
An Approach to S c h e m a Integrat ion
Based on Trans format ions and Behaviour*

Christiaan Thieme and Arno Siebes

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
{ct,arno}~cwi.nl

Abstract

This article presents an approach to schema integration that combines struc-
tural aspects and behavioural aspects. The novelty of the approach is that it
uses behavioural information to guide both schema restructuring and schema
merging. Schema restructuring is based on schema transformations and schema
merging is based on join operators.

l I n t r o d u c t i o n

Schema integration is an important and non-trivial task in database design. It oc-
curs when a number of different user views, developed for a new database system,
or a number of existing database schemas must be integrated into a global, unified
schema. As schema integration is a difficult task, methods to support the designer
with this task are essential. In [6], a framework for comparing integration methods
is given. The framework identifies four steps. In the first step, the preintegration
step, an integration strategy is chosen and additional information on the schemas
is gathered. Subsequently, the schemas are analysed and compared to find similari-
ties/conflicts among the schemas. In the conforming step, the conflicts found in the
comparison step have to be resolved. Finally, in the last step, the schemas are merged
by superimposition and the resulting schema is analysed and restructured if necessary.

For our purpose, the main characteristic of an integration method is: which simi-
larities/conflicts are detected and how are conflicts resolved? A number of integration
methods use assertions among different component schemas to compare attributes and
entity types. In [17], interschema assertions, names, and types are used to compare
object types. In [15], schemas are merged using schema operators and assertions
among entity types and attributes in different schemas. And in [13], attribute as-
sertions (e.g., key/non-key and lower/upper bounds) are used to compare attributes
and entity types. However, the assertions must be supplied by the designer and the
resolution of conflicts depends heavily on the common sense of the designer. Other
methods use schema transformations to resolve structural conflicts. In [9], structural
transformations are defined to integrate compatible structures. In [16], a number of

*This research is partly funded by the Dutch Organisation for Scientific Research through NFI-
grant NF74.

298

schema transformations (e.g., join and meet) are proposed to restructure schemas.
And in [5], transformations between attributes, entities and relationships axe used
to resolve type conflicts. However, only the last one gives a heuristic (viz., concept
likeness/unlikeness) for applying the transformations. Finally, a number of recent
methods use more specific information on semantical properties of attributes and en-
tity types to detect similarities and conflicts. In [18, 23], attribute assertions are used
to define relationships between an attribute on one hand and a semantic point or a
set of concepts on the other hand. Again, the assertions must be supplied by the
designer. In [19], a database metadictionary is used to define a semantic domain for
each attribute. And in [10], a terminological knowledge base containing information
on negative and positive associations between terms and information on specialisation
of terms is used to compare entity types.

This article presents a new approach to schema integration, based on schema
transformations and the approach taken in [20, 21], where classes are compared by
structure and by behaviour. The approach consist of two steps. First, component
schemas are restructured using schema transformations, and syntactical properties of
methods are used to guide the restructuring process. Subsequently, the component
schemas are merged using join operators, and semantical properties of methods are
used to guide the merging process. More details on the approach are given in [22].
There is, as far as the authors know, no other approach that uses methods to compare
attributes. For sake of completeness, it should be mentioned that there is an approach
to schema evolution that analyses methods ([8]), not to compare attributes, but to
solve non-legitimate overriding of methods.

The outline of this article is as follows. In the next section, we give a brief overview
and formalisation of our data model. In Section 3, we define a number of well-known
type transformations and extend them to be applicable to recursive types as well.
Furthermore, we show how these type transformations induce schema transformations.
In Section 4, we show how methods can be used to guide schema restructuring and
give a heuristic algorithm to restructure and merge schemas. In the last section, we
summarise and give some directions for further research.

2 D a t a b a s e s c h e m a s

In this section, we introduce a subset of the database schemas found in object-oriented
database languages such as Galileo [2], Goblin [12], 02 [14], and TM/FM [4].

Informally, an object-oriented database schema is a a class hierarchy, i.e., a set of
classes related by a subclass relation. A class has a name, a set of superclasses, a set
of attributes, a set of constraints, and a set of update and query methods.

