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Abstract  

This article presents an approach to schema integration that combines struc- 
tural aspects and behavioural aspects. The novelty of the approach is that it 
uses behavioural information to guide both schema restructuring and schema 
merging. Schema restructuring is based on schema transformations and schema 
merging is based on join operators. 

l I n t r o d u c t i o n  

Schema integration is an important and non-trivial task in database design. It oc- 
curs when a number of different user views, developed for a new database system, 
or a number of existing database schemas must be integrated into a global, unified 
schema. As schema integration is a difficult task, methods to support the designer 
with this task are essential. In [6], a framework for comparing integration methods 
is given. The framework identifies four steps. In the first step, the preintegration 
step, an integration strategy is chosen and additional information on the schemas 
is gathered. Subsequently, the schemas are analysed and compared to find similari- 
ties/conflicts among the schemas. In the conforming step, the conflicts found in the 
comparison step have to be resolved. Finally, in the last step, the schemas are merged 
by superimposition and the resulting schema is analysed and restructured if necessary. 

For our purpose, the main characteristic of an integration method is: which simi- 
larities/conflicts are detected and how are conflicts resolved? A number of integration 
methods use assertions among different component schemas to compare attributes and 
entity types. In [17], interschema assertions, names, and types are used to compare 
object types. In [15], schemas are merged using schema operators and assertions 
among entity types and attributes in different schemas. And in [13], attribute as- 
sertions (e.g., key/non-key and lower/upper bounds) are used to compare attributes 
and entity types. However, the assertions must be supplied by the designer and the 
resolution of conflicts depends heavily on the common sense of the designer. Other 
methods use schema transformations to resolve structural conflicts. In [9], structural 
transformations are defined to integrate compatible structures. In [16], a number of 
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schema transformations (e.g., join and meet) are proposed to restructure schemas. 
And in [5], transformations between attributes, entities and relationships axe used 
to resolve type conflicts. However, only the last one gives a heuristic (viz., concept 
likeness/unlikeness) for applying the transformations. Finally, a number of recent 
methods use more specific information on semantical properties of attributes and en- 
tity types to detect similarities and conflicts. In [18, 23], attribute assertions are used 
to define relationships between an attribute on one hand and a semantic point or a 
set of concepts on the other hand. Again, the assertions must be supplied by the 
designer. In [19], a database metadictionary is used to define a semantic domain for 
each attribute. And in [10], a terminological knowledge base containing information 
on negative and positive associations between terms and information on specialisation 
of terms is used to compare entity types. 

This article presents a new approach to schema integration, based on schema 
transformations and the approach taken in [20, 21], where classes are compared by 
structure and by behaviour. The approach consist of two steps. First, component 
schemas are restructured using schema transformations, and syntactical properties of 
methods are used to guide the restructuring process. Subsequently, the component 
schemas are merged using join operators, and semantical properties of methods are 
used to guide the merging process. More details on the approach are given in [22]. 
There is, as far as the authors know, no other approach that uses methods to compare 
attributes. For sake of completeness, it should be mentioned that there is an approach 
to schema evolution that analyses methods ([8]), not to compare attributes, but to 
solve non-legitimate overriding of methods. 

The outline of this article is as follows. In the next section, we give a brief overview 
and formalisation of our data model. In Section 3, we define a number of well-known 
type transformations and extend them to be applicable to recursive types as well. 
Furthermore, we show how these type transformations induce schema transformations. 
In Section 4, we show how methods can be used to guide schema restructuring and 
give a heuristic algorithm to restructure and merge schemas. In the last section, we 
summarise and give some directions for further research. 

2 D a t a b a s e  s c h e m a s  

In this section, we introduce a subset of the database schemas found in object-oriented 
database languages such as Galileo [2], Goblin [12], 02 [14], and TM/FM [4]. 

Informally, an object-oriented database schema is a a class hierarchy, i.e., a set of 
classes related by a subclass relation. A class has a name, a set of superclasses, a set 
of attributes, a set of constraints, and a set of update and query methods. 

