms to persons and lecture rooms to courses or other events, etc.

Teaching

"Teaching" as a business area does not refer to contents of courses, but to operatio-
nal and administrative activities: Announcements of lectures, catalogs of lectures,
tables of contents, handling of admission requirements, textbook lists; distribution,
collection, and marking of exercises, grades, certificates, etc. Exercises including
computer-work may require assigning students to computer pools, workstations, and
times.

3 Information Engineering Environment

As to computer support, KnowledgeWare's I-CASE environment ADW (Application
Development Workbench), version 1.6, was employed. ADW is the OS/2 version
and successor of IEW (Information Engineering Workbench). The tools of ADW are
grouped into four categories corresponding to the four stages of Information Engi-
neering:

Planning Workstation
Analysis Workstation
Design Workstation
Construction Workstation

These workstations run under OS/2, whereas target environments are primarily IBM
mainframes under MVS. Since 1992, OS/2-based PCs as target environment are also
supported. Major tools of ADW are:

Decomposition Diagrammer (for hierarchical structures)
Entity Relationsship Diagrammer (for data modelling)
Data Flow Diagrammer (for specification of data flows)
Association Matrix Diagrammer (to represent relationships between encyclope-
dia objects)
Minispec Action Diagrammer (to describe procedural logic)
GUI Layout Diagrammer (for interface design and generation of Cobol source
code)
Structure Chart Diagrammer (to define module hierarchies)
Module Action Diagrammer (for detail specification of procedural logic)
Relational Database Diagrammer (for database design)
Data Structure Diagrammer (to specify data structures, records, and relations)
GUI Code Generator (to specify database access and generate Cobol source
code)

These tools are highly interconnected as shown in figure 2. Unfortunately, I-CASE
means here also that all the tools have to be employed, and that the user has to know

218

all the connections and dependencies depicted in the figure. Tools are integrated by
means of an encyclopedia. Objects of the information model that were generated
and stored in the encyclopedia by one tool can be read by other tools. Sometimes
different tools may be employed to generate objects of a certain type. Figure 2 indi-
cates this kind of relation by double-headed arrows. In two cases, integration has to
be achieved by auxiliary functions (broken lines). For example, the Relational Data-
base Diagrammer does not process objects of an entity-relationship diagram direct-
ly, but requires transformation into a so-called "f'trst-cut model" by means of a gene-
rating function first.

hierarchical
 coo0=ton
Diagrammer

processes

__1 O=aFIo. I 1

data I ,/k
fle~l. ; I ~ocess~

r ~f ~ mini'S~ul cificaaiO ns , I tables
Mlnispec Action [_(copyfunctio~ Module Action ~,
Diagrammer J ~ Diagrammer I ~ module

modul~ J K ~h erarchy
data r GUlLayout ~ ~ Structure Chart
objects Diagrammer D agrammer

-end programs

i GUlC~ I
Generator

data
Association ~ l Entity-Relation-
Matrix DiagrammerJ ~ r - j ship Diagrammer J~'

I (generating
j tunciion)

d~a objects j

I
'V'

J Rel~lonal Data-
base O agrammer

I
data
structures

Fig. 2: Connections between ADW tools

The hardware and software environment for the project was a Novell network where
ten PCs (80486, 33 MHz) had been additionally equipped with OS/2. Those PCs
could be run both under MS-Windows/DOS and OS/2. Some of the tools had to be
installed locally, whereas others could remain on the server.

Unfortunately, ADW does not have a LAN encyclopedia yet. As 30 people had
to work simultaneously, a master encyclopedia on one computer and nine additional
working encyclopedias (three per business area) on the other computers were creat-
ed. They were consolidated at regular intervals. Between consolidation runs, read-
only copies of the master encyclopedia and of the working encyclopedias were giv-
en to other project subteams.

User interface specifications generated by ADW were translated by the OS/2 Re-
source Compiler. It is part of the Developer's Toolkit for OS/2. For the other com-

219

ponents generated by ADW (procedural logic, database access), Micro Focus Cobol
Compiler (version 3.0) had to be employed. It contains a precompiler for embedded
SQL generated by ADW for relational data manipulation. The target database sys-
tem was the Database Manager that is part of IBM's Extended Services for OS/2.
The data definition statements generated by ADW could be used directly as input
for the Database Manager.