Def ini t ion 1 (Class hierarchies) . First, five disjoint sets are postulated: a set
C N of class names, a set A N of attribute names, a set M N of method names, a set
L of labels, and a set Cons of basic constants (i.e., 'integer', 'rational', and 'string'
constants). The sets are generated by the nonterminals CN, AN, MN, L, and Cons,
respectively. Class hierarchies are the sentences of the following BNF-grammar, where
the plus sign (+) denotes a finite, nonempty repetition, square brackets ([]) denote
an option, and the vertical bar (I) denotes a choice:

299

Hierarchy ::=
Class ::=

Art ::--
Type :: =
BasicType ::=
SetType ..-"-
RecordType ::=
FieldList ::=
Field ::=
Key ::=
KeyAtt ::=
Meth ::=

ParList ::=
Par ::=
Result ::=
AsnList ::=
Assign ::=
Dest ::=
Source ::--

Term ::=
ActParList ::=

[]

A class hierarchy is well-defined if it satisfies four conditions.

Class +
'Class ' CN [' Isa ' CN +]
[' A t t r i b u t e s ' Att +]
[' C o n s t r a i n t s ' Key +]
[' M e t h o d s ' Meth +]
'Endc lass '
AN ':' Type
BasicType I SetType [RecordType I CN
'integer' I 'rational' I 'string'
'{' Type '}'
'< ' FieldList '> '
Field [Field ',' FieldList
L ':' Type
key KeyAtt +
AN I KeyAtt '.' L
MN '(' [ParList] ') = ' AsnList 1
MN '(' [ParList] --~' Result ') = ' AsnList I
Par I Par ',' ParList
L ':' BasicType
L ':' Type
Assign I Assign ';' AsnList
Dest ' := ' Source I ' i nse r t (' Source ',' Dest ')'
L t AN I L '.' Dest I AN '.' Dest
'sell" I Term l Term '+ ' Source I Term ' - ' Source I
Term ' x ' Source I Term '+ ' Source I ' n ew (' CN ') '1
Dest '.' MN '(' ActParList ')'
Dest I Cons
Term I Term ',' ActParList

The first condition
is that the Isa relation is acyclic, and classes have a unique name and only refer to
classes in the class hierarchy. The second is that attributes have a unique name within
their class and are well-typed. The third is that keys must be well-defined. The fourth
is that methods have a unique name within their class and are well-typed.

2 . 1 U n d e r l y i n g t y p e s

Informally, the set of all attributes of a class consists of both the new and inherited
attributes.

De f in i t i on 2 (A t t r i b u t e s) . Let H be a class hierarchy satisfying the first condi-
tion for well-defined class hierarchies. We abbreviate every class in H to a 5-tuple
(c, S, A, K, M), where c is the name of the class, S is the set of (names of) super-
classes, A is the set of new attributes, K is the set of new keys, and M is the set of
new methods. Now let C = (c, S, A, K, M) be an abbreviated class in H. The name
of C is denoted by name(C) and the set of all attributes of C, denoted by atts(C), is
defined as:

300

atts(C) = A U {a: T I inheri ts(a)A
T = •{T' I inherits(a, T')} A Va' : T ' 6 A[a # a']}

where

inherits(a, T ') = 3C' 6 H [name(C') 6 S A a : T ' 6 atts(C')],
inherits(a) = 3C' 6 H 3a' : T ' 6 at ts(C') [name(C') 6 S A a = a'],

and ~{T1,.. . ,T~} is the meet of a set of types [7]. Since we require that the Isa
relation is acyclic, atts is well-defined. []

Every class in a class hierarchy has an underlying type, which describes the structure
of the class, i.e., the structure of the objects in its extensions (cf. TM/FM [4]). The
underlying type of a class is an aggregation of its attributes, where recursive types [3]
are used to cope with attributes that refer to classes.