Def ini t ion 1 (Class hierarchies) .  First, five disjoint sets are postulated: a set 
C N  of class names, a set A N  of attribute names, a set M N  of method names, a set 
L of labels, and a set Cons of basic constants (i.e., 'integer', 'rational', and 'string' 
constants). The sets are generated by the nonterminals CN, AN, MN, L, and Cons, 
respectively. Class hierarchies are the sentences of the following BNF-grammar, where 
the plus sign (+) denotes a finite, nonempty repetition, square brackets ([ ]) denote 
an option, and the vertical bar (I) denotes a choice: 
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Hierarchy ::= 
Class ::= 

Art ::-- 
Type :: = 
BasicType ::= 
SetType ..-"- 
RecordType ::= 
FieldList ::= 
Field ::= 
Key ::= 
KeyAtt ::= 
Meth ::= 

ParList ::= 
Par ::= 
Result ::= 
AsnList ::= 
Assign ::= 
Dest ::= 
Source ::-- 

Term ::= 
ActParList ::= 

[] 

A class hierarchy is well-defined if it satisfies four conditions. 

Class + 
'Class '  CN [ ' Isa '  CN + ] 
[ ' A t t r i b u t e s '  Att  + ] 
[ ' C o n s t r a i n t s '  Key + ] 
[ ' M e t h o d s '  Meth + ] 
'Endc lass '  
AN ':' Type 
BasicType I SetType [ RecordType I CN 
'integer' I 'rational' I 'string' 
'{' Type '}' 
'< '  FieldList '> '  
Field [ Field ',' FieldList 
L ':' Type 
key  KeyAtt + 
AN I KeyAtt '.' L 
MN '(' [ ParList ] ') = '  AsnList 1 
MN '(' [ ParList ] --~' Result ') = '  AsnList I 
Par I Par ',' ParList 
L ':' BasicType 
L ':' Type 
Assign I Assign ';' AsnList 
Dest ' := '  Source I ' i nse r t ( '  Source ',' Dest ')' 
L t AN I L '.' Dest I AN '.' Dest 
'sell" I Term l Term '+ '  Source I Term ' - '  Source I 
Term ' x '  Source I Term '+ '  Source I ' n ew  (' CN ') '1 
Dest '.' MN '(' ActParList  ')' 
Dest I Cons 
Term I Term ',' ActParList  

The first condition 
is that  the Isa  relation is acyclic, and classes have a unique name and only refer to 
classes in the class hierarchy. The second is that  attributes have a unique name within 
their class and are well-typed. The third is that  keys must be well-defined. The fourth 
is that  methods have a unique name within their class and are well-typed. 

2 . 1  U n d e r l y i n g  t y p e s  

Informally, the set of all attributes of a class consists of both the new and inherited 
attributes. 

De f in i t i on  2 ( A t t r i b u t e s ) .  Let H be a class hierarchy satisfying the first condi- 
tion for well-defined class hierarchies. We abbreviate every class in H to a 5-tuple 
(c, S, A, K, M), where c is the name of the class, S is the set of (names of) super- 
classes, A is the set of new attributes, K is the set of new keys, and M is the set of 
new methods. Now let C = (c, S, A, K, M) be an abbreviated class in H. The name 
of C is denoted by name(C) and the set of all attributes of C, denoted by atts(C), is 
defined as: 
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atts(C) = A U {a: T I inheri ts(a)A 
T = •{T'  I inherits(a, T')} A Va' : T '  6 A[a # a']} 

where 

inherits(a, T ' )  = 3C'  6 H [name(C' )  6 S A a : T '  6 atts(C')], 
inherits(a) = 3C'  6 H 3a' : T '  6 at ts(C')  [name(C' )  6 S A a = a'], 

and ~{T1,.. .  ,T~} is the meet of a set of types [7]. Since we require that the Isa 
relation is acyclic, atts is well-defined. [] 

Every class in a class hierarchy has an underlying type, which describes the structure 
of the class, i.e., the structure of the objects in its extensions (cf. TM/FM [4]). The 
underlying type of a class is an aggregation of its attributes, where recursive types [3] 
are used to cope with attributes that refer to classes. 

Defini t ion 3 (Under ly ing  types) .  First, postulate a new type 'old', whose exten- 
sion is an enumerable set of object identifiers. Let H be a class hierarchy satisfying 
the first condition, C be a class in H, and c be the name of C. The underlying type 
of class C, denoted by type(C),  is defined as: 

type(C) = ~-(c, O) 

where 

T(d, ~) = ].t t d . < id: oid, al : T(T1,77 tA {d}) , . . ' ,  ak: 7(Tk, 7] U {d}) > 
if d r ~ and 3 0  �9 H [ n a m e ( D )  = d A  at ts (D)  = {al : T1, . . . ,ak : T~}], 

T(d, 7) --'-- td if d �9 ~, 
T(B, ~) = B if B �9 {integer, rational, string}, 

7)  = 

7(< 11: U~,.-., l,~: U,~ >, 77) = < l~: T(U~, ~) , . - . ,  l ,  : 7-(U,, 77) >. 

