
Modeling multiple views of common features in software
reengineering for reuse

Stan Jarzabek and Chew Lira T a n

Department of Information Systems and Computer Science
National University of Singapore

Singapore 0511
stan@iscs.nus.sg, tancl@iscs.nus.sg

Abstract. Common objectives of software reengineering are to improve program
maintainability, to port programs into new platforms or to support new functions.
To meet reengineering objectives, sometimes it is necessary to substantially
re-deign programs; then, reengineering becomes an opportune moment to address
reusability. In the "reengineering for reuse" scenario, a reusability framework is
built prior to reengineering efforts. Within the framework, potentially reusable
features are modeled and representation structures for capturing reusable features
are built. The core of the framework is a family of domain models. Domain
models are built in the course of both reverse engineering of existing programs
and independent domain analysis. Domain models consist of documentation
templates, organized in Object-Oriented way, that describe common (therefore
reusable) features and their implementation. Often we find that, apart from
similarities, there are also some variations in feature specifications and
implementation from one system to another. Modeling reusable features and
capturing variations in feature specification is the topic of this paper.

1. Introduction

Recent surveys [20] show that investments in Information Technology (IT) do not
yield expected benefits. Many of the aging business programs are expensive to
maintain, run on outdated platforms and do not meet requirements of strategic
information systems companies need today. In short-term, some of those programs
must be restructured for better maintainability and converted into new computers,
databases, operating systems, languages, etc. In long-term, however, programs must
be reengineered (or re-written) to fully exploit advantages of new technology and to
be in tune with company's strategic plans [16,21]. We call this strategic reengineering
[13]. Strategic reengineering may involve re-designing program architecture or even
change of the implementation technique (e.g., taking programs under control of a
CASE tool or re-designing procedural programs into the Object-Oriented
architecture). Strategic reengineering is expensive and must be cost-justified.
Addressing reusability during reengineering can increase the value of a reengineering
solution [14].

270

To ensure consistency of reengineering efforts with company's business and IT
strategies, we defined a lifecycle model whose phase and process structure is shown
on figures 1-3.

strategic
planning

software
improvement
programme

busine~ goals business strategy critical suce~ factorl

IS goals target information architecture requirements for target ~stems e,~i~ng systems

candidate systems for so.rare reengineering
reengineering methodology

Fig, 1 Strategic reengineedng: lifecycle

Fig. 1 depicts reengineering as part of an overall software improvement program
determined during strategic planning [16]. During business planning, a company
clarifies business goals and modifies business operations to meet new goals and to
take advantage of new IT options. Information System (IS) planning leads to
identifying software systems a company needs in order to follow its business plan. A
stable target computer/software architecture for future software development and
maintenance activities is also def'med. Company's existing platforms and progralns
are assessed and based on this assessment future development and reengineering
efforts are planned.

The logical structure of the reengineering for reusability process is depicted on fig.
2. During reengineering, we transform an old system S into a new system, S-NEW.
To facilitate program transformation, we recreate program views at various levels of
abstraction. The physical level is created using reverse engineering techniques. The
physical layer includes abstract syntax trees and design abstractions such as control
flow and data flow graphs, procedure calling trees, data, structure charts, various
cross-reference lists, etc.

271

o/d ~ M ~ m $

big. 2 Reengineering process model

The logical level provides the description of a program in terms of user-oriented,
application domain concepts. The logical level may consist of Object-Oriented (OO)
program descriptions[19], Entity-Relationship (ER) data models [5], Data Flow
Diagrams (DFD), etc. The choice of representation for logical design depends on
specific forward engineering techniques to be used as well as on programmer/user
preference. Above logical program description level, there is a reusability framework
that consists of a family of domain models and reusability management facilities.
Each domain model describes designs and code that can be reused across systems in a
given application domain such as payroll or customer service. (Application domains
are also called business areas.) Domain models form OO program descriptions that
are created in the course of independent domain analysis [1] and reverse engineering
of systems that service a given application domain.

The technical scenario for software reengineering consists of three steps (fig. 3)
that are performed at the application domain, system and system component levels,
resp. The domain level step takes into account all the systems in a given application
domain (AD). Objectives of this step are (1) to understand systems in AD, (2) to
prepare an architectural framework for new systems (in particular, a common data
model consistent with the target architecture), and (3) to do domain analysis in order
to address problems of reusability.