Defini t ion 3 (Under ly ing types) . First, postulate a new type 'old', whose exten-
sion is an enumerable set of object identifiers. Let H be a class hierarchy satisfying
the first condition, C be a class in H, and c be the name of C. The underlying type
of class C, denoted by type(C), is defined as:

type(C) = ~-(c, O)

where

T(d, ~) =].t t d . < id: oid, al : T(T1,77 tA {d}) , . . ' , ak: 7(Tk, 7] U {d}) >
if d r ~ and 3 0 �9 H [n a m e (D) = d A at ts (D) = {al : T1, . . . ,ak : T~}],

T(d, 7) --'-- td if d �9 ~,
T(B, ~) = B if B �9 {integer, rational, string},

7) =

7(< 11: U~,.-., l,~: U,~ >, 77) = < l~: T(U~, ~) , . - . , l , : 7-(U,, 77) >.

The set 77 contains the names of the classes for which a (recursive) type is being
constructed as part of the construction of the underlying type of class C. If r/contains
d, then w(d, 77) ---- td indicates a repetition of the recursive type. []

Note that the underlying type of a class depends on the hierarchy.

3 S c h e m a t r a n s f o r m a t i o n s

In this section, we give an overview of type transformations and show how type
transformations induce schema transformations.

The basic type transformations we have chosen (viz., renaming, aggregation, and
objectification) are variants of type transformations in [1]).

Defini t ion 4 (Basic type t r ans fo rma t ions) . Let L' be the union of L and A N
and Types be the set of types introduced in Definition 2. Renaming is defined as a
function of type L' ---* L' ~ Types ---* Types:

301

r e n a m e (l ') (l) (B) = B if B E {oid, i n t ege r , r a t i o n a l , s t r i n g }
= {7-}

rename(l ') (l) (< 11: 7-1,...,1,~ : 7-,~ >) = < l l [l ' \ l] : 7 - 1 , ' " , l n [l ' \ l] : 7-,` >,
rename(l ') (l) (t z t . < 11 : 7-1 ," ' , l,` : 7-,, >) = # t . < l l : q , ' . . , l,` : 7-,` >

if l ' = id ,
rename(l ') (1) (# t . < 11: 7 - 1 , ' " , l , ` : 7-,` >) = # t . < ll[l' \ l] : 7 -1 , " " , l,`[l' \ l] : 7-,` >

if l ' ~ id.

N o t e t h a t we do no t a l low r e n a m i n g of id- f ie lds .
A g g r e g a t i o n is de f ined as a func t ion of t y p e p(L ') ~ L' ~ Types ~ Types:

aggregate({li , l i + l , ' " , l j }) (l) (B) = B if B E {old, in t ege r , r a t i ona l , s t r i n g }
aggregate({li , l i + l , ' " , l j})(l)({7-}) = {7-}
aggregate({li , l i + t , " ' , l j }) (1)(< 11: 7 -1 , ' " , l,~: T,~ >) = < 11: T 1 , ' ' ' , l ~ : 7-~ >

if {li, l i + t , ' ' " , l j } ~ { l ~ , ' " ' , l~},
aggregate((l,, l i + l , ' " , / j }) (/) (< 11: T I , ' " , l,~: ~-,` >) =

< l l : 7 - 1 , ' " , I :< li : r i , ' " , l j : rj > , . . . , l ~ : 7-,~ >
if { l ~ , / i + 1 , " " , l j} C_ { l ~ , . . . , l,~},

a ~ r e g a t e ({ l i , 1i+1," " " , l j }) (l) (# t . < I t : 7-1, " " " , l , ` : r,~ >) - -

t . < l~ : 7-~, �9 �9 �9 l,~ : 7-,` >
if {l,, l i + x , ' " , 13} ~= { 1 1 , . . . , / ~ } ,

 gg gate({t,, t A) (0 (z t . < t l : 7 -1 ," ' , >) =
#t . < l l : 7 - 1 , ' " , 1 :< li : 7 - i , ' " , l j : 7-j > , . . . , l , ` : 7-,` >
if id r { l ~ , / i + l , . . . , l j } a n d { l i , / i + l , ' " , l j } C { / a , . . . , l ~ } ,

aggregate({li , l i + l , ' " , l j)) (l) (# t . < 11: ~ -1 , " " , I n : 7-,` >) =
Us. < 11: q[t \ s] , . . . , l : at . < li : 7-i[t \ s] , . . . , l j : 7-j[t \ s] > , . . . ,l,~ : 7-,`It\s] >
if id E {li, l i + l , ' " , l j} a n d {li, l i + l , ' " , l j} C_ { l l , . . . , l , } .