The set 77 contains the names of the classes for which a (recursive) type is being 
constructed as part of the construction of the underlying type of class C. If r/contains 
d, then w(d, 77) ---- td indicates a repetition of the recursive type. [] 

Note that the underlying type of a class depends on the hierarchy. 

3 S c h e m a  t r a n s f o r m a t i o n s  

In this section, we give an overview of type transformations and show how type 
transformations induce schema transformations. 

The basic type transformations we have chosen (viz., renaming, aggregation, and 
objectification) are variants of type transformations in [1]). 

Defini t ion 4 (Basic type  t r ans fo rma t ions ) .  Let L' be the union of L and A N  
and Types be the set of types introduced in Definition 2. Renaming is defined as a 
function of type L' ---* L' ~ Types ---* Types: 
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r e n a m e ( l ' ) ( l ) ( B )  = B if B E {oid,  i n t ege r ,  r a t i o n a l ,  s t r i n g }  
= {7-} 

rename( l ' ) ( l ) (<  11: 7-1,...,1,~ : 7-,~ > )  = < l l [ l ' \  l] : 7 - 1 , ' " , l n [ l ' \  l] : 7-,` >, 
rename(l ' ) ( l ) ( t z t .  < 11 : 7-1 ," ' ,  l,` : 7-,, > )  = # t .  < l l  : q , ' . . ,  l,` : 7-,` > 

if  l '  = id ,  
rename( l ' ) (1) (# t .  < 11: 7 - 1 , ' " ,  l , ` :  7-,` > )  = # t .  < ll[l' \ l ] :  7 -1 , " " ,  l,`[l' \ l ] :  7-,` > 

if l '  ~ id.  

N o t e  t h a t  we do  no t  a l low r e n a m i n g  of id- f ie lds .  
A g g r e g a t i o n  is de f ined  as  a func t ion  of t y p e  p(L ' )  ~ L' ~ Types ~ Types: 

aggregate({li ,  l i + l , ' " ,  l j } ) ( l ) ( B )  = B if  B E {old,  in t ege r ,  r a t i ona l ,  s t r i n g }  
aggregate({li ,  l i + l , ' " ,  l j})( l )({7-})  = {7-} 
aggregate({li ,  l i + t , " ' ,  l j } ) (1)(< 11: 7 -1 , ' " ,  l,~: T,~ > )  = < 11: T 1 , ' ' ' ,  l ~ :  7-~ > 

if  {li,  l i + t , ' ' " ,  l j }  ~ { l ~ , ' " ' ,  l~}, 
aggregate( ( l,, l i + l , ' " , / j } ) ( / ) ( <  11: T I , ' " ,  l,~: ~-,` > )  = 

< l l  : 7 - 1 , ' " , I  :<  li : r i , ' " , l j  : rj > , . . . , l ~  : 7-,~ > 
if  { l ~ , / i + 1 , " " ,  l j}  C_ { l ~ , . . . ,  l,~}, 

a ~ r e g a t e ( { l i ,  1i+1," " " ,  l j } ) ( l ) ( # t .  < I t :  7-1, " " " ,  l , ` :  r,~ > )  - -  

# t .  < l~ : 7-~, �9 �9 �9 l,~ : 7-,` > 
if  {l,, l i + x , ' " ,  13} ~= { 1 1 , . . . , / ~ } ,  

 gg gate({t,, t A ) ( 0 ( z t .  < t l :  7 -1 ," ' ,  >)  = 
#t .  < l l  : 7 - 1 , ' " , 1  :<  li : 7 - i , ' " , l j  : 7-j > , . . . , l , `  : 7-,` > 
if id  r { l ~ , / i + l , . . . , l j }  a n d  { l i , / i + l , ' " , l j }  C { / a , . . . , l ~ } ,  

aggregate({li ,  l i + l , ' " ,  l j ) ) ( l ) (# t .  < 11: ~ -1 , " " ,  I n :  7-,` > )  = 
Us. < 11: q[ t  \ s ] , . . . , l  : at .  < li : 7-i[t \ s ] , . . . , l j  : 7-j[t \ s] > , . . .  ,l,~ : 7-,`It\s] > 
if id  E {li,  l i + l , ' " ,  l j}  a n d  {li, l i + l , ' " ,  l j}  C_ { l l , . . . ,  l , } .  