4 P r o j e c t S t a g e s

4.1 Business Area Analysis

The three business areas outlined in chapter 2 were analyzed with the help of the
Analysis Workstation tools. Results were hierarchies of functions and processes on
the activities' side, and entity-relationship diagrams on the data side. Data flow dia-
grams were used to describe data flows between processes, transformation of data
by processes, access to databases, and communication between processes and the
environment. Coarse procedural logic in elementary processes was outlined in so-
called "mini-specifications".

4.2 System Design

User-interface design was the main concern during this stage. Elementary processes
and their respective input/output interfaces had been specified during business area
analysis. Now the windows of the information system were designed, and those in-
terfaces were mapped to the windows. On the data side, a so-called first-cut data-
base schema was generated from the data model. Following this intermediate step,
attribute hierarchies and ranges from analysis were available to the design worksta-
tion tools. They only needed to be connected to the windows where respective attri-
bute informations were required. In order to make windows appear in a unique way,
guidelines developed during analysis had to be observed by all team members. Lay-
outs of reports and forms (e.g. application for leave or official tour) were also speci-
fied.

A very important part of this stage was to design a multi-level system of access
rights. Particular consideration had to be given to the fact that users are professors,
scientific and technical staff, and students. On the other hand, there are user groups
such as staff of a particular chair, students taking the same course, etc.; and finally,
there are users that have specific tasks (such as administration of funds). Access to
certain data may thus depend on several factors and furthermore, on the mode of ac-
cess (create, read, write, modify). For example, read access to a student's grade is
granted to professors, perhaps to other scientific personnel, and to the student him-
self but not to other students, whereas write access may be restricted to professors.
In order to satisfy all these requirements, a rather sophisticated system of access
rights had to be designed. Its basic idea is that roles can be defined and rights can be
associated with these roles. There is a number of default roles, but new roles may

220

also be introduced. One or more roles may be assigned to each user. Access rights
are checked whenever the respective windows are to be activated or the respective
data are to be addressed.

4.3 Construction

During the construction stage, procedural logic, connections between procedural
logic and user interface, and database accesses were developed.

First, the logic of elementary processes was specified in detail. According to
Martin's Information Engineering approach, this task actually belongs to the design
stage. For several reasons including poor tool support, it was postponed until con-
struction. The tool for detailed specification of logic is the Module Action Diagram-
mer. The language to be used on this level is Enriched Cobol. It contains Cobol ele-
ments as well as constructs supporting communication with the window interfaces
(e.g. "get from window") and data manipulation. Embedded SQL statements lying
behind those data manipulation commands may be modified by the developers.

Next, connections between procedural logic and user interface were established.
The tool supporting this step is the GUI Layout Diagrammer. The hierarchy of mo-
dules was examined with the help of the Structure Chart Diagrammer. It depicts the
hierarchy of calls in a graphical manner. Nodes of the calling tree are elementary
processes.

Rather awkward is ADW's distinction between GUI and non-GUI programs
(GUI = graphical user interface). GUI programs are programs containing only
procedural logic, windows, and connections between those components. They de-
termine primarily when and which windows have to be called, and how data read
from the windows are to be processed. Non-GUIprograms are programs that contain
not only procedural logic but also access to files or databases. They are treated in a
different manner and are much more awkward to create than GUI programs (see
section 6. I).

GUI programs were developed first, by adding Enriched Cobol procedural logic
to the window specifications. From the program source texts ("module actions"), the
GUI Layout Diagrammer generates so-called "front-end programs" in Micro Focus
Cobol code. The front-end programs were then compiled and tested with respect to
user input. Afterwards, the non-GUI "back-end programs" were developed. They
were generated by means of the GUI Code Generator. The necessary databases and
relations were created by the 0S/2 Database Manager.

Since reports based on user data are not supported by ADW, separate Cobol pro-
grams had to be written. The Micro Focus Workbench was used for this purpose. At
least, Cobol programs could be called directly from inside the programs generated
by ADW. Necessary call statements did not have to be put into the generated Cobol
code but could be inserted into the module actions.

221

5 Project Conditions and Results

The information system was developed within a project that was part of advanced
business-informatics education at the University of Muenster, Germany. Projects are
part of the curriculum, summing up and integrating experience from other courses
such as information-system development, software engineering, data modelling and
database management systems. Participants were at the end of their eight semester
studies. They had worked before with tools supporting the above fields; in particu-
lar, they had gained some experience solving "small" problems with ADW during a
one-semester course. What was still missing was substantial experience with coope-
rative project work, subject to activity schedules, milestones, and delivery dates.