O b j e c t i f i c a t i o n is de f ined as a f u n c t i o n of t y p e Types ---* Types:

objec t i fy (B) = B if B E {oid, in t ege r , r a t i o n a l , s t r i n g }
objectify({7-}) = {7-}
object i fy(< It : q , ' " , l,` : 7-,~ >) = # s . < id : o id , 11 : r ~ , . . . , l,` : 7-,` > ,
object i fy(~t . < 11 : 7 - a , ' " , l,` : 7-,~ >) = # t . < l~ : 7 - 1 , ' " , l,~ : 7-,` >

if 3i e { 1 , . . . ,n}[l i = id],
object i fy(~t . < l~ : 7 -1 , " " , l,` : 7-~ >) = t~t. < id : oid, l~ : 7 -~ , . . . , l~ : 7-~ >

if Vi e { 1 , . . . , n}[l i ~ id].

[]

C o m p l e x t y p e t r a n s f o r m a t i o n s are o b t a i n e d by c o m b i n i n g bas i c t y p e t r a n s f o r m a t i o n s .

E x a m p l e 1. T y p e a = < 11 : #s . < id : o i d , / : Ta,12 : T2 >,13 : Ta > can be o b t a i n e d
f r o m t y p e aa = < 11 : 7-1,1= : 7-2,/3 : 73 > aS fol lows:

a2 = r e n a m e (l l) (l) (a l) = < l : 7-t,/2 : 7-2,13:7-3 >
a3 = aggregate({l , 12})(11)(a2) = < 11 : < l : 7-1,12 : r2 >, 13 : 7-3 >
(74 = < 11 : objecti fy(< l : 7-1, 12 : 7-2 >) , 13 : 7-3 > = 0".

302

Both the transformation for lexical attributes and the transformation for unstable
subtypes from [11] can be obtained by composing one aggregate and one objectify
operation.

Example 2. The following class hierarchy introduces a class Person, a class Em-
ployee, which inherits from class Person, and a class Company:

Class Person
At t r ibu tes

name : string
street : string
house : integer
city : string

Endclass

The underlying type of class Person is:

Class Employee Isa Person
At t r ibu tes

employer : Company
salary : integer

Endclass
Class Company

At t r ibu tes
name : string

Endclass.

tp. <id:oid, name:string, street:string, house:integer, city:string>.
The underlying type of class Person can be transformed into (by applying aggregate
({street,house,city}) (address)):

tp. <id:oid, name:string, address:<street:string, house:integer, city:string>>,
which can be transformed into (by applying objectify to the type of address):

tp. <id:oid, name:string,
address:# tx. <id: oid, street:string, house:integer, city:string>>.

The composite transformation is a variant of the transformation for lexical attributes
from [11]. We can redefine class Person as a class (named Personl) that refers to a
new class (named X).

Class Person1
At t r ibu tes

name : string
address : X

Endclass

The underlying type of class Employee is:

Class X
At t r ibu tes

street : string
house : integer
city : string

Endclass.

rE. <id:oid, name:string, street:string, house:integer, city:string,
employer:To, salary:integer>,

where 7c is the underlying type of class Company. The underlying type of class Em-
ployee can be transformed into (by applying aggregate ({id,name,street,house,city})
(employee)):

ty. <employee:# rE. <id:oid, name:string, street:string, house:integer,
city:string>, employer:~'c, salary:integer>,

which can be transformed into (by applying objectify):
tz. <id:oid, employee:# rE. <id:oid, name:string, street:string, house:integer,

city:string>, employer:~-c, salary:integer>.
The composite transformation is a variant of the transformation for unstable subtypes
from [11]. We can redefine class Employee as a 'relation' (named Y) that refers to a
new class (named Employeel):

303

Class Y
Attributes.

employee : Employeel
employer : Company
salary : integer

E n d c l a s s

C la s s Employeel
Attributes

name : string
street : string
house : integer
city : string

Endc l a s s .