The objective of the system level step is to produce complete logical design
specifications for a selected system S in AD. Design specifications for both the
original system S and target system (S-NEW) are produced. The design of S-NEW is
based on a portion of a common data model relevant to S-NEW.

During the last step, a selected system is incrementally reengineered,
component-by-component. Components may be individual programs or subsystems.
Reusable features, accumulated within the domain model, are reused in component
reengineering. As incremental reengineering of systems progresses, additional
common features may be identified. They are extracted and linked into the domain
model for future reuse.

272

target architecture
~ s t~na in domain A D

domain model for AD data mod~l for AD system 8 selected for
~ n e en1~ineerin8

w requirements for S

S wiO~ P r~placed b~ P-NJ~3 r

Fig 3. Three levels of software reengineering

Domain models capture specifications and implementation of features that are
common to all the software systems in a given application domain. But, apart from
commonalties, we often observe that there are some variations in the way features are
specified and/or implemented in different systems. In the reengineering context, those
variations can be quite substantial. Suppose we reengineer system S to obtain system
S-NEW. Having created domain models, we need to know how various features are
specified/implemented in both systems S and S-NEW. This lraceability of
information from domain models to code is essential in software reengineering for
reuse [12]. But some of the requirements for system S may no longer hold for
S-NEW. Also, system S may be implemented in COBOL while S-NEW may be
designed with CASE or built around an Object-Oriented architecture. Furthermore,
software houses often maintain multiple implementations of a software package for
different software/computer platforms. In such cases, platform-independent, logical
model of reusable features (and of software packages) and explicit transformations
from logical model into multiple implementations increase reuse potential and reduce
maintenance effort. Therefore, multiple views of common features should be
explicitly modeled to facilitate reengineering for reuse scenario. Fig. 4 depicts the
architecture of such software models.

273

generic specifications
of features

variations in ~ ~ ~ ~-
requirements in respect ~$1-SPECL~ -," /" ,~ ~
to systems Sl and S2 ~ _ . . ~ - - : k ~

code

o~arsystems
inAD

system S1 implemented I system $2 implomented
on multiple platforms [I on multiple platforms]

m~pmg inheritance

Fig. 4 An architecture of software models and mappings between models

Model 1 identifies common features in a given application domain AD and contains
generic, user requirement level specifications of those features. Models 3 and 4
explicate variations in requirement specifications from the perspective of two systems
in AD, S1 and $2. As we explain later in the paper, variations in requirement
specifications across systems are modeled using inheritance. In the reengineering
context, S1 can represent a system before reengineering and $2 - a reengineered
version of that system. Models 5 and 6 contain system design specifications,
expressed in terms of common features, in a platform-independent way. Finally,
boxes 7 and 8 represent system implementations on multiple target platforms. In the
remaining part of this paper, we concentrate on models 1, 3 and 4 in fig. 4, and
describe a modeling technique of reusable features that is suitable in the
reengineering context. In other papers, we described the role of domain analysis in
reengineering [12], strategic reengineering lifecycle [13] and techniques involved in
reengineering for reuse [14].

2. Modeling reusable features

We build domain models based on Object-Oriented approach (OO). Objects represent
meaningful concepts from the application domain (e.g. an employee in a payroll
system). In business programs, many of the interesting candidates for objects are
naturally derived from a conceptual data model [12,19]. Objects comprise data
models and procedures related to specific data groups. Modeling reusable features
starts by reverse engineering of a conceptual data model based on analysis of data

274

structures and database schema from existing programs. Reverse engineered data
model is reconciled with new requirements for target systems and further refined in
the process of data analysis. Next, object models are built by identifying procedures
related to data model entities. Relationships between objects are derived from entity
relationships. We have to stress that building an OO domain model to handle
reusable features is helpful even if we do not intend to reengineer procedural
programs into OO programs. If obtaining OO program architecture happens to be our
objective, certainly an OO domain model will immensely help in such a
transformation. But essentially, the main purpose of the object model is to organize
program information for ease of understanding and reuse and to help in navigation
through design/code during program reengineering and maintenance.