The project team comprised 30 people altogether, not counting the users involv-
ed into JRP and JAD sessions [3] nor technical staff (network, OS/2 administration,
etc.). Since the project was embedded in a semester curriculum, its duration,
beginning, and end were predetermined: The project had to be completed within a
period of exactly three months. Project conditions thus were rather untypical.
Whereas "ordinary" projects with comparable output might be executed by two or
three persons over a period of one or two years, here a fairly large number of people
had to be coordinated for a rather short time. Project planning and management had
to take these circumstances into account; for example, project management was
more rigorous and stricter than in normal projects. Both the project manager and the
project supervisor had successfully completed projects of that type before. In a re-
port on one of them, the expression "million-monkey approach" was used (by
others) as a description [7].

Project management
and supervision

Technical
administration

Students

I Project preparation Project Total
and strategy planning execution hours

150 h 600 h 750 h

100 h 700 h 800 h

4,500 h 4,500 h

Total hours 250 h 5,800 h 6,050 h

Fig. 3: Development effort

Development effort amounted to 38 person months in total. Figure 3 shows how it is
distributed among management, students, and major phases. Management and ad-
ministration were time-consuming (1,550 hours), partly because of inherent com-
plexity of novel I-CASE technology, partly because of problems with the toolset.

Results of the project were not only programs and databases, but also a number
of different models of the business areas. They are stored in the encyclopedia which

222

had reached a size of 14 MB at the end. The overall system consists of 17 sub-
systems - the "front ends". According to Information Engineering philosophy, we
did not attempt to complete all possible subsystems identified in business area ana-
lysis in one run. Some of them will be treated later. Some went all the way to con-
struction but could not be finished within the given project duration. Summing up
the programs that were truly generated and tested, the code amounts to about
160,000 lines (excluding separate Cobol programs for reports). When the missing
back-end programs will be completed, the total system will comprise some 330,000
lines of code. Figure 4 summarizes quantitative project results.

Data Activities Program components

Entity types 73
Relationship
types 119

Functions 64
Processes 242
Elementary
processes 382

Front-end programs 17
Windows 102
Back-end programs 116
Separate Cobol programs 20
Generated lines of code 116,000

(330,000)

Fig. 4: Quantitative project results

6 Observations and Experiences from the Project

6.1 Information Engineering Workstation Tools

The Information Engineering approach to IS development places individual infor-
marion systems into an organizarion-wide context based on common data, function,
and process models. Integration is not only conceptual, but it is also supported by
interlocking tools. This means, for example, that consistency of different models can
be checked by these tools. In fact, it would have hardly been possible to validate 73
entity types and 119 relationship types of the data model without tool support.

ADW's tools for the early stages - Planning, Analysis, and Design Workstation -
proved to be efficient and well integrated. Our experience from this particular pro-
ject primarily refers to the latter two ones, because the Planning Workstation was
not employed by the students. Whenever objects were created or modified by one
tool, the respective information was immediately available to other tools. Handling
of the tools is mostly simple, intuitive, and easy to learn. However, this does not
hold for the GUI Code Generator (see below).

Vertical tool integration across stages is satisfactory with regard to the data side.
Components of the data model defined during planning or analysis can be processed
directly in the design stage. They may be further transferred to construction where
the relational model is generated. On the activities side, top-down refinement from
business functions to processes and further on to elementary processes is intuitive

223

and easy to carry out. However, vertical integration is less satisfactory, going only
until design (see below).

Some of the tools enhance productivity significantly. By means of the GUI Lay-
out Diagrammer, for example, it was possible to define and validate all 102 win-
dows within one week. Since model information stored in the central encyclopedia
can be used by any tool, no additional recording is necessary. For the same reason, a
good deal of documentation can be derived automatically (e.g. entity-relationship
diagrams, call hierarchies).

On the other hand, the list of drawbacks is rather long. Many of them are due to
the fact that the tools (under OS/2) have not completely matured yet. Some of them
contain severe errors whereas others still suffer from their mainframe origins.

The artificial distinction between GUI and non-GUI programs is particularly
awkward, as these two types of programs have to be developed in completely diffe-
rent ways. The separation of GUI and non-GUI components is maintained all the
way down to executable programs. Figure 5 illustrates how different tools have to be
employed. Whereas GUI programs can be specified and generated very efficiently
with the help of the GUI Layout Diagrammer, the way on the right hand side is ex-
tremely ponderous.