Note that , in the original situation, an employee (an object in class Employee), does
have a unique employer, whereas, in the resulting situation, an employee (an object
in class Employeel) does not. Therefore, we define a key for class Y:

Class Y1
A t t r i b u t e s

employee �9 Employeel
employer : Company
salary : integer

Constraints
k e y employee

Endclass.

4 Appl icat ion of schema transformat ions

In the previous section, we defined type t ransformations and showed how they induce
schema transformations. In this section, we show how behaviour of methods can be
used to choose among a set of schema transformations.
A class can be transformed in several ways, using different factors and different trans-
formations.

Example 3. Let class Employee be the following class:

C las s Employee
A t t r i b u t e s

name : string
dob : Date
street : string
house : integer
city : string
employer : Company

M e t h o d s
move (s:string,h:integer,c:string) =

street := s; house := h; city := c
E n d c l a s s

and class Address be a factor of Employee:

304

Class Address
A t t r i b u t e s

street : string
house : integer
city : string

M e t h o d s
move (s:string,h:integer,c:string) =

street := s; house := h; city := c
Endclass .

One option to transform class Employee is to redefine Employee as a subclass of
Address (factorisation by specialisation):

Class Employeel I sa Address
A t t r i b u t e s

name : string
dob : Date
employer: Company

Endc las s .

Another option is to redefine Employee as a class referring to Address (factorisation
by delegation):

Class Employee2
A t t r i b u t e s

name : string
dob : Date
address: Address2
employer: Company

M e t h o d s
move (s:string,h:integer,c:string) =

address := address.new_address(s,h,c)
Endclass
Class Address2
A t t r i b u t e s

street : string
house : integer
city : string

M e t h o d s
new_address (s:string,h:integer,c:string -~ l:Address2) =

1 := new(Address2) ; 1.street := s ; 1.house := h ; 1.city := c
Endc lass .

Note that, as an employee is not an address in the real world, it is unlikely that the
first option is the right choice. The second option, where employee refers to an address
(as one of its attributes) is a more reasonable choice. Now, let class Person be a factor
of class Employee2:

Class Person
A t t r i b u t e s

305

name : string
dob : Date
address : Address2

M e t h o d s
move (s:string,h:integer,c:string) =

address := address.new_address(s,h,c)
Endc lass .

One option to transform class Employee2 is to redefine Employee2 as a subclass of
Person (factorisation by specialisation):

Class Employee3 Isa Person
A t t r i b u t e s

employer : Company
Endclass.

Another option is to redefine Employee2 as a class referring to Person (factorisation
by delegation):

Class Employee4
A t t r i b u t e s

person : Personl
employer : Company

M e t h o d s
move (s:string,h:integer,c:string) =

person := person.new_person(s,h,c)
Endclass
Class Personl
A t t r i b u t e s

name : string
dob : Date
address : Address2

M e t h o d s
new_person (s:string,h:integer,c:string --* l:Personl)

1 := new(Personl) ; 1.name := name ;
1.dob := dob ; 1.address := 1.address.new_address(s,h,c)

Endc lass .

Since the objects in class Employee2 become the objects in class Employee4, we
redefine method 'move' to be applicable to objects in class Employee4. Yet another
option is to redefine class Employee2 as a relation involving class Person:

Class Employment
A t t r i b u t e s

employee : Person
employer : Company

C o n s t r a i n t s
key employee

Endclass.

306

Since the objects in class Employee2 become the objects in class Person, we do not
redefine method 'move', because it is already applicable to objects in class Person.
Note that, as an employee is a person in the real world, it is likely that options one
and three are more reasonable than option two, where an employer refers to a person
(as one of its attributes). []

As we have seen, a class can be transformed in several ways, using different factors
and different transformations, e.g., factorisation by specia]isation, factorisation by
delegation, or redefinition as a relation. But how do we choose factors and how
do we choose between specialisation, delegation and redefinition as a relation? For
that purpose, we introduce evidence ratios for relatedness. Weak relatedness for a
set of attributes says whether the attributes are mutually related (according to the
methods). Strong relatedness for a set of attributes says whether the attributes are
mutually related, but not to attributes outside the set (according to the methods).
Isolation for a set of attributes says whether the attributes are not related to attributes
outside the set (according to the methods).