In our notation, program specifications are built around application domain
features. Features refer to objects (e.g., a book in a library system), object attributes
(e.g., an author), object methods (e.g., checking out a book), relations between objects
(e.g., member Borrowed book), events (arrival of ordered books), global procedures
and business rules (e.g., loan rules for various types of library users). Both object
methods and global procedures form atomic actions that can be composed into
business processes, i.e., chains of actions triggered by events. Business modeling
methods similar to ours have been proposed by others [2,17]. In this paper, it is not
our goal to demonstrate the modeling power of our notation. Instead, we concentrate
on issues of how we actually represent and document features and variations in
feature specifications. Features are described by documentation templates. A
documentation template consists of descriptors grouped into specification sections.
Each section has a title which is unique in a given template. Descriptors may be
elements of formal specification, semi-formal or a free text. Descriptors may denote
features and in such case they may refer to other documentation templates that
describe those features in more detail. A descriptor consists of a descriptor signature
(a name with optional list of arguments), followed by (an optional) descriptor body.
Descriptor signatures must be unique in a specification section in which they appear.
Documentation templates are organized into inheritance networks. The subject of
inheritance are sp~ification sections and descriptors.

As an example, we show how we document objects and methods. A documentation
template for objects provides the following information:
�9 parent templates (in an inheritance network)
�9 a list of attributes
�9 for each attribute it may be specified:

�9 attribute value domain and value constraints
�9 whether attribute value can be changed or not
�9 whether attribute is a key or not
�9 whether attribute is computed or not

�9 a list of methods (methods are specified by separate method templates)
�9 object constraints (Boolean conditions)

�9 invariants: characterize valid object states
�9 initial: must be true for an object to be created
�9 final: must be true for an object to be destroyed

�9 a list of rules (rules are specified by separate rule templates)

275

In a library system, we have library items such as books, journals, films, etc.
Properties shared by all the library items might be defined in object template
LIB-ITEM and templates for specific items might be derived from LIB-ITEM. Below
we show documentation templates for features LIB-ITEM and BOOK:
domain object template LIB-ITEM {

informal description:

attributes:
CatalogNo
Title
int #copies = <l,Max>
Status = (Borrowed, Reserved, Available)

methods:
RegisterNew(LIB -ITEM)
CheckOut(LIB -ITEM,MEMB)
Checkin(LIB -ITEM,MEMB)
BOOL IsReserved(LIB-ITEM)
BOOL IsBorrowed(LiB-ITEM)
BOOL IsOverdue(HB-ITEM)

relations:
B orrowed(LIB -ITEM,MEMB)

object constraints:
IsAvail: Status = Available ~ ~IsBorrowed(lib-item) & ~IsReserved(lib-item)

rules:
Overdue: If a LIB-ITEM is overdue more than one week, send a reminder to a

borrower
if (IsOverdue(item)) then memb.Remind(item) where Borrowed(item,memb)

I

domain object template BOOK {

informal description:

derived from:
LIB-ITEM

attributes:
Author
ISBN
Status = (LIB-ITEM=Status, Reference)

methods:
CheckOut(BOOK,MEMB)
BOOL IsReference(BOOK)

rules:
Removal: If a book has not been used for 5 years, remo~,e a'book from library

I

276

Comments: Documentation template BOOK inherits all descriptor sections from
LIB-ITEM. Method CheckOut is re-defined which means that specifications of
CheckOut for books differs from CheckOut procedure defined in LIB-ITEM. In
addition to descriptors inherited from LIB-ITEM, BOOK has a rule called ~Removal'
and a method BOOL IsReference(BOOK). Attribute 'Status' is re-defined to reflect
the fact that books can be placed on a reference shelf. ~sAvall' is a signature of an
object constraint that relates the value of attribute 'Status' to a condition expressed in
terms of methods. (Symbol ~-~ means "if and only if".) The body of rule 'Overdue'
contains both informal and formal specifications.