~ ()~.: ,Mi~r~lt~fttcr relat~aal " 27%

,::< + _h

'7i: I �9 Diagrammer ~i ,!)mgr [iI !,h agratrmaer Diagrammer j.~! Code (~aerator
~,s4| connectmnofuser] [spec~ficatmn] tdcntd]catmn [l t den t ' f i ca t '~176 generaUonof

| / of procedural log,e 1/ of Gill datab d GUI

Mxcro Focus Cobol Compder

Macro Focus Ianker

GUI program non-GUI
(,EXE/ programs

(DLI3

~ Ext~nd~
l~raries

executable program

OS/2 Database
Manager

r:
r~.

Fig. 5: Relations between construction tools

224

Response times are sometimes very long. The process of building up the screen took
up to two minutes when a group of windows had to be loaded. Tool documentation
proved to be incomplete and full of errors. This was particularly hampering to pro-
ject progress as lengthy trial-and-error processes were necessary to find out what
was wrong, what was right, and what was missing in the documentation. For exam-
ple, there is no coherent description of which specifications are needed and how to
proceed to generate Cobol programs. Motivation of the project team was severely
damaged by the effects of documentation flaws.

As to vertical integration of procedural-logic components, there is a complete
break between analysis and design/construction. Mini-specifications from business
area analysis cannot be processed in the design stage. The only way to make use of
those earlier descriptions is to copy them into program specifications where they
may serve as comments. Procedural logic has to be redeveloped completely. Since
the language is Enriched Cobol, the level of expression is only slightly above
"ordinary" 3GL programming! Another drawback is that error messages refer to the
code generated by ADW. Debugging becomes rather awkward as developers have to
examine code they did not write! Unfortunately, no debugger on the specification
level is available (yet).

6.2 Encyclopedia

Quite a number of ADW's shortcomings are related to the current state of the ency-
clopedia. The encyclopedia is basically a single-user encyclopedia and, at most,
suitable for very small development teams. A LAN-based encyclopedia as needed in
a 30-people project is not available. Instead, ADW allows several parallel ency-
clopedias to be kept and consolidated from time to time. This is a rather insufficient
substitute, however. Consolidation runs take long; in our case (9 encyclopedias)
they amounted to V2 - 1 day during which encyclopedias could not be used.

Some consistency checks are made during consolidation, but often the user has to
ensure consistency himself. For example, the master encyclopedia will not notice
that an element has been deleted in one of the decentral encyclopedias. Consistency
may also become a problem between tools when several persons work with the same
objects. Consider, for example, the case that one person deletes - by means of the
Data Flow Diagrammer - a process that has subprocesses specified by other persons.
The Decomposition Diagrammer now is no longer able to associate the subprocesses
correctly unless they are reassigned by hand. When several people are involved,
problems may arise if information about the deletion is not passed to all of them in a
coordinated way.

A severe setback occurred once when storage for the encyclopedia was used up.
Some members of the project team had worked until late. Before going home, they
proceeded as usual to store their results. Frustration was big the next morning when
they discovered that yesterday's work was not there any more. The reason was that
ADW does not issue a message when there is not enough storage left; it simply does
not store! To avoid this kind of problem, oversize extra storage had to be provided

225

from then on, considering that the encyclopedias grew at a rate of 10 MB per day
during that particular phase of the project.

KnowledgeWare meanwhile seems to have recognized that many ADW prob-
lems are due to the weak encyclopedia. The announcement was made that the Ro-
chade repository will be supported in the future, too.

6.3 Information Engineering Methodology

To some extent, Information Engineering methodology as proposed by Martin was
applied in the project. End users were involved at several stages. In particular, re-
quirements were analyzed and specified with the help of end users, and prototyping
was applied to demonstrate and revise intermediate results.

During analysis, JRP (joint requirements planning) workshops were conducted
for each subarea, including both end users, designers responsible for that subarea,
and the subproject leader. Some JAD (joint application design) workshops were also
scheduled. For several reasons, however, workshops were not as elaborate as sugge-
sted in IE publications [3, 6]. First, sufficient experience with JRP and JAD metho-
dology was lacking. Second, time for the project was extremely limited. Third, the
persons heading the project (project/subproject managers, supervisor) knew the bu-
siness areas very well themselves. Thus, JRP and JAD were not so much conducted
in the form of workshops, but resembled more ordinary requirements analysis with
some end-user prototyping.