Defini t ion 5 (Relatedness ratios). Let H be a well-defined class hierarchy, C be
a class in H, c be the name of C, and M be the set of all methods of C. Furthermore,
for meth E M, let atts(meth) consist of the names of attributes of C that occur in
meth. Weak relatedness of a set of attributes A C {a] a : T E arts(C)} is defined as:

1 {meth ~ M I atts(meth) _~ A} t weakrel(c,
A) = I {meth e M I atts(meth) n A ~ 0}]"

Strong relatedness of a set of attributes A is defined as:

] {meth E M] atts(meth) = A} I
strongrel(c, A) = I {meth E M I atts(meth) r3 A ~ ~}]"

Isolation of a set of attributes A C {a] a : T E atts(C)} is defined as:

isolation(c,A) =] {meth e M] 0 ~ atts(meth) C_ A}]
I {meth E M I atts(meth) A A ~ 0} I "

If {meth E M att~(meth) N A ~ 0} is empty, then weakrel(c, A) and strongrel(c, A)
are defined to be O, and isolation(c, A) is defined to be 1.

For a set of attributes with strong relatedness ratio 1 and any method, either all
attributes occur in the method and all attributes that occur in the method are in the
set, or no attribute in the set occurs in the method. In that case, the attributes are
strongly related. For a set of attributes with weak relatedness ratio O, there is no
method in which all attributes occur and, hence, the attributes are not (mutually)
related. And for a set of attributes with isolation ratio 1 and any method, either
all attributes that occur in the method are attributes in the set or no attribute that
occurs in the method is an attribute in the set. In that case, the attributes are only
related within the set. []

Weak and strong relatedness can help to choose a factor. If the strong relatedness
ratio of a set of attributes is high, then it is reasonable to believe that they belong
together and, hence, to factorise. On the other hand, if the weak relatedness ratio is
low, then it reasonable to believe that they do not belong together and, hence, not to
factorise.

307

E x a m p l e 4. Consider class Employee of Example 3. The weak and strong related-
ness ratios for {street, house, city} and {name, dob} are given by:

strongrel(Employee, {street, house, city}) = 1
weakrel(Employee, {street, house, city}) = 1
strongrel(Employee, {name, dob}) = 0
weakrel(Employee, {name, dob}) = 0.

As we can see, street, house, and city are strongly related, whereas name and dob are
not related.

Now, consider class Employee2 of Example 3. The weak and strong relatedness
ratios for {name, dob, address} and {name, dob, employer} are given by:

strongrel(Employee2, {name, dob, address}) = 0
weakrel(Employee2, {name, dob, address}) = 0
strongrel(Employee2, {name, dob, employer}) = 0
weakrel(Employee2, {name, dob, employer}) = 0.

As we can see, in both cases the attributes are not related. []

Isolation can help to choose between specialisation and redefinition as a relation. If
the isolation ratio is less than one, then specialisation is possible, but redefinition as
a relation is not, since, in that case, we have to add a method to the relation that
updates another relation or class.

E x a m p l e 5. Consider class Employee2 of Example 3. The isolation evidence ratio
for name, dob, address is given by:

isolation(Employee2, {name, dob, address}) = 1.
Redefinition as a relation results in a relation (Employment) that represents a simple
association between a person and a company. Now, if we add a method to class
Employee2 that updates attribute address and attribute employer, then we will have
to add a method to Employment that creates a new person and updates attribute
employee and attribute employer. Since this method is not a simple insert or update
operation on Employment, Employment is no longer a relation. []

So, how do we choose factors and transformations? Factors are chosen by compar-
ing weak evidence ratios. If the weak evidence ratio of a set of attributes is greater
than some threshold, there is reason to assume that the attributes can be used as a
factor. If not, there is no reason. Transformations are chosen by comparing strong
evidence ratios and isolation ratios. In case the strong evidence ratio is greater than
some threshold, delegation is a reasonable option, because the attributes are strongly
related within the set and weakly related with other attributes. In case the isolation
ratio is less than one, then specialisation is possible, but redefinition as a relation
is not. Otherwise, specialisation or redefinition as a relation are both possible. It
should be mentioned that, in the context of schema integration, schema transforma-
tions must be applied carefully and only if necessary. In particular, this is true for
factorisation by specialisation, since a lot of new classes will be generated by this type
of transformation.