O b j e c t i f i c a t i o n  is de f ined  as a f u n c t i o n  of t y p e  Types ---* Types: 

objec t i fy (B)  = B if  B E {oid,  in t ege r ,  r a t i o n a l ,  s t r i n g }  
objectify({7-}) = {7-} 
object i fy(< It : q , ' " ,  l,` : 7-,~ > )  = # s .  < id  : o id ,  11 : r ~ , . . . ,  l,` : 7-,` > ,  
object i fy(~t .  < 11 : 7 - a , ' " ,  l,` : 7-,~ > )  = # t .  < l~ : 7 - 1 , ' " ,  l,~ : 7-,` > 

if 3i  e { 1 , . . .  ,n}[l i  = id], 
object i fy(~t .  < l~ : 7 -1 , " " ,  l,` : 7-~ > )  = t~t. < id  : oid,  l~ : 7 -~ , . . . ,  l~ : 7-~ > 

if Vi e { 1 , . . . ,  n}[ l i  ~ id]. 

[] 

C o m p l e x  t y p e  t r a n s f o r m a t i o n s  are  o b t a i n e d  by  c o m b i n i n g  bas i c  t y p e  t r a n s f o r m a t i o n s .  

E x a m p l e  1. T y p e  a = < 11 : #s .  < id  : o i d , / :  Ta,12 : T2 >,13 : Ta > can  be  o b t a i n e d  
f r o m  t y p e  aa = < 11 : 7-1,1= : 7-2,/3 : 73 > aS fol lows:  

a2 = r e n a m e ( l l ) ( l ) ( a l )  = < l :  7-t,/2 : 7-2,13:7-3 > 
a3 = aggregate({l ,  12})(11)(a2) = < 11 : < l :  7-1,12 : r2 >, 13 : 7-3 > 
(74 = < 11 : objecti fy(< l : 7-1, 12 : 7-2 > ) ,  13 : 7-3 > = 0". 
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Both the transformation for lexical attributes and the transformation for unstable 
subtypes from [11] can be obtained by composing one aggregate and one objectify 
operation. 

Example  2. The following class hierarchy introduces a class Person, a class Em- 
ployee, which inherits from class Person, and a class Company: 

Class Person 
At t r ibu tes  

name : string 
street : string 
house : integer 
city : string 

Endclass 

The underlying type of class Person is: 

Class Employee Isa Person 
At t r ibu tes  

employer : Company 
salary : integer 

Endclass 
Class Company 

At t r ibu tes  
name : string 

Endclass. 

tp. <id:oid, name:string, street:string, house:integer, city:string>. 
The underlying type of class Person can be transformed into (by applying aggregate 
({street,house,city}) (address)): 

# tp. <id:oid, name:string, address:<street:string, house:integer, city:string>>, 
which can be transformed into (by applying objectify to the type of address): 

# tp. <id:oid, name:string, 
address:# tx. <id: oid, street:string, house:integer, city:string>>. 

The composite transformation is a variant of the transformation for lexical attributes 
from [11]. We can redefine class Person as a class (named Personl) that refers to a 
new class (named X). 

Class Person1 
At t r ibu tes  

name : string 
address : X 

Endclass 

The underlying type of class Employee is: 

Class X 
At t r ibu tes  

street : string 
house : integer 
city : string 

Endclass. 

# rE. <id:oid, name:string, street:string, house:integer, city:string, 
employer:To, salary:integer>, 

where 7c is the underlying type of class Company. The underlying type of class Em- 
ployee can be transformed into (by applying aggregate ({id,name,street,house,city}) 
(employee)): 

# ty. <employee:# rE. <id:oid, name:string, street:string, house:integer, 
city:string>, employer:~'c, salary:integer>, 

which can be transformed into (by applying objectify): 
# tz. <id:oid, employee:# rE. <id:oid, name:string, street:string, house:integer, 

city:string>, employer:~-c, salary:integer>. 
The composite transformation is a variant of the transformation for unstable subtypes 
from [11]. We can redefine class Employee as a 'relation' (named Y) that refers to a 
new class (named Employeel): 
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Class  Y 
Attributes. 

employee : Employeel  
employer : Company 
salary : integer 

E n d c l a s s  

C la s s  Employeel  
Attributes 

name : string 
street : string 
house : integer 
city : string 

Endc l a s s .  