Timebox methodology was not applied explicitly ([6], p. 170). However, in all
phases of the project, functions and processes to be analyzed, designed, constructed,
or left out, respectively, were prioritized. In this way, the basic idea of timeboxes
underlay the whole project.

Consistency problems arose whenever models from design or analysis needed to
be changed. Modifications at a later stage were made within the specific forms of
representation of that stage (e.g. relational data structures). Models of former stages
(e.g. entity-relationship model) were neither adapted automatically, by ADW, nor
by the developers, because of lack of time. From this, it was inevitable that incon-
sistencies among analysis models, design models, data structures, and programs
grew constantly.

7 Out look

According to Ed Yourdon, it takes some 10 - 15 years for new technologies to
reach widespread use ([14], p. 268). Today, dissemination of Information Engineer-
ing-based I-CASE is still at its beginning. One reason is certainly that the rather so-
phisticated Information Engineering approach to IS development will only work if
developers have received adequate education in analyzing and modelling. In
particular, they need the capabability to develop models of the problem domain,
rather than write specifications and programs as taught in software engineering.

226

Another reason seems to be that tools have not reached the stability needed for
industry-scale application yet; this was one of the experiences from our project. Fur-
thermore, the code generated automatically is often considered inefficient_ There-
fore, some users employ ADW or IEF for analysis and design only, but leave con-
struction to their experienced Cobol programmers. Some use less comprehensive
"lower CASE" tools that generate more efficient code. Better code generation fol-
lowing the modelling phases in a natural way are indispensable for truly integrated
CASE.

At present, only "typical" data processing problems are supported, i.e. transac-
tion-oriented problems where input/output by way of windows and forms, and ac-
cesses to databases dominate. Other problem types, e.g. problems including com-
plex algorithms or active graphics, are still beyond the scope of I-CASE. Following
Ed Yourdon, some 5 - 10 % of business information-processing problems can be
tackled today, but 90 % might be reached by the end of the decade ([14], p. 273).

Finally, many potential users are still uncertain about the cost and benefit of I-
CASE. Although tool vendors have been promising significant gains in productivity,
objective investigations are still rare. In an article of May 1993 [10], three enter-
prises reported on their I-CASE activities. Two of them actually tried to measure
costs and benefits. One company found that productivity had raised substantially.
The second one recognized only moderate savings. The third company had not
quantified expectations and did not perform measurements. They felt that their
vague hopes were not fulfilled and hence cancelled further CASE activities.

References

[1] Ernst & Young GmbH: Application Development Workbench; Ernst &
Young CASE Services GmbH & Co.; Stuttgart o.J.

[2] KnowledgeWare, Inc.: Application Development Workbench/Workstation
Basics, Release 1.6.02; KnowledgeWare, Inc., Atlanta, GA 1991.

[3] Lucas, M.A.: The Way of JAD; Database Programming and Design 6 (1993)
7, pp. 42-49.

[4] Martin, J.: Information Engineering, Book I, Introduction; Englewood Cliffs,
NJ 1989.

[5] Martin, J.: Information Engineering, Book II, Planning and Analysis; Engle-
wood Cliffs, NJ 1990.

[6] Martin, J.: Information Engineering, Book III, Design and Construction;
Englewood Cliffs, NJ 1990.

[7] N.N.: Die Kunst der geb/indigten Unordnung; Computerworld Schweiz
(1987) 12, pp. 7-11.

[8] N.N.: Modellgetriebene Anwendungsentwicklung; IBM Nachrichten 41
(1991) 306, pp. 46-49.

[10] N.N.: The Costs and Benefits of CASE; US analyzer 31 (1993) 6.

227

[11] Short, K., Dodd, J.: Information Engineering \with Objects, Issue 1.2; Texas
Instruments Technical Paper; JMA Information Engineering Ltd., Ashford,
Middlesex (England) 1992.

[12] Snell, N.: Users Rethink Life Cycle CASE; Datamation (1993) May 15, pp.
102-105.

[13] Texas Instruments Inc. (Eds.): IEF Information Engineering Facility, Tech-
nology Overview, Second Edition; TI Part Number 2739900-8027; Piano,
Texas, November 1990.

[14] Yourdon, E.: Decline and Fall of the American Programmer; Englewood
Cliffs, NJ 1992.