The considerations for choosing factors and transformations can be used in a
heuristic algorithm to support schema integration. First, the attributes of every class
are partitioned in such a way that the isolation ratio of every element in the partition
is one, and every class is factorised by delegation if desirable. Subsequently, for every

308

pair of promising classes, a set of possible superclasses is computed, and both classes
are factorised by specialisation or redefined as a relation if desirable.

A l g o r i t h m 1. The following algorithm is a heuristic for integrating two database
schemas (resp., DBS1 and DBS2), given thresholds for strong relatedness and weak
relatedness (resp., TSR and TWR):

integrate(DBS1,DBS2,TSR,TWR) =
for every class C in DBS1 or DBS2
do for every element A in partition(C)

do if strongrel(c,A) > TSR and 1 < [A l < latts(C)[
t h e n create class C1 as the class containing A

and the methods that refer to A;
factorise C by delegation using C1;
mark C and C1

elif weakrel(c,A) > T W R
t h e n mark C
fi

od
od
for every marked C1 in DBS1
do for every marked C2 in DBS2

do if there is a superclass C of a class in joins(C1,C2) that can be used
as a factor according to the designer
t h e n transform(C1,C2,C)
else for every key a.p in keys(C1) such that a:D in atts(C1)

for some class D
do define class D1 as obtained from C1 by applying

the inverse of redefinition as a relation;
if there is a superclass C of a class in joins(D1,C2) that
can be used as a factor according to the designer
t hen transform(D1,C2,C)
fi

od
fi

od
od;

transform(C1,C2,C) =
begin let ~1 be an injection from arts(C) to arts(C1) induced by 6'1 ~ C;

let ~2 be an injection from atts(C) to atts(C2) induced by C2 ~ C;
define A1 as the attribute names in the range of ~1;
define A2 as the attribute names in the range of ~1;
if isolation(name(C1),A1) < 1 or isolation(name(C2),A2) < 1
t h e n factorise C1 and C2 by specialisation using C
elif 1 < tAll < latts(C1)l and 1 < IA21 < latts(C2)l
t h e n factorise C1 and C2 or redefine C1 and C2 as relations

according to the choice of the designer
else factorise C1 and C2 by specialisation using C

309

fi
end;

where partition(C) is constructed as follows:

graph(C) has a node for every attribute name in atts(C)
graph(C) has an edge between two nodes if there is a method in the set of

all methods of C in which both attribute names occur
partition(C) consists of sets of attribute names,

one set for every connected subgraph of graph(C):
two attribute names are in the same set if their nodes are connected
two attribute names are in different sets if their nodes are not connected,

and joins(D1,D2) (i.e., the set of common superclasses of D1 and D2) and _ (i.e., the
subclass relation) are as defined in [21]. []

Note that the algorithm interacts with the designer. It should be mentioned again
that the algorithm is a heuristic and should therefore be used in close interaction with
the designer. The heuristic can be improved by combining the different thresholds
and refining the different adtions. This is the subject of future research.

5 Conclus ion

In this article, we presented a new approach to schema integration based on trans-
formations and behaviour. First, we formalised schemas using underlying types and
underlying constraints. Next, we presented a number of type transformations on un-
derlying types and used them to transform schemas. Finally, we gave a heuristic
algorithm for integrating schemas. The algorithm uses schema transformations to
restructure schemas and join operators to merge them and behavioural information
to guide restructuring and merging. Advantages of this approach are: 1) structural
aspects are integrated in a guided fashion and 2) both structural and behavioural
aspects are integrated.

Further research includes 1) extension of the data model, 2) extension of the
schema transformations, and 3) extension and refinement of the heuristic algorithm.