Note that ,  in the original situation, an employee (an object in class Employee), does 
have a unique employer, whereas, in the resulting situation, an employee (an object 
in class Employeel)  does not. Therefore, we define a key for class Y: 

Class  Y1 
A t t r i b u t e s  

employee �9 Employeel  
employer : Company 
salary : integer 

Constraints 
k e y  employee 

Endclass. 

4 Appl icat ion  of  schema transformat ions  

In the previous section, we defined type t ransformations and showed how they induce 
schema transformations.  In this section, we show how behaviour of methods can be 
used to choose among a set of schema transformations.  
A class can be transformed in several ways, using different factors and different trans- 
formations. 

Example 3. Let class Employee be the following class: 

C las s  Employee 
A t t r i b u t e s  

name : string 
dob : Date 
street : string 
house : integer 
city : string 
employer : Company 

M e t h o d s  
move (s:string,h:integer,c:string) = 

street := s; house := h; city := c 
E n d c l a s s  

and class Address be a factor of Employee: 
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Class  Address 
A t t r i b u t e s  

street : string 
house : integer 
city : string 

M e t h o d s  
move (s:string,h:integer,c:string) = 

street := s; house := h; city :=  c 
Endclass .  

One option to transform class Employee is to redefine Employee as a subclass of 
Address (factorisation by specialisation): 

Class  Employeel I sa  Address 
A t t r i b u t e s  

name : string 
dob : Date 
employer: Company 

Endc las s .  

Another option is to redefine Employee as a class referring to Address (factorisation 
by delegation): 

Class  Employee2 
A t t r i b u t e s  

name : string 
dob : Date 
address: Address2 
employer: Company 

M e t h o d s  
move (s:string,h:integer,c:string) = 

address := address.new_address(s,h,c) 
Endclass  
Class  Address2 
A t t r i b u t e s  

street : string 
house : integer 
city : string 

M e t h o d s  
new_address (s:string,h:integer,c:string -~ l:Address2) = 

1 :=  new(Address2) ; 1.street := s ; 1.house :=  h ; 1.city := c 
Endc lass .  

Note that, as an employee is not an address in the real world, it is unlikely that the 
first option is the right choice. The second option, where employee refers to an address 
(as one of its attributes) is a more reasonable choice. Now, let class Person be a factor 
of class Employee2: 

Class  Person 
A t t r i b u t e s  
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name : string 
dob : Date 
address : Address2 

M e t h o d s  
move (s:string,h:integer,c:string) = 

address := address.new_address(s,h,c) 
Endc lass .  

One option to transform class Employee2 is to redefine Employee2 as a subclass of 
Person (factorisation by specialisation): 

Class Employee3 Isa Person 
A t t r i b u t e s  

employer : Company 
Endclass.  

Another option is to redefine Employee2 as a class referring to Person (factorisation 
by delegation): 

Class Employee4 
A t t r i b u t e s  

person : Personl 
employer : Company 

M e t h o d s  
move (s:string,h:integer,c:string) = 

person := person.new_person(s,h,c) 
Endclass  
Class Personl 
A t t r i b u t e s  

name : string 
dob : Date 
address : Address2 

M e t h o d s  
new_person (s:string,h:integer,c:string --* l:Personl) 

1 :=  new(Personl )  ; 1.name := name ; 
1.dob := dob ; 1.address := 1.address.new_address(s,h,c) 

Endc lass .  

Since the objects in class Employee2 become the objects in class Employee4, we 
redefine method 'move' to be applicable to objects in class Employee4. Yet another 
option is to redefine class Employee2 as a relation involving class Person: 

Class Employment 
A t t r i b u t e s  

employee : Person 
employer : Company 

C o n s t r a i n t s  
key  employee 

Endclass.  
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Since the objects in class Employee2 become the objects in class Person, we do not 
redefine method 'move', because it is already applicable to objects in class Person. 
Note that, as an employee is a person in the real world, it is likely that options one 
and three are more reasonable than option two, where an employer refers to a person 
(as one of its attributes). [] 

As we have seen, a class can be transformed in several ways, using different factors 
and different transformations, e.g., factorisation by specia]isation, factorisation by 
delegation, or redefinition as a relation. But how do we choose factors and how 
do we choose between specialisation, delegation and redefinition as a relation? For 
that purpose, we introduce evidence ratios for relatedness. Weak relatedness for a 
set of attributes says whether the attributes are mutually related (according to the 
methods). Strong relatedness for a set of attributes says whether the attributes are 
mutually related, but not to attributes outside the set (according to the methods). 
Isolation for a set of attributes says whether the attributes are not related to attributes 
outside the set (according to the methods). 