Method descriptors (in object template) may refer to method documentation
templates that provide detail specifications of methods. In particular, method
templates contain the following information (global procedures are documented in the
same way as methods):
�9 method header: name, arguments and returned value
�9 objects involved in method; each object may be qualified as:

�9 MODIFIED - if method modifies objects
�9 INQUIRY - if method reads objects without changing them
�9 CREATE - if method creates a new object
�9 DELETE - if methods deletes objects

�9 pre-conditions: must be true before a method can be executed
�9 post-conditions: describes the effect of method execution

Here are documentation templates for methods CheckOut0:
domain method template LIB-ITEM=CheckOut (LIB-ITEM item, MEMB b) {

informal description:
objects involved:

LIB-ITEM (MODIFIED), MEMB (MODIFIED)

pre.conditions:
Avail: ~IsReserved(item) & ~IsBorrowed(item) & MEMB::CanBorrow(b)

post-conditions:
NotAvail: IsBorrowed(item)
Borrowed: Borrowed(item, b)

}
Comments: The header indicates that this template refines a method descriptor
CheckOut from template LIB-ITEM. The descriptors listed in LIB-ITEM can be used
without qualification as long as this does not lead to ambiguous references.
Descriptors from other templates must be qualified (e.g., MEMB::CanBorrow(b)).

Methods can inherit specifications one from another. In our example, method
CheckIn is not re-defined in BOOK, therefore it applies to books. But specifications
of documentation template for method CheckOut(BOOK,MEMB) slightly differs
from method CheckOut(LIB-ITEMMIEMB), as books may remain on a reference
shelf. To reflect this, we re-define pre-condition for method
CheckOut(BOOK,MEMB):
domain method template BOOK=CheckOut (BOOK b, MEMB) {

informal description:

2 7 7

derived from:
method template LIB-ITEM::CheckOut(LIB-ITEM, MEMB)

pre-conditions:
Avail: LIB-1TEM::Avail & -IsReference(b)

}
Comments: This example shows reuse of specifications across templates at low

level of granularity: pre-condition 'Avail' defined in the parent template is used in
definition of a stronger pre-condition in a derived template.

3. Modeling variations in feature specifications

The domain model is created not just for one system, but for all the systems in a given
application domain. The domain model captures generic knowledge about an
application domain, but there may be slight variations in requirements across
systems. For example, a library may be located in several locations. It may happen
that most sites allow users to reserve library items, but one site, say X, does not
provide reservation service. Because of that BOOKs and method CheckOut will have
different specifications in a system servicing site X from those that service other sites.
Those variations must be traceable from the domain model down to design
specifications and code in various systems under consideration. Differences between
generic, domain model view and system-specific view of a given feature can be
modeled by multiple inheritance.

We use the following conventions in modeling system-specific views:
1. a derived template must resolve any ambiguities resulting from multiple

inheritance,
2. a template may hide certain elements inherited from parents,
3. an element hidden in template A cannot be accessed in templates derived from A,
4. a template can add new elements or re-define any inherited elements.

,]
I

A

c I c,,

I
I

D' t ~
i

Fig. S Modeling system-specific views

278

In fig. 5, features A, B, C and D describe a generic model of application domain,
say AD. S 1 and S 2 are two systems in AD. (In particular, S 1 might be a system
before reengineering and S 2 - a reengineered version of that system.) System S 2
shares features A and B with its generic model. Feature C" is derived from C to show
similarities and differences between system S 2 and generic model AD. As feature D"
has some properties of D and some properties of C", it is derived from two parents. In
system S 1, all the features are derived from the generic model.

To give a more intuitive illustration of a situation that involves modeling
system-specific views, let's return to our library example. We model a view of
library site X as follows:

LIB-ITEM-X

BOOK-X

system X

LIB-ITEM

/ \
BOOK FILM

generic model

Fig. 6 System-specific views in a library system

domain object template LIB-ITEM-X {

informal description:

derived from:
LIB -ITEM

attributes:
Status = (Borrowed, Available)

o r ,

methods:
CheckOut(LIB -1TEM,MEMB)

hidden:
BOOL IsReserved(LIB-ITEM)

]

domain object template BOOK-X {

informal description:

derived from:
LIB-ITEM-X, BOOK

attributes:

279

Status = (LIB-ITEM-X::Status, Reference)

methods:
CheckOut(BOOK,MEMB)

hidden:
BOOL IsReserved(LIB-ITEM)

}
Comments: Documentation template BOOK-X re-defines attribute 'Status' in

terms of attribute inherited from LIB-ITEM-X, re-defines specifications of method
CheckOut and hides method IsReserved. (It is necessary to hide method IsReserved in
BOOK-X as it is inherited from two parents.)