Bibl iography
[1] S. Abiteboul and R. Hull. Restructuring hierarchical database objects. Theoretical

Computer Science, 62:3-38, 1988.

[2] A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, interactive conceptual
language. ACM Trans. on Database Systems, 10(2):230-260, 1985.

[3] R. Amadio and L. Cardelli. Subtyping recursive types. In Proc. Int. Syrup. on Principles
of Programming Languages, pages 104-118, 1991.

[4] P. Apers, H. Balsters, R. de By, and C. de Vreeze. Inheritance in an object-oriented data
model. Memoranda Informatica 90-77, University of Twente, Enschede, The Nether-
lands, 1990.

[5] C. Batini and M. Lenzerini. A methodology for data schema integration in the ER
model. IEEE Transactions on Software Engineering, pages 650-664, November 1984.

310

[6] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323-364, 1986.

[7] L. Cardelli. A semantics of multiple inheritance. In Proc. Int. Syrup. on Semantics of
Datatypes, LNCS 173, pages 51-67. Springer-Verlag, Berlin, 1984.

[8] E. Casals. An incremental class reorganization approach. In European Conf. on Object-
Oriented Programming, pages 114-132, 1992.

[9] R. Elmasri and G. Wiederhold. Data model integration using the structural model. In
Proc. Int. Conf. on Management of Data, pages 191-202, 1979.

[10] P. Fankhauser, M. Kraeker, and E. Neuhold. Semantic vs. structural resemblance of
classes. ACM SIGMOD Record, 20(4):59-63, 1991.

[11] P. Johannesson. Schema transformations as an aid in view integration. In Proc.
Int. Conf. on Advanced Information Systems Engineering, LNCS 685, pages 71-92.
Springer-Verlag, Berlin, 1993.

[12] M. Kersten. Goblin: a DBPL designed for advanced database applications. In Proc. Int.
Conf. on Database and Expert Systems Applications, pages 345-349. Springer-Verlag,
Wien, 1991.

[13] J. Larson, S. Navathe, and R. Elmasri. A theory of attribute equivalence in databases
with application to schema integration. IEEE Transactions on Software Engineering,
15(4):449-463, 1989.

[14] C. L~cluse and P. Richard. The 02 database programming language. In Proc. Int.
Conf. on Very Large Databases, pages 411-422. Morgan Kaufmann, Palo Alto, CA,
1989.

[15] M. Mannino, S. Navathe, and W. Effelsberg. A rule based approach for merging gen-
eralisation hierarchies. Information Systems, 13(3):257-272, 1988.

[16] A. Morro and P. Buneman. Constructing superviews. In Proc. Int. Conf. on Manage-
ment of Data, pages 56-64, 1981.

[17] S. Navathe and S.Gadgil. A methodology for view integration in logical data base
design. In Proc. Int. Conf. on Very Large Databases, pages 142-155, 1982.

[18] A. Sheth and S. Gala. Attribute relationships: an impediment in automating schema
integration. In Proc. Workshop on Heterogeneous Database Systems, 1989.

[19] M. Siegel and S. Madnick. A metadata approach to resolving semantic conflicts. In
Proc. International Conference on Very Large Databases, pages 133-145, 1991.

[20] C. Thieme and A. Siebes. Schema integration in object-oriented databases. In Proc.
Int. Conf. on Advanced Information Systems Engineering, LNCS 685, pages 54-70.
Springer-Verlag, Berlin, 1993.

[21] C. Thieme and A. Siebes. Schema refinement and schema integration in object-oriented
databases. In Proc. Computing Science in The Netherlands, ISBN 90 6196 430 X, pages
343-354. Stichting Mathematisch Centrum, 1993.

[22] C. Thieme and A. Siebes. An approach to schema integration based on transformations
and behaviour. Report CS-R9403, CWI, Amsterdam, The Netherlands, 1994 (available
by anonymous ftp from ftp.cwi.nl).

[23] C. Yu, W. Sun, S. Dao, and D. Keirsey. Determining relationships among attributes for
interoperability of multi-database systems. In Proc. Int. Workshop on Interoperability
in Multidatabase Systems, pages 251-257, 1991.