Defini t ion 5 (Relatedness  ratios).  Let H be a well-defined class hierarchy, C be 
a class in H, c be the name of C, and M be the set of all methods of C. Furthermore, 
for meth E M, let atts(meth) consist of the names of attributes of C that occur in 
meth. Weak relatedness of a set of attributes A C {a ] a : T E arts(C)} is defined as: 

1 {meth ~ M I atts(meth) _~ A} t weakrel(c, 
A) = I {meth e M I atts(meth) n A ~ 0} ]" 

Strong relatedness of a set of attributes A is defined as: 

] {meth E M ] atts(meth) = A} I 
strongrel(c, A) = I {meth E M I atts(meth) r3 A ~ ~} ]" 

Isolation of a set of attributes A C {a ] a : T E atts(C)} is defined as: 

isolation(c,A) = ] {meth e M]  0 ~ atts(meth) C_ A} ] 
I {meth E M I atts(meth) A A  ~ 0} I " 

If {meth E M att~(meth) N A ~ 0} is empty, then weakrel(c, A) and strongrel(c, A) 
are defined to be O, and isolation(c, A) is defined to be 1. 

For a set of attributes with strong relatedness ratio 1 and any method, either all 
attributes occur in the method and all attributes that occur in the method are in the 
set, or no attribute in the set occurs in the method. In that case, the attributes are 
strongly related. For a set of attributes with weak relatedness ratio O, there is no 
method in which all attributes occur and, hence, the attributes are not (mutually) 
related. And for a set of attributes with isolation ratio 1 and any method, either 
all attributes that occur in the method are attributes in the set or no attribute that 
occurs in the method is an attribute in the set. In that case, the attributes are only 
related within the set. [] 

Weak and strong relatedness can help to choose a factor. If the strong relatedness 
ratio of a set of attributes is high, then it is reasonable to believe that they belong 
together and, hence, to factorise. On the other hand, if the weak relatedness ratio is 
low, then it reasonable to believe that they do not belong together and, hence, not to 
factorise. 
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E x a m p l e  4. Consider class Employee of Example 3. The weak and strong related- 
ness ratios for {street, house, city} and {name, dob} are given by: 

strongrel(Employee, {street, house, city}) = 1 
weakrel(Employee, {street, house, city}) = 1 
strongrel(Employee, {name, dob}) = 0 
weakrel(Employee, {name, dob}) = 0. 

As we can see, street, house, and city are strongly related, whereas name and dob are 
not related. 

Now, consider class Employee2 of Example 3. The weak and strong relatedness 
ratios for {name, dob, address} and {name, dob, employer} are given by: 

strongrel(Employee2, {name, dob, address}) = 0 
weakrel(Employee2, {name, dob, address}) = 0 
strongrel(Employee2, {name, dob, employer}) = 0 
weakrel(Employee2, {name, dob, employer}) = 0. 

As we can see, in both cases the attributes are not related. [] 

Isolation can help to choose between specialisation and redefinition as a relation. If 
the isolation ratio is less than one, then specialisation is possible, but redefinition as 
a relation is not, since, in that case, we have to add a method to the relation that 
updates another relation or class. 

E x a m p l e  5. Consider class Employee2 of Example 3. The isolation evidence ratio 
for name, dob, address is given by: 

isolation(Employee2, {name, dob, address}) = 1. 
Redefinition as a relation results in a relation (Employment) that represents a simple 
association between a person and a company. Now, if we add a method to class 
Employee2 that updates attribute address and attribute employer, then we will have 
to add a method to Employment that creates a new person and updates attribute 
employee and attribute employer. Since this method is not a simple insert or update 
operation on Employment, Employment is no longer a relation. [] 

So, how do we choose factors and transformations? Factors are chosen by compar- 
ing weak evidence ratios. If the weak evidence ratio of a set of attributes is greater 
than some threshold, there is reason to assume that the attributes can be used as a 
factor. If not, there is no reason. Transformations are chosen by comparing strong 
evidence ratios and isolation ratios. In case the strong evidence ratio is greater than 
some threshold, delegation is a reasonable option, because the attributes are strongly 
related within the set and weakly related with other attributes. In case the isolation 
ratio is less than one, then specialisation is possible, but redefinition as a relation 
is not. Otherwise, specialisation or redefinition as a relation are both possible. It 
should be mentioned that, in the context of schema integration, schema transforma- 
tions must be applied carefully and only if necessary. In particular, this is true for 
factorisation by specialisation, since a lot of new classes will be generated by this type 
of transformation. 