In case of method CheckOut, we could derive a system-specific view and re-define
the pre-condition (by deleting ~IsReserved(item) from the condition). But we also
need to modify documentation template LIB-ITEM to reflect change in requirements
from the point of view of X. Documentation templates for method CheckOut are
derived in the following way (with pre-conditions modified to reflect no reservation
s e r v i c e) :

LIB-ITEM: :CheckOut(LIB-ITEM)

LIB-ITEM-X: :CheckOut(LIB-ITEM)

BOOK-X: "CheckOut(BOOK)

BOOK::CheckOut(BOOK)

Fig. 7 Derivation of system-specific views of methods

We experiment with using a generator for language-based editors to support the
above modeling notations. The generator can handle families of inter-related syntax
trees. Each documentation template is represented by an attributed syntax tree and
relationships between trees model inheritance. An incremental attribute propagation
mechanism ensures semantic correctness of the domain model. We feel that more
specialized environments should be built to support manipulation of OO domain
models.

Design and implementation information is captured within the design
documentation templates. Each domain feature may have an associated design
template that explains how a given feature is implemented. A design template linked
to a domain model feature provides generic implementation (stored in a library of
reusable components), while a design template linked to a system-specific feature
explains how a given feature is implemented in that system.

280

4. Related work

A number of authors identified a need for an explicit model to capture program
design during reengineering and maintenance. Object-Oriented models for program
understanding, based on application domain concepts, are described in [8,11,12].

During reengineering for reusability, programmer's task often is to isolate code
that implements a given concept, to raise code to the logical level by removing
implementation-dependent details and, eventually, to convert code into a reusable
module. As it often happens in old programs, code that implements related concepts
is not found in one program module, but is delocalized (i.e., spans a range of program
modules). The process of f'mding and isolating that code can be greatly simplif'led
with use of static program analysis tools [18]. Those tools can compress huge amount
of code into a compact abstract view that is directly related to a certain aspect a
programmer wants to study. Irrelevant details are f'dtered out of this view. Many
useful program views are produced based on control and data flow relations.
Particularly, program slicing views can automate the process of searching code that
implements specific concepts. There are tools that compute program slices, extract
them from programs and convert extracted code into a module, including necessary
data declarations. Program slicing is an example of a technique that was first
developed and experimented with in academic environments [7,22] and then
successfully transferred into production use.

The program slicing technique, though very useful, provides only indirect means
for recovering concepts behind programs. To address the problem more directly, we
must explicitly model programming and application domain concepts and link them
to relevant design abstractions and code. Automated program recognizers [9,10]
attempt to define libraries of program plans that connect abstract concepts and their
implementations. In the process of automated program recognition, a program is
searched for instances of plans. As plans can be organized in a hierarchical way, the
recognition process can progress from lower to higher abstract levels of program
description. Today, most of the techniques for recovering reusable features are semi-
automatic. If the results of research on automated program recognition scale up to
real world programs, it may be possible that future tools will be able to control a
bigger portion of the reengineering for reusability process.

Research on recovering object-oriented views from programs is also relevant to the
reengineering for reusability. A method for identifying objects in C programs is
described in [15]. Candidate objects are selected based on the analysis of type
definitions; next, procedures which have arguments of a given type, or return a value
of a given type, are identified as candidate methods. In [11], procedural programs are
incrementally reengineered into an object-oriented architecture.

5. Conclusions

Many researchers and practitioners express opinion that software reuse has a
potential to bring productivity breakthroughs and can fundamentally change the way

281

we develop programs [3]. An important source of potentially reusable software assets
are existing programs. Some of those programs, though they still contain much
business value, will have to be reengineered, as they have become technically
obsolete. To reengineer programs, we must understand them. Therefore,
reengineering is an opportune moment to capture viable assets from existing
programs and make them available for future reuse. Reengineering and reusability
have potential to reinforce each other, but we need technical means to realize this
potential. In work reported in this paper, we defined a mechanism for specifying
common features in a given application domain and for modeling variations in
feature specification/implementation across systems. Our specification method is
suitable for the "reengineering for muse" scenario.

We found it difficult to adopt one of the existing Object-Oriented systems to
support the documentation resulting from domain analysis described in this paper. A
system should be sensitive to the inheritance rules dealing with program
specifications and should provide strong browsing capabilities. We are implementing
a prototype documentation support environment using a structure editor generation
system based on extended attribute grammars. Further work will also concentrate on
adding more formality into specifications (based on notations proposed in [2]) and on
modeling program dynamics.

References

1. Arango, G. "Domain Analysis - From Art Form to Engineering Discipline,"
Proc. Fifth International Workshop on Software Specification and Design, May
1989, Pittsburgh, pp. 152-159

2. Berztiss, A. "The Specification and Prototyping Language SF," Report No 78,
SYSLAB, The Royal Institute of Technology, Sweden, 1990

3. Biggenrstaff, T. and Perlis, A. (Editors) Software Reusability, vol. I and II,
ACM Press, 1989

4. Blum, B. "Documentation for Maintenance: A Hypertext Design," Proc. of
Conference on Software Maintenance, 1988, 23-31

5. Chert, P. "The Entity-Relationship Model -- Toward a Unified View of Data,"
ACM Transactions on Database Systems, vol. 1, no. 1, 1976, pp. 9-36

6. Chikofsky, E. and Cross II, J. "Reverse Engineering and Design Recovery: A
Taxonomy," IEEE Software, January 1990, pp. 13-18

7. Gallagher, K. "Using Program Slicing in Software Maintenance," TR CS-90-05,
Ph.D. Thesis, University of Maryland, 1990

8. Hart, C. and Shiling, J. "An Environment for Documenting Software Features,"
Proc. 4'th ACM SIGSOFT Symp. on Software Development Environments,
Irvine, USA, Dec. 1990, pp. 120-132

9. Hartman, J. "Technical Introduction to the First Workshop on Artificial
Intelligence and Automated program Understanding," Workshop Notes AAAI-92
AI & Automated Program Understanding, July 1992, San Jose, pp. 8-31

10. Hartman, J. "Understanding Natural Programs Using Proper Decomposition,"
13th International Conference on Software Engineering, May 1991

282

11. Jackobson, I. and Lindstrom, F. "Re-engineering of old systems to an
object-oriented architecture," Proc. OOPSLA'91, pp. 340-350

12. Jarzabek, S. "Domain, Model-Driven Software Reengineering and Maintenance,"
Journal of Systems and Software, Jan. 1993, pp. 37-51

13. Jarzabek, S. "Strategic Reengineering of Software: Lifecycle Approach," 6th Int.
Workshop on CASE, CASE'93, Singapore, July 1993, pp. 211-220

14. Jarzabek, S. "Software Reengineering for Reusability," Proc. 17th Annual Int.
Computer Software & Applications Conference, COMPSAC93, Phoenix,
November 1993, pp. 100-106

15. Liu, S. and Wilde, N. "Identifying Objects in a Conventional Procedural
Language: An Example of Data Design Recovery," Proc. Conference on
Software Maintenance, 1990, pp. 266-271

16. Martin, J. Information Engineering, Vol. 1, Prentice-Hall, 1986
17. McBrien, P. et al "A Rule Language to Apture and Model Business Policy

Specifications," Proc. 3rd Int. Conference on Advanced Information Systems
Engineering CAiSE'91, Trondheim, May 1991, Lecture Notes in Computer
Science, no. 498, Springer-Verlag, pp. 307-318

18. Rock-Evans, R. and Hales, K. "Reverse Engineering: Markets, Methods and
Tools," Ovum Report vol. 1, published by Ovum Ltd. England, 1990

19. Rumbangh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W.
Object-Oriented Modeling and Design, Prentice-Hall, 1991

20. Strassmann, P. The Business Value of Computers, The Information Economics
Press, 1990

21. Ulrich, W. q~e-development Engineering: Formulating an Information
Blueprint for the 1990's," CASE Outlook, No. 2, 1990, pp. 15-21

22. Weiser M. "Program slicing," IEEE TSE, vol. 10, no. 4, July 1984, pp. 352-357