The considerations for choosing factors and transformations can be used in a 
heuristic algorithm to support schema integration. First, the attributes of every class 
are partitioned in such a way that the isolation ratio of every element in the partition 
is one, and every class is factorised by delegation if desirable. Subsequently, for every 
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pair of promising classes, a set of possible superclasses is computed, and both classes 
are factorised by specialisation or redefined as a relation if desirable. 

A l g o r i t h m  1. The following algorithm is a heuristic for integrating two database 
schemas (resp., DBS1 and DBS2), given thresholds for strong relatedness and weak 
relatedness (resp., TSR and TWR): 

integrate(DBS1,DBS2,TSR,TWR) = 
for every class C in DBS1 or DBS2 
do for  every element A in partition(C) 

do if strongrel(c,A) > TSR and 1 < [A l < latts(C)[ 
t h e n  create class C1 as the class containing A 

and the methods that refer to A; 
factorise C by delegation using C1; 
mark C and C1 

elif weakrel(c,A) > T W R  
t h e n  mark C 
fi 

od  
od 
for every marked C1 in DBS1 
do for every marked C2 in DBS2 

do if there is a superclass C of a class in joins(C1,C2) that can be used 
as a factor according to the designer 
t h e n  transform(C1,C2,C) 
else for every key a.p in keys(C1) such that a:D in atts(C1) 

for some class D 
do define class D1 as obtained from C1 by applying 

the inverse of redefinition as a relation; 
if there is a superclass C of a class in joins(D1,C2) that 
can be used as a factor according to the designer 
t hen  transform(D1,C2,C) 
fi 

od 
fi 

od 
od; 

transform(C1,C2,C) = 
begin let ~1 be an injection from arts(C) to arts(C1) induced by 6'1 ~ C; 

let ~2 be an injection from atts(C) to atts(C2) induced by C2 ~ C; 
define A1 as the attribute names in the range of ~1; 
define A2 as the attribute names in the range of ~1; 
if isolation(name(C1),A1) < 1 or isolation(name(C2),A2) < 1 
t h e n  factorise C1 and C2 by specialisation using C 
elif  1 < tAll < latts(C1)l and 1 < IA21 < latts(C2)l 
t h e n  factorise C1 and C2 or redefine C1 and C2 as relations 

according to the choice of the designer 
else factorise C1 and C2 by specialisation using C 
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fi 
end; 

where partition(C) is constructed as follows: 

graph(C) has a node for every attribute name in atts(C) 
graph(C) has an edge between two nodes if there is a method in the set of 

all methods of C in which both attribute names occur 
partition(C) consists of sets of attribute names, 

one set for every connected subgraph of graph(C): 
two attribute names are in the same set if their nodes are connected 
two attribute names are in different sets if their nodes are not connected, 

and joins(D1,D2) (i.e., the set of common superclasses of D1 and D2) and _ (i.e., the 
subclass relation) are as defined in [21]. [] 

Note that the algorithm interacts with the designer. It should be mentioned again 
that the algorithm is a heuristic and should therefore be used in close interaction with 
the designer. The heuristic can be improved by combining the different thresholds 
and refining the different adtions. This is the subject of future research. 

5 Conclus ion  

In this article, we presented a new approach to schema integration based on trans- 
formations and behaviour. First, we formalised schemas using underlying types and 
underlying constraints. Next, we presented a number of type transformations on un- 
derlying types and used them to transform schemas. Finally, we gave a heuristic 
algorithm for integrating schemas. The algorithm uses schema transformations to 
restructure schemas and join operators to merge them and behavioural information 
to guide restructuring and merging. Advantages of this approach are: 1) structural 
aspects are integrated in a guided fashion and 2) both structural and behavioural 
aspects are integrated. 

Further research includes 1) extension of the data model, 2) extension of the 
schema transformations, and 3) extension and refinement of the heuristic algorithm. 
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